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Abstract: Fα -calculus was recently presented for fractals. We show that the Fα -derivative satisfies the chain rule and

affirms that the dimension of a quantum mechanical path is two. Fα -calculus allows us to extend quantum mechanics to

fractal curves. To show the applicability of Fα -calculus, we study the fractal model of a particle in a box. Fα -calculus

is suitable for describing the motion of particles with a fractal route through matter. In addition, we extend Landau’s

energy straggling method of charged particles to fractals.
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1. Introduction

For many years, authors have tried to establish a calculus to fractals [1–3] and its applications [4, 5]. The most

powerful and applicable one, called Fα -calculus, was developed by Gangal and his coworkers for fractal curves

[6], on fractal sets [7], local fractional operators [8], and its applications [9–12], with other applications by some

other authors [13–16]. With Fα -calculus, they have successfully explained anomalous diffusion, one of the most

famous problems of physics, using local operators on fractals; this is one of the successes of Fα -calculus [7–10].

The previous theories of anomalous diffusion are nonlocal theories [17–24].

In this manuscript, we present a brief introduction to Fα -calculus and attempt to apply this calculus

to physical fractal systems. It is not our purpose to deal with the details of the proofs of definitions and

theorems of this calculus; for more study on proofs we refer enthusiasts to the references [6–14]. Fα -calculus

is an undeveloped theory. We prove that the definition of the Fα -derivative satisfies the chain rule, and then

we develop Fα -equations and give their solutions. It is important to note that Fα -calculus has two important

application areas: fractal sets and fractal curves [6, 7]. In this paper, both fractal sets and curves are considered.

We first study quantum mechanical motions. The fractal structure of the quantum mechanical paths has been

studied by some authors using the previous theories of fractals [25–28]. We show that Fα -calculus confirms that

the path of a particle in quantum mechanics is a fractal of dimension two. In addition, we apply Fα -calculus to

derive the fractal Schrödinger equation and give a fractal quantum model for a particle in a box. Finally, to give

an equation for the macroscopic cross-section of fractal interactions through matter, we expand the formulation

of the theory of energy straggling to fractal materials.In the next paragraph, we introduce the classical theory

of the energy straggling phenomenon.

When a beam of fast charged particles passes through a layer of matter, the particles lose their energy
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stochastically from ionization through matter. Indeed, for a fixed given layer, the energy loss will fluctuate

[29–34]. The first study and formulation of this phenomenon was done by Landau [35]. Since the theory that

Landau proposed is based on the continuity and smoothness of classical mathematics, the matter and energy

loss are considered continuous variables. Therefore, this formalization fails for fractal quantities. Fα -calculus

has motivated us to present a fractal model for the phenomenon of the passing particles losing energy. This

fractal model will be an alternative method to the continuous model of Landau. The theory of energy straggling

is used to calculate h(E, x), the fraction of heavy charged particles with energy between E -E + dE at x , the

path length of the penetrated particles. This function satisfies the following master equation:

∂h(E, x)

∂x
=

∫ ∞

0

[
t(E, ϵ)h(E + ϵ, x)− t(E, ϵ)h(E, x)

]
dϵ, (1)

where t(E, ϵ) is the probability that a heavy charged particle with energy E will lose energy in the boundary

of ϵ-ϵ+ dϵ .

This paper is divided into five sections. The second section is devoted to a brief introduction to Fα -

calculus on fractal sets and curves, and it proves that the chain rule can be applied to Fα -derivatives. Section

3 discusses the application of Fα -calculus on quantum mechanics. The fourth section looks at the treatment

of energy straggling using Fα -calculus theory. The fifth section presents a brief summary.

2. A brief introduction to Fα -calculus

2.1. Fractal calculus of subset of R

This section contains our given introduction to Fα -calculus. We choose the important definitions and theorems

of Fα -calculus, and for more study we refer the readers to the references of the introduction section. In this

paper, we assume that F represents all fractal structures with dimension α . In addition, the notation of this

calculus belongs to its establishers [6, 7].

