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Abstract: In this paper, the elastic scattering angular distributions data of the α+12C reaction at an energy range

of 13.0 to 172.5 MeV were analyzed within the framework of optical model formalism. A phenomenological deep real

potential was used with a phenomenological Woods–Saxon type imaginary potential. Excellent agreement was obtained

in the high-energy region. The phenomenological deep potential was unable to explain the experimental data in the

low-energy region. The experimental data at both low and high energies could not be explained at the same time. In

order to explain the data simultaneously at low energy and high energy, the shape of the deep real potential was modified

in the surface region. This work shows the role of the surface region of two nuclei in explaining the elastic scattering

data of this system.
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1. Introduction

The formation of elements starts charged-particle reactions, induced by α -particles. Therefore, the interactions

of this particle with light-heavy ions bear significance in nuclear physics and nuclear astrophysics. One of the

most important interactions is the α+12C reaction. It has attracted considerable interest and has been studied

both experimentally and theoretically over the years. A large body of data has been accumulated as a result

of this intense research. In general, the theoretical studies have divided the experimental data into two energy

regions, high and low ones, and they have been studied separately by using various models.

The elastic scattering of α particles from 12C nuclei has been analyzed for the low-energy region by

some authors [1–7]. Carter et al. [1] examined the low-energy data using the standard optical model and a

modified smooth cut-off model, called the APBM model, and showed that the shallow Woods–Saxon potential

is not adequate to explain the experimental data. They were able to explain the experimental data for the

laboratory energies between 10.0 and 19.0 MeV by using the APBM cut-off model. However, they have not

applied this model to higher energies. For high-energy data, models based on the folded potentials have been

used in general [8–10]. In these studies, a satisfactory agreement with experimental data was obtained by using

the double-folding models at some incident energies in the high energy region. Yang et al. [11] conducted a

detailed analysis of the elastic scattering data over a wide energy range, from 13.0 to 172.5 MeV, using a folding

model based on an α -particle model. They obtained good agreement for angular distributions at the high-

energy region between 90.0 and 172.5 MeV. Although their model is adequate to fit the data for intermediate

energies, fit to the details of the experimental data could not be achieved. They examined the low-energy data
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and showed that their model had the worst results at the low-energy region in comparison with the intermediate

and high-energy region data (see Ref. [11] for details).

It may be perceived from all these studies that the α+12C system is very difficult and there are some

problems to be addressed in explaining the elastic scattering data, especially in the low-energy region. The

models used until now have not provided a consistent description for all data measured so far. In the light of

these, this study aimed to explain the experimental data of the α+12C reaction by using a deep Woods–Saxon

squared real potential with a shallow Woods–Saxon imaginary potential over a wide energy range from 13.0 to

172.5 MeV within the framework of the optical model formalism.

In the following section, the optical model is given with the potential parameters used to analyze the

experimental data of the α+12C system. In Section 3, the results of these analyses are presented. A summary

and conclusion are given in the last section.

2. Model

The form of the potential, which represents the two-body interaction between the projectile and the target

nucleus, is of great significance in the optical model calculations. The potential can be obtained microscopically

by using the density distributions of the interacting nuclei with an effective interaction via the folding model

similar to [12], or a phenomenological form may be chosen [13]. In this work, the phenomenological Woods–

Saxon form was chosen for the optical potential in this analysis. The WS form is flexible, since it has three

adjustable parameters (depth, radius, and diffuseness), whereas the folding potential has only one adjustable

parameter, the normalization factor, NR .

The optical potential can be expressed as follows:

Vtotal(r) = VNuclear (r) + VCoulomb (r) + VCentrifugal (r) (1)

The Coulomb potential is due to a charge ZP e interacting with a charge ZT e distributed uniformly over a

sphere of radius Rc

VComb(r) =
1

4πε0

ZPZTe2

r
r > RC (2)

VComb(r) =
1

4πε0

ZPZTe2

2Rc
(3− r

R2
c

) r < RC , (3)

where RC is the Coulomb radius, and ZP and ZT denote the charges of the projectile and the target nuclei,

respectively.

The nuclear potential consists of real and imaginary potentials, given as

VNuclear(r) =
−V0

1+ e
r −Rv

av

+
−W0

1+ e
r −Rw

aw

(4)

Rv = rv [Ap + AT ] and Rw = rw [Ap+ AT ]. Here Ap is the mass of projectile and AT is the mass of the

target. The variable r shows the radius parameters of the real and imaginary parts of the potential. The real

potential is the square of the Woods–Saxon shape with the depth V0 = 295.0 MeV, which is constant for all

calculations. The diffuseness parameter has been fixed to two different values. For high-energy regions between

90.0 and 172.5 MeV, aV = 1.65 fm and for low-energy regions between 13.0 and 60.0 MeV, aV = 1.45 fm. The
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Table 1. The parameters and volume integrals of the real and imaginary potentials of the optical model calculations.

