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Abstract: The time evolution of the quantum nonequilibrium states of many-body particles is described with a set of

hierarchies of quantum kinetic equations with quantum wave functions. A collision term is obtained in terms of two-body

interactions in the mean-field with a disordered potential, which is proposed for the first time. The implications and the

limits of applicability of the resulting kinetic equations are discussed.
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1. Introduction

The study of quantum many-body systems is still quite far from being complete. One of the outstanding

problems in this domain is to understand the effect of disordered potentials. In collision theory, disordered

potentials are associated with random scattering of particles, such as the scattering of photons in atmospheric

dust and the scattering of electrons in disordered crystals. This is very important for our understanding of

the behavior of quantum systems such as quantum phase transitions in disordered potentials [1,2], Anderson

localization of noninteracting particles [3], coherent back scattering [4], and so on. For the description of a

disordered system, an arbitrary physical observable is averaged with respect to the distribution function of

the system under consideration. For this purpose, quantum mechanical phase space wave functions are widely

used for the formulation and solution of scattering problems. The use of the quantum mechanical phase space

wave function is simply based on the quantum generalization of the classical Boltzmann N-particle distribution

function [5]. As is well known, the 6N-dimensional phase space of the position and momentum coordinates cannot

be used in quantum mechanics because of the restrictions imposed by the uncertainty principle that forbids

states with simultaneously definite coordinates q i and momentum pi . The first quasiprobability distribution

function similar to the classical phase space distribution function was proposed by Wigner [6] to study quantum

corrections to classical mechanics, which can be obtained by Fourier transform on relative coordinates r⃗ , with

center-of-mass coordinates R⃗ :
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where f(
⇀
p ,

⇀

R, t) is the Wigner distribution function, from which one may write the probability density in

coordinate space as follows:
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and, using the Fourier transform, one may obtain the probability density in momentum space as follows:∫
d3

⇀

R f(
⇀
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In this case, one may verify that f∗ = f , but f can be negative in some regions of phase space. All the resulting

wave functions and their phase-space Schrödinger equations governing the time evolution of these wave functions

are equivalent to the quantum mechanical Liouville–von Neumann equation for the Wigner distribution function

interpreted as a certain Fourier transform of the quantum mechanical density matrix. Phase space formulation

has been widely used in the nonequilibrium theory of quantum states [7,8] and in nonlinear optics [9,10].

One may also consider various distribution functions existing in the literature, such as those of Glauber [11,12],

Sudarshan [13], and Husumi [14]. The choice of the most suitable distribution function is a matter of convenience

with the system under consideration. However, this short manuscript is intended to facilitate a discussion of

disordered quantum states in terms of density matrices (in quantum wave functions), rather than propose a

quantum correction. While some of the results in this paper have been derived previously (see, for example,

[5,15]), there exist some derivations when the disordered potentials are on the agenda, presented for the first

time.

2. Quantum nonequilibrium states in the absence of disordered potentials

For orientation, let us start with a transparent derivation of quantum kinetic equations in this section, with the

aim of facilitating a discussion in terms of disordered potentials in the next section. The state of an N-particle

system can be defined by a symmetric (bosonic) or antisymmetric (fermionic) N-particle density matrix ρ(N) ,

which is taken to be normalized to N!. The density matrices are described by the wave function of the state of

an N-particle system, which can be expanded in a series of orthonormal basis functions:

ψ(x) =
∑
n

CnΨn(x) , with ψ(i)(x) =
∑
n

C(i)
n ψn(x) for each possible state. (4)

The average value of an arbitrary operator O in any state is given by:
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∑
n

∑
m
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m Onm. (5)

Let the system have the probability Pi of being in the state ψ (i)(x), and then we have:

< O >=
∑
i

PiO
(i) =

∑
i

Pi

∑
n

∑
m

C(i)∗
n C(i)

m Onm =
∑
n

∑
m

Onm ρnm , with
∑
i

Pi = 1. (6)

Now we can introduce a matrix defined by:

ρmn =
∑
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∑
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Taking the time derivative of ρ(t) in the interaction picture one may obtain the Liouville–von Neumann equation,

which describes the time evolution of a nonequilibrium quantum state consisting of N-particles, as follows:

iℏ
∂ρ(t)

∂t
= [H, ρ(t)] , (9)

where the N-particle density matrix ρ(t) = exp(−iHt
ℏ )ρ( iHt

ℏ )is obtained by using a unitary transformation

generated by the Hamiltonian operator H =
N∑
i=1

Ki +
N∑

i<j=1

Vij . The average value of any arbitrary observable

Õ can be expressed as a sum of the diagonal elements (or trace) of the matrix Õρ(t) as < Õ >= Tr(Õρ).