Definition 2.1 The basis of Fα -calculus is on the integral staircase function, Sα
F (x) , of order α for a fractal

set F , which is given as follows:

Sα
F (x) =

{
γα(F, a, x), if x ≥ a;
−γα(F, x, a), otherwise,

(2)

where γα is the mass function of the fractal set F , all α, x, a ∈ ℜ and 0 < α ≤ 1 [7].

It is worth pointing out that the two important properties of Sα
F , the continuity and monotonic increasing

properties, are the essence of the definitions of the Fα -derivative and Fα -integral on fractals.

Definition 2.2 Let F ⊂ R , f : R→ R , and x ∈ F . A number l is said to be the limit of f through the points

of F , or simply the F -limit of f, as y → x , and for any ϵ there exists δ > 0 such that [7]

y ∈ F, |y − x| < δ ⇒ |f(y)− l| < ϵ, (3)

and then it is denoted by

l = F − limy→xf(y). (4)

Now the definitions of the Fα -derivative and Fα -integral of fractals are as follows:
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Definition 2.3 If F is an α-perfect set [36], then the Fα -derivative of f at x is [7]

Dα
F f(x) =

{
F − limy→x

f(y)−f(x)
Sα
F (y)−Sα

F (x) , x ∈ F ;

0, otherwise.
(5)

Theorem 2.1 A function h is α-integrable over [a, b] if and only if g = ϕ[h] (g is conjugate function of h)

[36] is Riemann integrable over K = [Sα(a), Sα(b)] [7]:

∫ b

a

h(x)dαx =

∫ Sα(b)

Sα(a)

g(u)du. (6)

Theorem 2.2 Let h be a function such that the image g = ϕ[h] of h is ordinary differential on K . Then

Dα
Fh(x) =

dg(t = Sα(x))

dt
, (7)

for all x ∈ F [7].

The useful relation that the stair function satisfies is

axα ≤ Sα
F (x) ≤ bxα, (8)

where a and b are constants [6, 7].

2.2. Fractal calculus of fractal curves

In this subsection, we introduce Fα -calculus for fractal curves.

Definition 2.4 A fractal curve F ⊂ Rn is said to be continuously parameterizable if there exists a function

w : [a, b] → F ⊂ Rn that is continuous one to one and on to F [6].

Definition 2.5 A subdivision P[a,b] of interval [a, b] , a < b is the finite set of points a = t0, t1, t2, ..., tn = b ,

ti < ti+1 , and any interval of the form [ti, ti+1] is called a component of the form of subdivision P. Moreover,

if Q is a subdivision such that P ⊂ Q , then Q is called a refinement of P [6].

Definition 2.6 For a set F and subdivision P[a,b] , a < b , [a, b] ⊂ [a0, b0] ,

σα[F, P ] =
n−1∑
i=0

|w(ti+1)− w(ti)|α

Γ(α+ 1)
, (9)

where |.| denotes the Euclidean norm on Rn [6].

Definition 2.7 Given δ and a0 ≤ a ≤ b ≤ b0, the coarse-grained mass γαδ (F, a, b) is given by

γδ(F, a, b) = inf{P[a,b]:|P |<δ}σ
α[F, P ], (10)

where |P | = max0≤i≤n−1(ti+1 − ti) for a subdivision P [6].
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Definition 2.8 For a0 ≤ a ≤ b ≤ b0 , the mass function γα(F, a, b) is given by [6]

γα(F, a, b) = lim
δ→0

γαδ (F, a, b). (11)

Definition 2.9 Let F be a fractal curve. Then the Fα -derivative of function f at θ ∈ F is defined as [6]

Dα
F f(θ) = F − lim

θ′→θ

f(θ′)− f(θ)

J(θ′)− J(θ)
. (12)

Now the definition of the Taylor expansion of fractal functions: if g = ϕ[h] then the ordinary Taylor expansion

of g is given by

g(u) =
∞∑

n=1

(x− y)n

n!

