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Abstract: A theoretical prediction of the propagation characteristics of Laguerre-Gaussian beams after passing through a
blunt-tip axicon is presented. An ideal axicon generates theoretically perfect diffraction-free and smooth-on-axis intensity
Bessel beams, while experiments and calculations show that a zeroth-order Bessel beam deviates from its perfect behavior.
Strong intensity modulation occurs due to interference around the center of the beam. The origin of these oscillations
should be explored to increase the quality of beam shaping. This research shows that these oscillations can be reduced
by stopping the beam center for a small portion or by optimizing input beam parameters. On the other hand, since they
have singularity at the beam center, higher-order Bessel beams would be affected less by the bluntness of the axicon.
In order to prove this idea, a series of calculations with wavelengths of 1030, 515, and 343 nm were conducted. The
tip of the axicon was modeled as a hyperbola with a base angle of 0.5°. Our calculations indicate that zeroth-order
Bessel beams are much more sensitive than the higher-order Bessel beams to axicon bluntness. Moreover, not only the
axicon geometry and wavelength of the illuminating light, but also the input beam parameters are quite important when
enhancing the quality of beam shaping.
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1. Introduction

Since they were shown as sets of diffraction-free solutions of the wave equation [1], Bessel beams have attracted
much attention among researchers [2]. These beams have an electric field profile in the transverse plane given by
the first kind of Bessel functions (J, ). While the zeroth-order Bessel function (J,) has an intense central spot
surrounded by concentric rings, all the others are composed of only concentric rings with the phase singularity
at the beam center. Ideally, these beams consist of an infinite number of rings and so they carry infinite energy,
which makes them impractical to obtain experimentally. On the other hand, very good quasi-Bessel beams were
produced in prolonged distances compared to Gaussian beams of equal spot sizes [3,4].

Acquiring very small spot sizes at focus whose intensity stays high over much longer distances is useful
in optical coherence tomography [5,6], atom guiding [7], or manipulating microparticles [8]. In addition, the
near-field Bessel zone as well as far-field ring-shaped beam profiles can be used for drilling high aspect ratio holes
[9,10]. Moreover, intense central maxima with extended focal distances could both generate plasma channels in
air [11,12] and have a potential for nonlinear applications [13-15]. Bessel/Bessel vortex beams yield a submicron

central spot/central ring with an extended depth of focus simultaneously, and ultrafast lasers are capable of
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damaging any kind of materials. Therefore, direct patterning of thin films [16,17], single-layer graphene [18-20],
and bulk glasses [10] at nanoscale dimensions could be achieved by joining these two techniques together.

There are some experimental techniques for generating Bessel beams. They were first obtained with a
very thin annular slit [1]. Another approach is using the holographic spatial light modulator [21-23]. However,
these methods are very inefficient because most of the energy of the incoming beams is stopped and cannot be
transferred to the Bessel beams. Considering its simplicity and energy efficiency, using conical lenses (axicons)
is the most appropriate technique in order to convert Laguerre-Gaussian beams to Bessel beams [24]. Although
the majority of experimental studies consist of producing zeroth-order Bessel beams [10,16-18], recent studies
show that higher-order Bessel beams [15,25,26] are of interest to the research community. Since zeroth order
Bessel beams and higher-order Bessel beams possess different electric field profiles in the transverse plane,
zeroth-order and higher-order beams are classified as Bessel beams and Bessel vortex beams, respectively.

In addition to the extraordinary properties of Bessel beams, recent studies report some drawbacks, such
as the roundness of the axicon tip inevitably causing obvious oscillations of intensity in the propagation direction
[27,28]. Since constraints during fabrication limit the precision of the axicon end, this small lens-like part of the
axicon, indicated with a red curve in Figure 1, results in the refracted beam at the cone of the axicon interfering
with the incoming beam [29]. However, these oscillations can be substantially reduced by stopping the small
portion of the incoming beam at the center or by increasing the beam waist. These parameters not only cause
or reduce intensity modulation; the wavelength of the laser may also affect the resulting Bessel beams. The
calculations were extended to Bessel vortex beams and revealed that Bessel vortex beams are less prone to

intensity modulations due to axicon bluntness.
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Figure 1. Axicon geometries for an ideal (ideally sharp) and blunt case (red curve). The input Gaussian beam propagates

in the z-direction.

