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Abstract: The first heavenly equation of Plebanski in the two-component form is known to be a 3 + 1-dimensional

tri-Hamiltonian system. We show that a particular choice of symmetry reduction applied to the first heavenly equation

yields a 2+1-dimensional bi-Hamiltonian system. For this tri-dimensional system, we present Lagrangian, Hamiltonian,

and recursion operators; point symmetries; and integrals of motions.
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1. Introduction

In reference [1] we showed that the 3 + 1-dimensional first heavenly equation (FHE) of Plebanski possesses a

tri-Hamiltonian structure. FHE in the one component form,

ut̃ỹux̃z̃ − ut̃z̃ux̃ỹ = 1, (1)

can be presented in the two-component form

ut = v , ut = uxx +
1

ux̃z̃
[(vz̃ + uxz̃) (vx̃ − uxx̃) + 1] (2)

where t = t̃ + ỹ , x = t̃ − ỹ and subscripts t, x, x̃, z̃ denote partial derivatives with respect to corresponding

variables. We have shown that second heavenly and asymmetric heavenly equations are reduced to 2 + 1-

dimensional bi-Hamiltonian system by using the method of symmetry reduction [2–4].

In [1] we found all point symmetries of the FHE equation. In general, symmetry reduction of Eq. (1)

has no Hamiltonian structure. However, if we choose a particular combination of symmetries given in [1] we

obtain a 2 + 1-dimensional reduced bi-Hamiltonian system. For the new 2 + 1-dimensional system we present

Hamiltonian structures, recursion operator, Lie point symmetries, and integrals of motion.

2. Symmetry reduction of FHE and reduced 2 + 1-dimensional system

Point Lie symmetries of system (2) are determined by the following basic generators:
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X1 =∂z̃ , X2 = ∂x̃ , X3 = z̃∂z̃ − x̃∂x̃ , X4 = t∂t + x∂x + u∂u

X5 =2z̃∂z̃ + u∂u + v∂v , Y a = a (x̃) (∂t + ∂x) , Zb = b (z̃) (∂x − ∂t) (3)

Vf,g = {f (t+ x, x̃) + g (t− x, z̃)} ∂u + {ft (t+ x, x̃) + gt (t− x, z̃)} ∂v

where a, b and f, g are arbitrary smooth functions of two variables, respectively, and subscripts denote partial

derivatives [1].

We combine X1 and X2 as X = X2 −X1 and we obtain

X = ∂x̃ − ∂z̃ (4)

The invariants of X are determined by the characteristic system as

X̃ = x̃+ z̃ , X = x, T = t, U = u, V = v (5)

The symmetry reduction implies the ansatz: u = U(X̃XT ) and v = V (X̃XT ). Considering Eq. (5) the total

derivatives in terms of new variables change as

Dx̃ = DX̃ , Dz̃ = DX̃ , Dx = DX , Dt = DT (6)

Substituting this into the original system (2) and renaming U → u , V → v , T → t , U → u X̃ → y , X → x

we obtain the new 2 + 1-dimensional reduced system in two component form as

ut = v , ut = uxx +
1

uyy

[
v2y − u2xy + 1

]
≡ Q (7)

where Q is the right-hand side of the second equation.

3. First Hamiltonian structure of the reduced system

In order to conclude that the reduction is conducted correctly we should perform the procedure from the

beginning. This means that we should start with the Lagrangian of the FHE and continue in this order.

Therefore, we apply (6) to Lagrangian L given in [1] and we get reduced Lred for system (7) as follows:

Lred =

(
vut −

v2

2

)
uyy + ut

(
1

3
uxuyy +

2

3
uyuxy

)
− 1

2
u2xuyy + u (8)

Following the result of [1], symplectic operator K becomes

Kred =

(
Dyvy + vyDy −uyy

uyy 0

)
(9)

and the reduced first Hamiltonian operator J0 = K−1 is reduced as

Jred
0 =

 0 1
uyy

− 1
uyy

1
uyy

(Dyvy + vyDy)
1

uyy

 (10)
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We note that Kred and Jred
0 change only with y coordinate and superscript red denotes the variables in the

reduced system. The corresponding Hamiltonian for Jred
0 can be obtained from Lred or by the direct reduction

of H1 from [1]. After the reduction we get

Hred
1 =

1

2

(
v2 + u2x

)
uyy − u (11)

Having first Hamiltonian operator Jred
0 and Hamiltonian function Hred

1 , reduced system (7) can be written in

the Hamiltonian form as (
ut

vt

)
= Jred

0

(
δuH

red
1

δvH
red
1

)
=

(
v

Q

)
(12)

where δu = δ
δu and δv = δ

δv denote Euler–Lagrange operators related to variational derivatives of Hamiltonian

functional [5].