dng(y)

dyn
, (13)

for u, y ∈ [Sα(a), Sα(b)] . Then for θ, θ′ ∈ F , fractal variables, the fractal expansion is

h(θ) =
∑ (J(θ)− J(θ′))n

n!
(Dα

F )
nh(θ′). (14)

2.3. What is new in Fα -calculus theory?

Fα -calculus is different from the other fractal theories. This theory gives dimension to countable sets that are

dense. For example, we set up a set, C ′ , from the end points of the intervals of the ith stage of construction

of the Cantor set. Ci , which is countable, includes 2i+2 points and C ′ = ∪∞
i=1Ci , and then we have

dimγC
′ =

ln 2

ln 3
, (15)

whereas the Hausdorff dimension of the set is zero,

dimHC
′ = 0. (16)

Other features of this calculus are its similarity to the Riemann–Stieltjes approach in defining the integral and

derivative, and its simplicity and algorithmic point of view [6, 7].

2.4. Chain rule of Fα -derivative

Consider two functions f and g where g is Fα -differentiable at point x and f is Fα -differentiable at point

g(x) = y . Now we are interested in the Fα -derivative of the function f(g(x)) at point x . To begin, let

ϵ = Sα
F (y)− Sα

F (x) and g(x) be α -differentiable, so

g(y)− g(x)

ϵ
−Dα

F g(x) → 0, (17)

as ϵ→ 0. We define a new variable, t ,

t =
g(y)− g(x)

ϵ
−Dα

F g(x), (18)
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where t→ 0 as ϵ→ 0. Similarly, since f is an α -differentiable function at y = g(x) we have

s =
f(w)− f(z)

η
−Dα

F f(z), (19)

where s→ 0 as η → 0. From Eq. (18) and Eq. (19), we have

g(y) = g(x) +
[
Dα

F g(x) + t
]
ϵ (20)

and

f(w) = f(z) +
[
Dα

F f(z) + s
]
η, (21)

where z = g(x) and w = g(y). If we choose η = [Dα
F g(x) + t]ϵ and use

f(g(y)) = f(g(x) + [Dα
F g(x) + t]ϵ) (22)

and Eq.(21), we have

f(g(y)) = f(g(x)) + [Dα
F f(g(x)) + s][Dα

F g(x) + t]ϵ. (23)

From Eq.(23), we have

f(g(y))− f(g(x))

ϵ
= [Dα

F f(g(x)) + s][Dα
F g(x) + t], (24)

and then we obtain

lim
ϵ→0

f(g(y))− f(g(x))

ϵ
= Dα

F f(g(x))D
α
F g(x). (25)

3. Dimension of quantum mechanical path using Fα -calculus

Abbott and Wise showed that the dimension of a quantum mechanical path is two [25]. First we review their

method and then show that the same result can be obtained using Fα -calculus. Suppose that we measure the

position of a particle at times t0 , t1 = t0 + ∆t , . . . , t + N∆t , with T = tN − t0 = N∆t . Since in quantum

mechanics particles move in statistical manner, we take the average value of physical quantum variables. Assume

that ⟨∆l⟩ is the average distance that the particle moves in time ∆t . Then the length of the path of the particle

is
⟨l⟩ = N⟨∆l⟩, (26)

and from the uncertainty principle, we obtain

⟨∆l⟩ ∝ ℏ∆t
m∆x

, (27)

and then

⟨∆l⟩ ∝ ℏT
m∆x

. (28)

Requiring that the length be independent of resolution, Hausdorff defined the length, L , as follows:

L = l(∆x)D−1, (29)
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where l is the length measured with resolution ∆x . Then, to define the dimension of the path using the

Hausdorff formula, the average length is

⟨∆L⟩ = ⟨∆l⟩(∆x)D−1. (30)

Since ⟨∆L⟩ must be independent of ∆x , using Eq. (28), D = 2 results. Now we treat the problem using