2. Results and discussion

In our analysis, we focus on the generation of Bessel and Bessel vortex beams by axicons. Ideal Bessel beams
are obtained as a result of interference of a conical wavefront made by a sharp axicon. Therefore, the electrical
field profile behind the axicon can be calculated by solving the Fresnel-Kirchhoff integral numerically using
MATLAB. In this calculation, the electrical field profile of the incoming beam is considered to be Gaussian
(TEM o) for Bessel (Jy) and a first-order Laguerre-Gaussian mode (TEM ;) for Bessel vortex (J;) beams. A

general expression for the Laguerre-Gaussian mode is given by the following expression:
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where wy is the beam waist and [ and p are the two parameters deciding the mode. The variable [ describes the
charge of phase singularity, and p is proportional to the number of concentric rings in the illuminating beam.
Since we focus on the generation of zeroth-order Bessel and first-order Bessel vortex beams, [ = 0 and p = 0 for
TEMy and [ = 1 and p = 0 for TEMo; modes. Therefore, a general expression for the Laguerre—Gaussian

beam can be composed for these two modes and yields the following expressions for illuminating beams:

Eoo (T‘) 0.8 6(_T2 /wg) (2)

Ep (r) re(="/wE) gi® (3)

In Egs. (2) and (3), Eogg or Epiis the electrical field profile of the illuminating beam in the transverse
plane. Since the system has cylindrical symmetry before the axicon, which makes the system independent
from azimuthal angle ®, the electric field profile behind the axicon can be obtained by evaluating the Fresnel—

Kirchhoff integral, as follows:

oik(z 472 [22) oo (_Zké)
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Here E, (r, z) is the electrical field at a point (r, z) propagating in a z-direction perpendicular to the transverse
plane, E(rg) is the input electrical field including the phase retardation due to the axicon [28], A is the
wavelength of the illuminating light, and J,is the nth—order Bessel function of the first kind where k is the
wavenumber. To compare electrical field profiles of tailored beams from ideal (perfectly sharp) and round-
tip axicons, the axicon tip was modeled as a hyperbole, as indicated in [28,30], for the blunt axicon case.
Experimentally measured values were used for axicon geometry [28]. Since the only difference between an
ideally sharp and a blunt-tip axicon is the tip, Bessel and Bessel vortex beams were not expected to show
similar behavior after the axicon. Therefore, the analysis is divided into two parts: (i) Bessel beams and (ii)

Bessel vortex beams.

2.1. Bessel beams

Ideal axicons can provide a good approximation to the zeroth order and the first kind of Bessel beams when they
are illuminated with monochromatic and coherent light sources whose electrical field profiles are described by
the Gaussian mathematical function in the transverse plane. In order to understand the characteristic behavior
of Bessel beams, the transverse electrical field profile around the focal region of an ideal axicon was obtained,
as well as its intensity in the propagation direction. Figure 2 shows the beam profiles obtained by evaluating
the Fresnel-Kirchhoff integral for an ideal axicon illuminated by T E My mode.

As explained above, the intensity profile in the transverse plane includes a central maximum surrounded
by concentric rings. The diameter of the central maximum does not change by propagation; its intensity
stays high over much longer distances compared to the same spot sizes of Gaussian beams. Then the same
calculation was repeated for the round tip axicon in which the geometry is defined as above. The intensity of
central maximum oscillates a great deal in the propagation direction. Figure 3a shows the longitudinal beam
profile of ideal and round-tip axicons for A = 1030 nm and o« = 0.5° base angle. In this calculation, the
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Figure 2. a) Calculated Bessel beam profile for A = 1030 nm, wo = 4 mm, and « = 0.5° and b) cross-section from its

center. ¢) Intensity distribution in both transverse and longitudinal directions. d) Normalized intensity at » = 0 in the
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propagation direction for an ideal axicon.

beam waist of the input Gaussian beam is taken as wy = 5 mm. In order to see the effect of the diameter of
the input beam, the same integral was evaluated for different wy values and the results are depicted in Figure
3b. According to our calculations, no matter what the beam waist is, the oscillations of the intensity in the
propagation direction are preserved. In addition, there is a strict peak at the same position (z = 290 mm) for
different wq values. In order to understand the source of this common peak, the beam waist was reduced to 0.5
mm. Since the tip of the axicon is round and modeled as hyperbola with a 0.86 mm radius, the axicon behaves
as a typical lens for a small beam waist. Based on the lens maker’s formula, the focal length of this small
part was calculated as 290 mm. Another defining input parameter is the wavelength of the light. Therefore,
the Fresnel-Kirchhoff integral was evaluated, taking into account axicon roundness for different wavelengths, as
shown in Figure 3c. There are always high-intensity peaks at around 290 mm for three different wavelengths,
which is very convenient regarding focal distance of the round lens-like part of the axicon.