4. Recursion operator and second Hamiltonian structure of reduced system

According to reference [1] the recursion operator obtained by Lax pair of FHE reads as

Rε =

 R11
ε

(
D−1

x̃ − εD−1
z̃

)
ux̃z̃

R21
ε −

(
D−1

x̃ + εD−1
z̃

)
Dxux̃z̃ + vz̃ + uxz̃ − ε (vx̃ − uxx̃)

 (13)

Here

R11
ε = −

(
D−1

x̃ + εD−1
z̃

)
ux̃z̃Dx −D−1

x̃ (vx̃ − uxx̃)Dz̃ + εD−1
z̃ (vz̃ + uxz̃)Dx̃ (14)

R21
ε =

(
D−1

x̃ − εD−1
z̃

)
Dxux̃z̃Dx − {vz̃ + uxz̃ + ε (vx̃ − uxx̃)}Dx

+Dx

{
D−1

x̃ (vx̃ − uxx̃)Dz̃ + εD−1
z̃ (vz̃ − uxz̃)Dx̃

}
− (Q− uxx) (Dz̃ − εDx̃) . (15)

and the second Hamiltonian operator given in [1] is

Jε =

 −
(
D−1

x̃ − εD−1
z̃

)
J12
ε

J21
ε J22

ε

 (16)

J12
ε = −J21

ε =−
(
D−1

x̃ + εD−1
z̃

)
Dx +

{vz̃ + uxz̃ + ε (vx̃ − uxx̃)}
ux̃z̃

J22
ε =

(
D−1

x̃ − εD−1
z̃

)
D2

x − {vz̃ + uxz̃ + ε (vx̃ − uxx̃)}Dx
1

ux̃z̃

− 1

ux̃z̃
Dx {vz̃ + uxz̃ + ε (vx̃ − uxx̃)} −

1

ux̃z̃
(Dz̃ − εDx̃)

1

ux̃z̃

+
(vz̃ + uxz̃)

ux̃z̃
Dx̃

(vz̃ + uxz̃)

ux̃z̃
− ε

(vx̃ + uxx̃)

ux̃z̃
Dz̃

(vx̃ + uxx̃)

ux̃z̃

where ε = ±1 both for Rε and Jε . We know that the FHE in 3 + 1-dimension admits a tri-Hamiltonian

structure; hence we also expect to find a tri-Hamiltonian structure in the reduced 2 + 1-dimensional system.
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Unfortunately in the reduced form we have only one bi-Hamiltonian structure instead of a tri-Hamiltonian one.

Since we started reduction by using the symmetry generator X = ∂x̃ − ∂z̃ a bi-Hamiltonian structure for the

reduced system can only be obtained for ε = −1. In order to obtain a bi-Hamiltonian structure for ε = +1

our starting point should be X = ∂x̃ + ∂z̃ , but in both cases we have the same second Hamiltonian structure,

which means we have only a bi-Hamiltonian structure instead of a tri-Hamiltonian structure in 2+1-dimension.

Under this consideration we take ε = −1 and if we perform the reduction using Eq. (6) to R−1 in (13) and

J−1 in (16) respectively we get

Rred
−1 =


−2D−1

y vyDy 2D−1
y uyy

2D−1
y DxuyyDx − 2DxD

−1
y uyyDy

−2uxyDx − 2 (Q+ uxx)Dy 2vy

 (17)

and

Jred
−1 =

 −2D−1
y

2vy

uyy

− 2vy
uyy

Jred
22

 (18)

Here

Jred
22 = 2D−1

y D2
x − 2uxyDx

1

uyy
− 2

uyy
Dxvy −

2

uyy
Dx

1

uyy
+

2vy
uyy

Dy
vy
uyy

+
2uxy
uyy

Dy
uxy
uyy

Jred
−1 can also be obtained by Jred

−1 = Rred
−1 J

red
0 . Since it will not change the results we can skip over all (−2)

and we rewrite Eq. (18) as

Jred
−1 =

 D−1
y − vy

uyy

vy
uyy

Jred
22

 (19)

Jred
22 = −D−1

y D2
x + uxyDx

1

uyy
+

1

uyy
Dxvy +

1

uyy
Dx

1

uyy
− vy
uyy

Dy
vy
uyy

− uxy
uyy

Dy
uxy
uyy

.