Introducing the reduced one-particle, two-particle,. . . , n-particle density matrices in analogy to the hierarchy

of classical phase space distribution functions [16], we obtain the following hierarchy of density matrices:

ρ(1)(1) = N !
(N−1)!Tr(2,3, ... ,N)ρ

(N)(1, 2, ..., N)

ρ(2)(1, 2) = N !
(N−2)!Tr(3,4, ... ,N)ρ

(N)(1, 2, ..., N)

...... .............

ρ(n)(1, 2, ..., n) = N !
(N−n)!Tr(n+1, ... ,N)ρ

(N)(1, 2, ..., N).

(10)

Taking the traces of both sides of this equation over the particles (1, 2, . . . , n), and using Eq. (8), e.g.,

Tr (1,2,...,N)ρ
(N) = 1, one gets the following relation:

Tr(1,2,...,n)ρ
(n)(1, 2, ..., n) =

N !

(N − n)!
. (11)

Taking the appropriate traces in Eq. (9), and using Eq. (11), and then multiplying both sides with N !/(N−−1)! ,

we obtain the following set of kinetic equations, which describe the time evolution of one-particle, two-particle,

. . . , and n-particle reduced density matrices:

iℏ
∂

∂t
ρ(n)(1, 2, ..., n) =

n∑
i=1

[
Ki, ρ

(n)(1, 2, ..., n)
]
+

n∑
i<j=1

[
Vij , ρ

(n)(1, 2, ..., n)
]

+ Tr(n+1)

n∑
i=1

[
Vi(n+1), ρ

(n+1)(1, 2, ..., n+ 1)
]
. (12)

This set of coupled equations is called the BBGKY-hierarchy of density matrices, and it expresses ρ(n) in terms

of ρ(n + 1). One should find a suitable approximation to uncouple this hierarchy in order to obtain a closed

equation for ρ(n). The kinetic equations can be obtained by appropriate truncation in Eq. (12). Taking n = 1,

one gets the kinetic equation correspondingly:

iℏ
∂

∂t
ρ(1)(1) =

[
K1, ρ

(1)(1)
]
+ Tr(2)

[
V12, ρ

(2)(1, 2)
]
. (13)

These equations describe the time evolution of a single-particle density matrix with two-body interaction term.

The physical interpretation of Eq. (13) is that the time derivative of the single-particle density matrix can
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be written as the sum of a flux term and a collision term expressed in terms of two-body interactions and a

two-particle density matrix. For the solution of Eq. (13), this equation should be uncoupled, and this can be

done by means of the Boltzmann molecular chaos assumption (for sufficiently dilute systems, the N-particle

density matrix can be written as a product of one-particle density matrices), writing the two-particle density

matrix in terms of one-particle density matrices as follows:

ρ
(2)
0 (1, 2) = ρ(1)(1)ρ(1)(2). (14)

Introducing this assumption in Eq. (13), we get the time-dependent Hartree–Fock equation for the one-particle

density matrix:

iℏ
∂

∂t
ρ(1)(1) =

[
K1 + U1, ρ

(1)(1)
]
. (15)

Here U1 is the mean-field, which has the following form:

U1 = Tr(2)V12ρ
(1)(2). (16)

Eq. (15) may be generalized by incorporating the residual two-body interactions. Truncation of Eq. (12) at

n = 2 provides us with the following kinetic equation that includes the three-body collisions:

iℏ
∂

∂t
ρ(2)(1, 2) =

[
K1 +K2 + V12, ρ

(2)(1, 2)
]
+ Tr(3)