ELAB (MeV) rV (fm) W (fm) JV (MeVfm3) JW b(MeVfm3)
13.0 0.30 1.5 127.6 20.8
18.0 0.76 2.0 606.3 27.3
22.0 0.71 7.3 521.6 101.2
29.0 0.71 5.0 521.6 69.4
41.0 0.70 9.0 505.9 124.9
48.7 0.70 11.0 505.9 152.6
54.1 0.70 11.0 505.9 152.6
60.0 0.71 12.0 521.6 166.5
90.0 0.39 6.0 221.2 83.2
104.0 0.45 7.0 268.2 97.1
120.0 0.39 6.0 221.2 83.2
139.0 0.39 7.0 221.2 97.1
145.0 0.37 6.0 221.2 83.2
166.0 0.33 6.0 180.9 83.2
172.5 0.30 5.0 163.4 69.4

Figure 1. The interaction potential between 4He and 12C is plotted against the separation R for various values of the

orbital angular momentum quantum number, l. The inserted figure shows the imaginary potential at ELab = 13.0 and

90.0 MeV. The parameters are given in the text.
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radius parameters vary with energy, as given in Table 1. The real part of the nuclear potential and the total

potential are displayed in Figure 1 for various values of the orbital angular momentum.

The imaginary potential has the Woods–Saxon volume shape. The depths, W0 , are given in Table 1. The

radius and diffusions parameters of the imaginary potential have also been fixed in the calculations as rW =

1.35 fm and aW = 0.55 fm. Figure 1 shows the imaginary part of the nuclear potential. The volume integrals

of the real and imaginary potentials are shown in Table 1. For all calculations, the code Fresco was used [14].

3. Results and discussion

Fifteen elastic angular distributions of the α+12C system from 13.0 to 172.5 MeV were analyzed. At first, the

double folding model was used to examine the data and results similar to those reported by Yang et al. [11] were

obtained: good agreement with the experimental data at high energies, but poor agreement with the low-energy

data. The agreement could not be improved by varying NR . Then the Woods–Saxon squared form described

in the previous section was used for the real part of the nuclear potential, which shows a similar behavior with

the folded potential.

The phenomenological Woods–Saxon potential family gave very good agreement at high energies, as

shown in Figure 2. However, this potential family failed to provide an agreement with the data at low

energies. The results are very similar to the findings reported by Yang et al. [11] obtained by using the

double folding potential. These results are shown in Figures 3 and 4 with dashed lines. Neither microscopic nor

phenomenological deep potentials provide a consistent description of the experimental data.

Because of the failure of the microscopic and phenomenological potentials, the sensitivity of the real

potential was examined to explain the scattering observables of this reaction. For this purpose, a notch test

was performed. A Woods–Saxon derivative potential with a small depth was used at different radius points.

The potential has no effect on the scattering for a radius of 4 fm. However, after 4 fm, it affects the phases of

the oscillation in the cross-section. Therefore, by conducting a detailed study, the shape of the real potential

in the surface region of the nuclear potential was modified by adding two small potentials at different radial

points [15]. These points, where two small potentials are included, are close to the touching distance of the two

nuclei. This shows that these types of reactions involve surface effects. These two small additional potentials

are derivatives of the Woods–Saxon shape.

Therefore, the total real potential for these calculations consists of the nuclear potential, VNuclear , with

two small additional potentials:

Vtotal(r) = VNuclear(r) + U(r) + VCoulomb(r) + VCentrifugal(r) (5)

U(r) = 4U1a1
df(r,R1, a1)

dr
+ 4U2a2

df(r,R2, a2)

dr
(6)

F (r,R, a) =
1

[1 + e
r −R

a ]
(7)

Two small potentials are shown in Figure 5 and the parameters are shown in Table 2. By adding these

small potentials to the phenomenological Woods–Saxon squared nuclear potential, better agreement with the

experimental data was obtained. As clearly seen in Figures 3 and 4, satisfactory agreement was obtained between

the theoretical results and the experimental data in the low-energy region. These results are better than the

microscopic and phenomenological potential results obtained so far in the literature. When these results are
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Figure 2. The elastic scattering angular distributions

obtained by using the optical model for the α+12C system.