Fα -calculus. We first consider the definition of mass function, and then using the average distance value, we

have

γ =
N∑
i=1

(xi+1 − xi)
α

Γ(α+ 1)
=

N⟨∆l⟩α

Γ(α+ 1)
. (31)

Assuming that the quantum mechanics path is self-similar, ∆l ∝ ∆x , we have

∆t ∝ m(∆x)2

ℏ
. (32)

By replacing N = T
∆t in Eq. (31), we have

γ =
N⟨∆l⟩α

Γ(α+ 1)
=

ℏT ⟨∆l⟩α

m(∆x)2Γ(α+ 1)
, (33)

and requiring that γ be independent of the resolution ∆x , we must have α = 2, the same result of the Hausdorff

definition of fractal length.

3.1. Quantum mechanics of a fractal curve

This section discusses the formulation of quantum mechanics of a fractal curve using Fα -calculus. Let θ

represent a point on a fractal curve. Supposing that ψ(θ, t) is the wave function of a particle on a fractal curve,

the time evolution of the wave function is as follows:

ψ(θ, t+ ϵ) = ⟨θ|ψ(t+ ϵ)⟩ = ⟨θ|e−iHϵ/ℏ|ψ(t)⟩, (34)

and applying the Fα -integral

=

∫
dαF θ0⟨θ|e−iHϵ/ℏ|θ0⟩⟨θ0|ψ(t)⟩ (35)

and using ⟨θ|e−iHϵ/ℏ|θ0⟩ = U(θ, t+ ϵ; θ0, t), we obtain

=

∫
dαF θ0U(θ, t+ ϵ; θ0, t)ψ(θ0, t), (36)

where H is the fractal Hamiltonian of the system. Now we consider the Hamiltonian of the system as follows:

Ĥ =
p̂2θ
2m

+ V (θ̂), (37)

and using θ̂|θ⟩ = J(θ)|θ⟩ , p̂θ = ℏ
i

∂
∂J(θ) and by some algebraic calculations, we have

U(J(θ), t+ ϵ; J(θ0), t) =

(
m

2πℏiϵ

)1/2

exp

{
i

ℏ

[
m(J(θ)− J(θ0))

2

2ϵ
− ϵV

(
J(θ) + J(θ0)

2

)]}
. (38)
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By the conjugate theorem of Fα -calculus, y = J(θ), y0 = J(θ0) , dαF θ0 = dy0 , and making the changing

η = y − y0 , the wave function becomes

ψ(θ, t+ ϵ) =

(
m

2πℏiϵ

)1/2 ∫
dη exp

[
imη2/2ℏϵ]× exp

[
− i

ℏ
ϵV

(
y +

η

2

)]
ψ(y + η, t). (39)

Now by Taylor expansion of the wave function

ψ(y + η, t) = ψ(y, t) + η
dψ

dy
+ η2

d2ψ

dy2
+ . . . , (40)

and by some simple calculations, we obtain

iℏ
[
ψ(θ, t+ ϵ)− ψ(θ, t)

ϵ

]
=

[
− ℏ2

2m

∂2

∂y2
+ V (θ)

]
ψ(y, t), (41)

and then using the inversion of the transformation, we obtain the fractal equation

iℏ
∂

∂t
ψ(θ, t) =

[
− ℏ2

2m
(Dα

θ )
2 + V (θ)

]
, (42)

which is called the fractal Schrödinger equation.

3.2. A particle in a fractal box

Consider a particle that is confined in a fractal well potential. A fractal well is fractal space in length L with

walls such that the potential is zero inside length L but suddenly goes to infinity at the boundaries. As discussed

before, the Hamiltonian operator for a fractal well is

Ĥ = − ℏ2

2m
(Dα

x )
2 + χFV (x), (43)

where F is the fractal space confined in length L , and

V (x) =

{
0, for 0 < x < L;
∞, for x < 0 and x > L.