[
V13 + V23, ρ

(3)(1, 2, 3)
]
. (17)

If the three-body collisions are neglected in the dilute gas limit, then Eq. (17) takes the uncoupled form:

iℏ
∂

∂t
ρ(2)(1, 2) =

[
K1 +K2 + V12, ρ

(2)(1, 2)
]
. (18)

In this case, this equation is valid only in the case of collisions with particle 1 and particle 2. Following a similar

method used by Snider [2], we obtain an appropriate solution to Eq. (18) according to the formal scattering

theory of Lippmann and Schwinger [17] as follows:

ρ
(2)
0 (1, 2) = Ω

(+)
12 ρ

(1)(1)ρ(1)(2)Ω
(+)∗
12 , (19)

where Ω
(+)
12 denotes the Moller operator [18] defined by:

Ω
(+)
12 = lim

τ→−∞
exp

[
i(K1 +K2 + V12)

τ

ℏ

]
exp

[
−i(K1 +K2)

τ

ℏ

]
. (20)

Inserting Eq. (19) into Eq. (13), one obtains the quantum mechanical kinetic equation in terms of one-particle

density matrices as follows:

iℏ
∂

∂t
ρ(1)(1) =

[
K1, ρ

(1)(1)
]
+ Tr(2)

[
V12,Ω

(+)
12 ρ

(1)(1)ρ(1)(2)Ω
(+)∗
12

]
. (21)

Thus, we have obtained a collision term due to the two-body collisions in the absence of disordered potentials, in

terms of one-particle density matrices. This equation is valid for the ensemble-averaged single particle density

in the limit when the correlation time of two-body collisions is much smaller than the mean-free time between

collisions (dilute gas limit). As a result, taking the limit τ → −∞ in Eq. (20), we can obtain a Markovian

equation by neglecting the memory effects in the collision term. It involves the quantum mechanical operators

V12 and Ω(+) , from which one may express the collisional results, such as the free-nucleon T-matrix T12. Then

the Moller operator can be written in terms of T12 , which obeys the Lippmann–Schwinger equation.
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3. Many-body interactions in a disordered potential

As was pointed out in the introduction, disordered potentials complicate the physical system under consideration

and they provide a new scattering scenario for the many-particle states. The dynamics of the system, in this

case, are governed by the kinetic energy, disordered potential, and interaction energy. Disregarding the strength

of the disorder (weak or strong) for the moment, let us discuss the new forms of the quantum kinetic equations in

case of the presence of the disordered potentials. In this respect, we propose a one-particle disordered potential

denoted by V (r⃗i), and then the Hamiltonian of an N-particle system can be written as follows:

H =
N∑
i=1

Ki +
N∑
i=1

V (r⃗i)+
N∑

i<j=1

Vij (22)

where Ki denotes the kinetic energy of each particle and Vij denotes the two-body interaction potential.

Inserting this Hamiltonian term in the Liouville–von Neumann equation (Eq. (9)), we get the quantum kinetic

equation for the N-particle density matrix, which cannot be solved due to the great number of degrees of freedom.

However, one may obtain approximate solutions in terms of single-particle density matrices in the dilute gas

limit. In this case, a key insight was suggested by Boltzmann: an N-particle density matrix may be written in

terms of the product of single-particle density matrices, the so-called molecular chaos assumption (Boltzmann’s

Stosszahlansatz). Now let us consider the Liouville–von Neumann equation (Eq. (9)), which describes the time

evolution of the one-particle density matrix. Taking n = 1, in the existence of the disordered potential, and

following the previous approaches used for the derivation of Eq. (15), we obtain

iℏ
∂

∂t
ρ(1)(1) =

[
K1 + V (r⃗1) + U1, ρ

(1)(1)
]
, (23)

where V(r1) is the disordered potential (for one particle), and U1 is the mean field due to the two-body

interactions as defined by Eq. (16). Taking n = 2 in Eq. (12) with Eqs. (11) and (9), we obtain

iℏ
∂

∂t
ρ(2)(1, 2) =

[
K1 +K2 + V (r⃗1) + V (r⃗2) + V12, ρ

(2)(1, 2)
]