Note that Jred
−1 is a skew symmetric differential operator and satisfies the Jacobi identity. The Jacobi identity

of J0 and Jε for the FHE is checked in detail in [1]. Therefore, using these results it is straightforward to check

that Jred
0 , Jred

−1 , and their linear combination also satisfy the Jacobi identity. The second Hamiltonian function

given in [1] is

H0ε =
1

2
(εx̃− z̃) vux̃z̃ −

1

4
ux (ux̃ + εuz̃) (20)

From the same reason given above we chose ε = −1 and reduction of H0(−1) becomes

Hred
0(−1) = −yvuyy

or

Hred
0(−1) = yvuyy (21)

Finally the second Hamiltonian structure(
ut

vt

)
= Jred

−1

(
δuH

red
0(−1)

δvH
red
0(−1)

)
=

(
v

Q

)
(22)
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gives a 2 + 1-dimensional system in (7). Together with the original Hamiltonian representation (12) of the

system (7) we have a bi-Hamiltonian representation of this new 2 + 1-dimensional system [5].

(
ut

vt

)
= Jred

0

(
δuH

red
1

δvH
red
1

)
= Jred

−1

(
δuH

red
0(−1)

δvH
red
0(−1)

)
=

(
v

Q

)
. (23)

Hence we have proved that reduced system is a bi-Hamiltonian system. By repeated applications of the recursion

operator to the first Hamiltonian operator Jred
0 , according to Magri’s theorem we could generate an infinite

sequence of Hamiltonian operators

Jred
n = Rn

redJ
red
0 n = 0, 1, 2, · · · , (24)

which shows that the reduced 2 + 1-dimensional equation considered in a two-component form is a multi-

Hamiltonian system in the above sense [6,7].

5. Symmetries and integrals of motion

Point Lie symmetries of the system (7) are determined by using the software packages LIEPDE and CRACK

by Wolf [8], run under REDUCE 3.8, and we have calculated all point symmetries of the reduced system (7).

The basis generators of one-parameter subgroups of the complete Lie group of point symmetries for reduced

system (7) have the form

X1 = ∂t , X2 = ∂x , X3 = ∂y , X4 = x∂y, X5 = t∂t + x∂x + u∂u

X6 = y∂u, X7 = y∂y + u∂u + v∂v, Xa = a(xt)∂u + at(xt)∂v (25)

where a is an arbitrary smooth function of two variables and satisfies axx − att = 0. We note that the obvious

translational symmetries are generated by X1, X2 , and X3 .

The Lie algebra of point symmetries is determined by the Table of commutators of the basis generators

where the commutators [Xi, Xj ] stand at the intersection of the ith row and the j th column. Here we used

the following short hand notation:

Table. Commutators of point symmetries of the reduced system.

X1 X2 X3 X4 X5 X6 X7 Xa

X1 0 0 0 0 X1 0 0 Xat

X2 0 0 0 X3 X2 0 0 Xa′

X3 0 0 0 0 0 Xa=1 X3 0
X4 0 −X3 0 0 −X4 Xa=x X4 0
X5 −X1 −X2 0 X4 0 −X6 0 Xâ

X6 0 0 −Xa=1 −Xa=x X6 0 0 0
X7 0 0 −X3 −X4 0 0 0 −Xa

Xa −Xat −Xa′ 0 0 −X â 0 Xa 0

a
′
=
da

dx
and â = tat + xa

′
− a.
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We need symmetry characteristics determining symmetries in evolutionary form [5] with independent

variables not being transformed under symmetry transformations. For the symmetry generator of the form

X = ξi∂xi + ηα∂uα where the summation over repeated indices is used the symmetry characteristic are defined

as φα = ηα − uαi ξ
i with the subscripts i denoting derivative with respect to xi . In our problem, i = 1, 2, 3,

α = 1, 2, u1 = u , u2 = u , η1 = ηu , η2 = ηv , x1 = t , x2 = x , x3 = y , and φ1 = φ while φ2 = ψ , where φ

and ψ determine the transformation of u and v , respectively. We also use ut = v and vt = Q , where Q is the

right-hand side of the second equation (7). Symmetry characteristics have the form