(44)

Particles cannot penetrate the infinite walls and then the only region where the particles can be found has the

Hamiltonian

Ĥ = − ℏ2

2m
(Dα

x )
2, (45)

and then the stationary states are the solution of the time-independent Schrödinger equation

− ℏ2

2m
(Dα

x )
2ψ(x) = Eψ(x). (46)

Now to solve Eq. (46) using Fα -calculus, suppose that ϕ is the conjugate of ψ and then ϕ(u) = ψ(x) for

u = Sα
F (x). Using the theorem of the conjugate differential equation dϕ/du = Dα

xψ , we have

− ℏ2

2m

d2

du2
ϕ = Eϕ, (47)
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which has the following general solution:

ϕ(u) = C cos(ku) +D sin(ku) E = ℏ2k2/2m. (48)

By applying the boundary conditions, ψ(L) = ψ(0) = 0, and taking L′ = Sα
F (L), we have

k =
nπ

L′ =
nπ

Sα
F (L)

≈ nπ

Lα
, (49)

where we use Eq. (8), and then the wave function is

ψ = sin(nπx/Sα
F (L)) ≈ sin(nπx/Lα), (50)

and the discrete energy values are

En = n2(h2/8m(Sα
F (L))

2) ≈ h2/(8mL2α), (51)

where for α = 1 we reobtain the classical values.

4. Fractal Landau’s method of the straggling of energy

Fractal materials are the realities of physics. If a beam of particles passes through a layer of fractal matter, its

energy through matter will not be lost continuously. Even in continuous matter the energy loss is in quantum

values. Then the master equation, Eq. (1), should be generalized such that it can explain more general

phenomena, so we extend it as follows:

Dα
x,Fh(x,E) =

∫
F

t(ϵ)
[
h(x,E − ϵ)− h(x,E)

]
dαF ϵ, (52)

where we suppose that t(E, ϵ) is independent of E . To solve this equation we follow Landau’s method [35].

First, we calculate Laplace transformation h(x,E),

h̃(x, q) =

∫
F

e−Eqh(x,E)dαFE. (53)

By multiplying both sides of Eq. (52) by e−Eq and integrating, we have

Dα
x,qh̃(x, q) = −h̃(x, q)

∫
F

t(ϵ)(1− e−qϵ)dαF ϵ. (54)

By solving Eq. (54), we have

h̃(x, q) = exp
[
− Sα

F (x)

∫
F

t(ϵ)(1− e−qϵ)dαF ϵ
]
, (55)

and then reversing the Laplace transformation, we have

h(x,E) =
1

2πi

∫ −i∞+σ

+i∞+σ

exp
[
Eq − Sα

F (x)

∫
F

t(ϵ)(1− e−qϵ)dαF ϵ
]
dαF q. (56)
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Classical physics predicts t(ϵ) to be in the form of C/ϵ2 [29]. Using this prediction, the most simple fractal

model will be in the form of

t(ϵ) = C
1

Sα
F (ϵ)

2
. (57)

Applying Eq. (8) to Eq. (57), this equation can be written as

t(ϵ) ≈ C
1

ϵ2α
, (58)

where for α = 1, we reobtain the classical one, t(ϵ) = C/ϵ2 .

4.1. Fractal Fokker–Planck equation

If energy loss in any collision is small compared with the other physical quantities of the system, the collision

integral in Eq. (1) can be expanded as∫ ∞

0

[
t(E + ϵ, ϵ)h(E + ϵ, x)− t(E, ϵ)h(E, x)

]
dϵ

=
∞∑

n=1

(Dα
E,F )

n

[∫
F

t(E, ϵ)

n!
ϵnh(E, x)

]
dβF ϵ, (59)

and then we have

Dα
x,F ′h(E, x) =

∞∑
n=1

(Dα
E,F )

n

[
Mn(E)h(E, x)

]
, (60)

where Mn(E) = 1/n!
∫
F
ϵnt(ϵ)dαF ϵ and t(E+ϵ, ϵ)F (E+ϵ, ϵ) is considered to be a function of a fractal structure.