The propagation properties of Bessel beams generated by ideal and round-tip axicon both in transverse
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Figure 3. Intensities in the propagation direction a) for ideal and blunt-tip axicons, where A = 1030 nm and wo = 5
mm, b) for blunt-tip axicon where A = 1030 nm and different input beam sizes, c) for ideal and blunt-tip axicon cases
where wg = 0.5 mm. d) and e) are the intensity distributions for an ideal and a blunt-tip axicon where wo = 3 mm,

respectively.

and in longitudinal positions were analyzed. As seen in Figure 3d, axicon tip roundness causes strong oscillations
in the propagation direction, which reduces the quality of beam shaping. Then the calculations were extended to
shorter wavelengths by evaluating the same integral. For small wavelengths, the intensity oscillations are more
frequent, as shown in Figure 4a. The intensity profile after axicon was calculated for different input beam radii.
Figure 4b shows the obtained beam profiles. When the input beam radius is increased, intensity oscillations are
consequently reduced, as the portion of the beam affected by the roundness of the axicon gets smaller. Therefore,
even if a round-tip axicon is used for beam shaping, reducing intensity oscillations is possible. This has strong

potential for long-depth-of-focus applications, such as generating plasma channels, fabricating waveguides with
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ultrafast lasers, and manipulating nanoparticles. Since axicon bluntness is responsible for intensity oscillations,
stopping the incoming beam center with a small portion at the center can be another alternative to get rid of
intensity oscillations.

For comparison, beam profiles after ideal and blunt axicons without/with beam stop at the center were
evaluated. Figures 5a and 5b show the intensity profiles of Bessel beams without/with a beam stop at the center
of the input, whereas Figure 5¢ shows the intensity cross-section in the propagation direction. Although the
radius of the beam stop is 0.5 mm, the oscillations in the propagation direction are much reduced, paving the
way for a small amount of energy to be lost. Due to the roundness of the axicon tip, intensity at the beam center
in the propagation direction is very prone to oscillations. On the other hand, one can control and reduce this
drawback, provided that optimizing input beam parameters or energy transfer is compromised a little during
beam shaping.

2.2. Bessel-vortex beams

In the second part of the analysis, Bessel vortex beams are employed and their propagation through ideal
and blunt-tip axicons is analyzed. Different from Bessel beams, Bessel-vortex beams have a singularity at the
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Figure 4. a) Comparison of intensities in the propagation direction for wo = 4 mm and variety of wavelengths. b)

Intensity distributions for wp = 2 mm (left column) and wo = 8 mm (right column) with different wavelengths and

round-tip axicon.
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Figure 4. Continued.

center. Therefore, their intensities are I(r =0, z) = 0, and they are composed of concentric rings in which the
innermost ring has the maximum intensity. The electric field profile of Bessel vortex beams in the transverse
plane is given by the Bessel function of first kind (J,). The diameter of the innermost ring increases with
indices of n. Since these beams do not show spectacular differences, excluding the diameter of the innermost
ring, only J; was taken into account for this analysis. Based on these calculations, when the diameter of the
innermost ring increases, they are less affected by axicon bluntness. Figure 6 shows the calculated intensity
profile of a Bessel vortex beam in the transverse plane and its propagation characteristics for an ideal axicon.
For example, a very long light pipe can be obtained for optical tweezers and particle-guiding applications. In
addition, by adjusting the incoming beam energy, one can control the number of rings for interaction with

sample in material-processing applications [25]. In order to explore the effect of axicon bluntness, the input
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Figure 5. Intensity distributions for blunt-tip axicon a) without and b) with beam stop at the center where A = 1030

nm and wo = 5 mm. ¢) I(r = 0, z) values of a) and b) where the radius (r) of the beam stop is 0.5 mm.

beam waist was decreased and the Fresnel-Kirchhoff integral was investigated for a blunt axicon. As seen in
Figure 7, a round axicon tip behaves like a commercial lens, focusing the input beam around 290 mm in the
longitudinal position, which is very convenient considering the results in the previous section. Zero was also
obtained on axis intensity behind the axicon in this calculation.