+ Tr(3)

[
V13 + V23, ρ

(3)(1, 2, 3)
]
. (24)

In the dilute gas limit, the possibility of the triple collisions is very small and for this reason three-body terms

in Eq. (25) can be neglected. Thus, Eq. (25) takes the following form:

iℏ
∂

∂t
ρ(2)(1, 2) =

[
K1 +K2 + V (r⃗1) + V (r⃗2) + V12, ρ

(2)(1, 2)
]
. (25)

This uncoupled equation describes the time evolution of the two-particle density matrix in the disordered

potential. This equation is valid only during the collision between particles 1 and 2. In order to obtain a

collision term for single-particle density matrix ρ(1) (1), one should achieve an approximation that provides a

possibility of expressing pair density matrix ρ(2) (1,2) in terms of single-particle density matrices, such as the

molecular chaos assumption given by Eq. (14). In this context, several approximations have been developed in

the existing literature to obtain a solution for the kinetic equations in terms of single-particle density matrices.

For example, in [19], it was shown that phase space techniques based on Wigner representation provide an
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approximate description of dilute ultracold Bose gases at zero temperature, where quantum fluctuations are

important, and at finite temperature, where thermal fluctuations dominate. In these approaches, quantum field

evolution can be represented by using equations of motion of a form similar to that of the Gross–Pitaevskii

equation. For implementing this formalism, they present numerical techniques for a wide range of phenomena,

using the fact that the Wigner function exists for any density matrix for quantum states [20]. For example, in

[21], a simple approximation of the quantum kinetic equation is derived on the basis of the assumption that the

density operator of the total system can be factorized into a condensate density operator for the Bose condensate

band and an operator for the noncondensed modes, which is assumed to be in thermal equilibrium. It was also

shown that the limiting cases of this equation include the Gross–Pitaevskii equation.

4. Conclusions

A transparent derivation of a set of hierarchies of quantum kinetic equations, which describe the time evolution

of the quantum nonequilibrium states of a many-particle system in the presence of disordered potentials, has

been introduced. These N-particle equations provide us with a full description in terms of the complete density

matrix and single-density matrices. A collision term, from which one may express the collisional results, is

obtained in terms of single-particle density matrices. We show that one may obtain a set of quantum kinetic

equations of motion by taking higher-order truncations in this hierarchy for one-body, two-body, . . . , n-body

interactions, and we show how one may express a two-particle density matrix in terms of single-particle density

matrices by means of the molecular chaos assumption in the dilute gas limit, where the three-body collisions may

be neglected. However, as the density tends to increase, the three-body, four-body, . . . , n-body interactions

become important, and this would bring complications to the solutions of these equations due to the great

number of degrees of freedom. Quantum kinetic equations with density matrices have been extensively used to

describe the equilibrium and nonequilibrium dynamics of Bose–Einstein condensates in dilute ultracold gases,

at the mean-field level, by means of the Gross–Pitaevskii equation, which is a limiting case of the presently

derived kinetic equations of single-particle density matrices in disordered potentials (see, for example, [21–26];

effects of the disordered potentials were discussed extensively in these references).

Another approach for the solution of quantum kinetic equations is the path integral method of nonequi-

librium quantum statistics of coherent states, which seems to be very useful for applications on quantum optics,

chemical reactions, heavy-ion collisions, lasers, and other collective excitations (see, for a review, [15]). In the

path integral method, the Hamiltonian is written in terms of creation and annihilation operators for Bose and

Fermi systems, and integration for the kernel of the density matrices is performed in the functional space of

periodic functions for the Bose systems and antiperiodic functions for the Fermi systems. The generating func-

tionals for the Green functions are written in the form of the path integrals, which are generally not Gaussian,

and these integrals are calculated by perturbation theory. The perturbation methods with truncated potentials

were also found to be successful to produce the properties of many body systems [15,27]. Hopefully, this formu-

lation in terms of the density matrices may be a useful tool for further analysis of the effects of the disordered

potentials, which would be worthwhile to provide a better understanding of the localization.
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