If we assume that M1,M2 are nonzero, the resulting equation will be the fractal generalization of the Fokker–

Planck equation:

Dα
x,F ′h(E, x) = (Dα

E,F )
[
M1(E)h(E, x)

]
+ (Dα

E,F )
2
[
M2(E)h(E, x)

]
. (61)

To solve this equation, we suppose that the second moment is small and ignorable, and then Eq.(61) becomes

Dα
x,F ′h(E, x) = (Dα

E,F )
[
M1(E)h(E, x)

]
, (62)

where it can be solved by the characteristic method, so we rewrite it as follows:

Dα
xh(E, x)−M1(E)Dα

Eh(E, x) = Dα
EM1h(E, x). (63)

Let dαx and dαE be two fractal forms that are divided by their coefficients:

dαx

1
= − dαE

M1(E)
, (64)

and, for dαf and dαE ,

dαh

hDα
EM

= − dαE

M1(E)
. (65)

112



ASHRAFI and GOLMANKHANEH/Turk J Phys

Now, if we change the fractal variable to a continuous variable by the stair function Sα
F and solve Eq. (64) and

Eq. (65), we obtain

Sα(x)− C0 =

∫
− dαE

M1(E)
(66)

and

Dα
EM1(E)

M1(E)
= −d

αh

h
. (67)

If h′ is the conjugate function of h , E′ = Sα
F (E) and x′ = Sα

F (x), the solution will be

lnh′ = lnM ′
1(S

α(E)) + c1 (68)

and

h′(E′, x′) = C1M1(E
′). (69)

From Eq. (66), we can obtain a relation between C0 and C1 :

F (C0) = C1. (70)

Finally, from Eq. (70) and Eq. (69), we have

h′(E′, x′) = F

(
Sα
F (x) +

∫ Sα
F (E)

0

−dαE′′

M1(E′′)

)
M ′

1(E
′). (71)

4.2. Energy straggling of a fractal curve

Fα -calculus can also be applied in continuous matter for the phenomenon of energy straggling. Since heavy

particles take small effects from collisions through the matter, their total path is approximated by a straight line.

This approximation will be useful for calculating physical quantities as stop power, dE
dx , by general mathematics.

However, the mentioned approximation fails for light particles as electrons because of the multiple scattering by

collisions. Indeed, the real paths of the particles are fractal curves. Fα -calculus enables us to offer a straggling

energy theory for the particles along such fractal curves. To start, let F be a fractal curve that a particle

moves on in matter, and let h(E, θ) be the probability that the particle will have energy E at point θ ; then

its derivative along the fractal curve will be

Dα
θ h(E, θ) = F − lim

θ′→θ

h(θ′)− h(θ)

J(θ′)− J(θ)
, (72)

where J(θ) = Sα
F (x) and J(θ′) = Sα

F (x
′), and the continuous parameter of the curve is a straight line at

position x . Then the master equation that it satisfies is

Dα
θ h(θ, E) =

∫
F

t(ϵ)
[
h(θ,E − ϵ)− h(θ, E)

]
dαF ϵ, (73)

and to determine t(ϵ) a theory should be given [29]. Now we want to calculate the range of the particles through

the matter. Classical straggling theory defines the total distance, R , that a particle with initial value energy

E would come to rest, by the following equation:

R(E) =

∫ E

0

dE′

M1(E′)
, (74)
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where the path of the particles is considered to be a straight line. Using Eq. (66), we generalize Eq. (74) to

Sα
F (R)− Sα

F (0) =

∫ E

0

dαE

M1(E)
. (75)

From Eq. (8) we have

Rα ≈
∫ E

0

dαE

M1(E)
, (76)

where for α = 1 we are led to the classical Eq. (74) .

5. Conclusion

We showed that the Fα -derivative of Fα -calculus satisfies the chain rule. Using Fα -calculus, we affirmed that

the dimension of a quantum mechanics path is two. The fractal Schrödinger equation was proposed, and the

energy and wave function of a particle in a fractal box were calculated. Finally, we extended Landau’s method

of energy straggling to fractals.
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