When the input beam size is very close to radius of the axicon tip, the effect of tip bluntness would
appear in the intensity profile. In contrast, if the input beam waist is much higher than the axicon tip radius,
intensity modulations are naturally much reduced. Another advantage of using a Laguerre—Gaussian beam for
an input is that they also have a singularity at the center, and this property reduces intensity oscillations in
the propagation direction. In order to prove this, the Fresnel-Kirchhoff integral was evaluated for a variety of
input beam radii.

In this calculation, the axicon is again modeled as mentioned above. The results were compared with an
ideal axicon. Figure 8 shows intensities in both the transverse and the longitudinal directions. As expected,
when the beam waist increases, the overall beam profile approaches an ideal case. Calculations were extended

to lower wavelengths (515 and 343 nm) to span a variety of applications.
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Figure 7. a) I(r) at z = 289 mm, b) on axis intensity, and ¢) I(r,z) values for wg = 0.5 mm, A = 1030 nm, and a

round-tip axicon.
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Figure 8. a), b), ¢) Intensities of Bessel vortex beams generated by blunt-tip axicons and d) ideal axicon for different

input beam sizes (wo), where A = 1030 nm.

In this part, the beam waist was kept at 4 mm while the wavelength of the incoming light was changed.
The obtained results are presented in Figure 9. The intensity profile of the Bessel beam approaches an ideal
case as the wavelength of the laser beam gets smaller. Deviations from an ideal Bessel and Bessel vortex beams
stem from the bluntness of the axicon tip, although Bessel vortex beams are less sensitive. However, a small
variation is obtained for Bessel vortex beams and stopping the beam at the center can be applied in this case in
order to remove intensity oscillations behind the axicon. In addition, energy loss is much reduced spontaneously
in this case due to the singularity at the beam center.

Figure 10 shows the electrical field profiles of Bessel vortex beams obtained by using different input beam
parameters. In this calculation, the wavelength of illuminating beam is taken as 1030 nm and the base angle of
the axicon is 0.5°for the blunt case. The results clearly indicate that as the beam waist increases oscillations
in the intensity profile decrease. Similarly, when the beam stop at the center is applied (left column to right
column) before the axicon, the calculated beam profiles resemble the beam profiles obtained by using the same

parameters for an ideal axicon.
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Figure 9. Intensity distributions of Bessel vortex beams generated by ideal axicon (left column) and blunt-tip axicon

(right column) for different wavelengths where wo = 4 mm.

In order to compare the intensity cross-section of Bessel vortex beams generated by a blunt-tip axicon,
intensity cross-sections were first evaluated for an ideal and a blunt-tip axicon without/with beam stop at the
center. Then the beam waist of the incoming beam light was increased, while keeping all the other parameters
constant. The results are summarized in Figure 11. Either increasing the input beam radius or stopping a small

part of the input beam at the center enhances the quality of beam shaping.
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Figure 10. Intensity distributions of Bessel vortex beams for wg = 2 mm a) without beam stop and b) with beam
stop, and for wo = 4 mm c) without beam stop and d) with beam stop. The radius of beam stop is 0.5 mm where the

axicon tip is modeled as round.
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Figure 11. a) Intensity distributions of Bessel vortex beams for wo = 2 mm, A = 1030 nm, and a = 0.5°. The radius
of beam stop is 0.5 mm. b) Calculated intensities of Bessel vortex beams for a round-tip axicon. In this calculation, A =

1030 nm, o = 0.5°, and different wo values are used.
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3. Conclusions

The effects of axicon tip bluntness on generating Bessel and Bessel vortex beams were investigated for different

input beam parameters. Systematic calculations clearly show that one can reduce intensity oscillations due to

axicon roundness by optimizing input beam parameters or by stopping the input beam with a small portion

at the center, paving the way for a small energy loss. Since they have a singularity at the center, Bessel

vortex beams are less prone to intensity oscillations in the propagation direction. These results presented here

emphasize the importance of optimizing input beam parameters in order to enhance quality of beam shaping

by minimizing intensity oscillations in the propagation direction for a variety of applications.
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