φ = ηu − vξt − uxξ
x − uyξ

y , ψ = ηv −Qξt − vxξ
x − vyξ

y (26)

Applying the formula (26) to the generators (25), we obtain the characteristics of these symmetries

φ1 =− v, ψ1 = −Q, φ2 = −ux, ψ2 = −υx

φ3 =− uy, ψ3 = −υy, φ4 = −xuy, ψ4 = −xυy (27)

φ5 =u− tv − xux, ψ5 = −tQ− xυx, φ6 = y, ψ6 = 0

φ7 =u− yuy, ψ7 = v − yυy, φa = a(tx), ψa = at(xt)

The first Hamiltonian structure provides a link between symmetries in evolutionary form and integrals of motion

conserved by the Hamiltonian flow (7) replacing time t by the group parameter τ in (12) and using uτ = φ ,

vτ = ψ for symmetries in the evolutionary form we obtain the Hamiltonian form of the Noether theorem for

any conserved density Hred of an integral of motion.(
φ

ψ

)
= Jred

0

(
δuHred

δvHred

)
(28)

To determine the integrals Hred that correspond to a known symmetry with characteristics (φ, ψ) we use the

inverse Noether theorem (
δuHred

δvHred

)
= Kred

(
φ

ψ

)
(29)

where operator Kred =
(
Jred
0

)−1
is defined in (9). (29) is obtained by applying K to both sides of (28).

We now apply the formula (29) to determine integrals Hi
red corresponding to all variational symmetries with

characteristics (φi, ψi) from (27). Using the expression (9) in explicit form(
δuH

i
red

δvH
i
red

)
=

(
Dyvy + vyDy −uyy

uyy 0

)(
φi

ψi

)
(30)

gives the formulas for determining integrals Hi
red for the known symmetries (φi, ψi),

δuH
i
red = (Dyvy + vyDy)φi − uyyψ , δvH

i
red = uyyφi

We have used (31) reconstructing conserved densities corresponding to all variational point symmetries

X1, X2, X3, X4X6 , and Xa generated by the following integrals:

H1
red = u− 1

2

(
v2uyy + u2xuyy

)
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H2
red = −vuxuyy

H3
red = −vuyuyy (31)

H4
red = −xvuyuyy

H6
red = yvuyy

Hα
red =

(
va− 1

2
atu

)
uyy

The symmetries X5 and X7 are not variational symmetries, because their generating integrals in (31) do not

exist. Note that the first and second Hamiltonian functions are contained in the set as H1
red= −Hred

1 and

Hred
0(−1) = H

2

red
.

6. Discussion

We have proved that a certain symmetry reduction of the 3+1-dimensional FHE taken in a two-component form

yields a two-component 2 + 1-dimensional bi-Hamiltonian system. Indeed the FHE has two different second

Hamiltonian structures depending on ε = ±1 and therefore it possesses a tri-Hamiltonian structure. We also

expected to have a tri-Hamiltonian structure for the reduced system. However, different choices of symmetry

reduction give us the same second Hamiltonian structure both for ε = ±1. Therefore, we conclude that the

reduced 2 + 1-dimensional system admits a bi-Hamiltonian structure. For these systems, we have presented

explicitly two Hamiltonian operators, a recursion operators for symmetries, a complete set of point symmetries,

and corresponding integrals of motion.

All the main objects for the reduced system: Lred, Jred
0 , Hred

0 , Rred
−1 , J

red
−1 , and Hred

0(−1) are obtained

directly by the symmetry reduction of L, K, J0, H0, Rε, Jε , and H0ε given in reference [1]. It is also checked

that we can obtain a bi-Hamiltonian structure for the 2 + 1-dimensional system (7) applying the method of

Dirac constraints theory as given in [1]. It seems that symmetry reduction is a simple method for discovering

new integrable 2 + 1-dimensional systems. However, even a slight change in symmetry chosen for reduction

ruins all these properties and creates difficulty in discovering a new integrable multi-Hamiltonian structure in

three dimensions. If we choose more general symmetries for the reduction, for example from the optimal system

of one-dimensional subalgebra from [2], then we shall not able to discover even a single Hamiltonian structure

of the reduced system.

We think that symmetry reduction of multi-Hamiltonian structures will be an important and interesting

topic in the future. Moreover, we know that there are very few examples about 2 + 1-dimensional integrable

systems in the literature. This method gives us the opportunity to discover new integrable systems in tri-

dimension.
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