The experimental data are taken from [1,2,4].

Figure 3. The elastic scattering angular distributions

obtained by using the optical model for the α+12C system.

Here the solid lines show the modified optical potential

and dashed lines show the standard optical potential. The

experimental data shown in circles are taken from [3,5,6].

compared with the results obtained by Yang et al. [11], who analyzed these data with a folded potential, the

fits in this paper are more favorable. It should be emphasized here that in the present calculations only two

parameters, the radius of the real potential and the depth of the imaginary potential, have been changed with

the energy to improve the quality of the fits. The parameters are displayed in Table 1 and the other parameters,

which are given in Section 2, are kept constant in all calculations.

Table 2. The parameters of the two small additional potentials.

U1 (MeV) R1 (fm) a1 (fm) U2 (MeV) R2 (fm) a2 (fm)
11.0 1.1 0.1 4.5 1.52 0.511

The results show that two small potentials have a significant effect in explaining the low-energy data.

Although their depths are not deep, they have a large effect on the scattering. This is also clearly seen in Figure

6, where we show the far- and near-side components of the total cross-section. These additional potentials

contribute to the interference between the inner wave comes from the reflection at the inner face of the total
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Figure 4. The elastic scattering angular distributions

obtained by using the optical model. Here the solid lines

show the modified optical potential and the dashed lines

show the standard optical potential. The experimental

data shown in circles are taken from [7].

Figure 5. The shapes of two small potentials U1(r) and

U2(r) are displayed by dotted and solid lines, respectively.

The inset shows their effects on the nuclear potential with

a long-dashed line.

potential pocket and external wave comes from the reflection at the outer barrier [15–17] (see Figure 1 for the

pocket in the total real potential). These small potentials affect also the magnitudes and phases of the internal

and external waves. However, when the potential pocket disappears for the high angular momentum number l ,

which may be called the “grazing angular momentum” or lg , the interference between the internal and external

waves loses the importance [18,19]. Therefore, lg > 10, which corresponds to an Elab of approximately 60

MeV, and the total potential pocket seen in Figure 1 disappears. As a result, these small potentials have no

effect on lg , this energy, and can be ignored at the higher-energy region. Therefore, these small potentials

above 60 MeV were removed and the Woods–Saxon squared potential was used by adjusting the diffuseness to

aV = 0.65 fm, without changing other parameters, in order to provide quality of fit. These results can also be

discussed in the light of findings reported by Baye [20]. He investigated nucleus–nucleus scattering within the

framework of supersymmetric quantum theory and showed the relation between deep and shallow potentials.

He also showed that both shallow and deep potentials are phase equivalent, and thus different deep and shallow

interaction potentials give similar elastic cross-sections. The surface effects of the Woods–Saxon potentials for

the scattering have also been discussed in [21–23].
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KÜÇÜK/Turk J Phys

Figure 6. The near- and far-side components of the total cross-section. The interference of the near- and far-side

components gives the total cross-section in the figure.

4. Summary and conclusion

In this paper, the elastic scattering of the α+12C system was analyzed over a wide energy range from 13.0

to 172.5 MeV in a laboratory system using an optical model. This study aimed to explain the experimental

data in the low- and high-energy regions simultaneously and to improve the theoretical results obtained by

using the microscopic and phenomenological potentials [8]. In the high-energy region, a good agreement with

the experimental data similar to previous works in the literature was obtained using the deep Woods–Saxon

squared potential. However, this potential could not provide a satisfactory description of the experimental data

in the low-energy region. These results are again similar to the previous works conducted so far in the literature.

Nevertheless, an improved agreement with the experimental data was obtained by modifying the shape of the

phenomenological Woods–Saxon squared potential in the surface region.

These analyses demonstrate two important results. First, the real potential must be deep to create a

pocket in the total potential, as shown in Figure 1. Secondly, the imaginary potential should be weak enough

to let the interference between the inner waves coming from the inner barrier and external waves coming from

Coulomb barrier for the angular momentum numbers be less than the grazing one. This paper has also shown

that the shape of the nuclear potential in the surface region has crucial importance in explaining the scattering

observables for the α+12C system. Consequently, two small potentials added to the surface region clearly take

into account the surface effects of two touching nuclei and satisfactory agreement has been obtained at low

energies by using this model. The same effect also observed in the system of 16O +28Si [16]. It shows that

elastic scattering is very sensitive to the surface regions at low energies for the light systems, as investigated in

this paper.
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