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Institute of Electrical Engineering, Faculty of Electrical Engineering and Information Technology,
Slovak University of Technology in Bratislava, Bratislava, Slovakia

Received: 01.06.2017 • Accepted/Published Online: 03.11.2017 • Final Version: 26.04.2018

Abstract: This paper deals with the investigation of braking forces induced by eddy currents, which have effects on

the permanent magnet moving at a constant speed in the direction of the conductive tube axis. The analysis is based

on calculation of an action of a force between the current density, representing the magnet, and the eddy currents. The

chosen solution is based on classical electrodynamics and can serve as a guide for the calculation of other cases, where

braking forces are created between the moving cell, which is a source of the magnetic field, and a close conductive subject.

The obtained results indicate the braking force affecting the magnet and the dependence of this force on the current.

The graphical representation of the results shows that the balancing velocity of the magnet fall is inversely proportional

to the quadrant of its magnetic moment. This work may be useful for experts in the area of the design of electromagnetic

clutches, brakes, and actuators and for university teachers dealing with electrodynamics. Moreover, it can serve as a

demonstration of a calculation of the field by vector potential, which is an appropriate quantity used for the description

of magnetic fields.
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1. Introduction

In the past 20 years, cheap production of neodymium magnets has emerged. These are characterized by high

values of energetic product and remanent magnetic field. The magnets are greatly used in demonstrative

experiments, among others in the demonstration of braking force created by eddy currents that occur at the

change of the magnetic field in a conductive environment. According to Lenz’s law, the induced currents try to

prevent the change that has created them. As a consequence, braking forces having effects on the permanent

magnet moving near the conductor come into existence.

One of the frequent experiments that has been, for years, a point of interest of many experimental and

theoretical studies [1–5] and can be easily executed is the fall of a (neodymium) magnet through a thick-walled

(well-conductive) copper tube. The popularity of these experiments is because of their highly demonstrative

display. From the previously cited sources [3,4], it follows that the permanent magnet falls through the copper

tube during regular experiments in a time that is one or two orders longer than the flyover time of a nonmagnetic

object on the same trajectory. In other words, a nonmagnetic object moves with a constant acceleration g (if

we do not take the effect of the air into account) and a neodymium magnet after its entry into the copper tube

reaches its terminal velocity in a time of less than a few hundredths of a second and then moves at a constant

speed [4]. At a constant speed, gravitational and braking forces are in balance.
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In the present paper, we discuss the determination of the breaking force affecting the magnet that moves

at a constant speed in the direction of the axis of the conductive (copper) tube. It is based on classical

electrodynamics and the problem is solved under some simplifying assumptions. It is the aforementioned

constant speed; therefore, we do not solve the case of accelerated movement and the wave radiation to the

surroundings connected with it. We consider the movement to be clearly axial (oriented in the direction of

the Z axis) and we do not consider other degrees of mechanical latitude of a falling magnet (such as rotation

around its own axis, oscillation, etc.). The wall of the tube is considered to be sufficiently thick and we do not

consider the effect of air on the magnet. The basic layout of the experiment, which is described here, is depicted

in Figure 1a. The natural coordinate system suitable for the physical description is the cylindrical coordinate

system depicted in Figure 1a. Another simplification is the assumption that the diameter of the magnet and

the inner diameter are substantially bigger than the air gap between the magnet and the inner wall of the tube.

This means that instead of the situation depicted in Figure 1a we can solve the situation depicted in Figure

1b. In Figure 1b, the plain metal–air interface is presented instead of the copper tube and it presents the case

where the diameter of the tube is in the limit point to infinity. The natural coordinate system in Figure 1b is

the Cartesian coordinate system. The magnet itself falling in the direction of the Z axis parallel to the tube wall

is represented by the line density of the current (ideally represented by a thin and infinitely long strip), which

induces a magnetic field interfering in the conductive wall. This magnetic field is variable in time due to the

magnet’s movement and causes eddy currents in the conductor (copper) and consequently a braking effect on

the falling magnet. If we consider the situation according to Figure 1b, then when determining the braking force

we have to look for the braking force affecting the measurement of the strip length with the current oriented

in a direction perpendicular to the layout. The strip is infinitely long; only the force on the measurement of

length makes sense.
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Figure 1. (a) The basic experimental setup. (b) Current strip, with w width, near the copper wall.
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2. Theoretical description

2.1. Modeling of a permanent magnet

A permanent magnet is modeled by a current density circulating on the perimeter of the magnet, which

corresponds to homogeneous magnetization of its volume. The field is calculated according to the Biot–Savart

law. The surface line density of the current is considered as a constant with value M . This modeling leads to

the same results for the radial as well as for the axial component of the magnetic field of a cylindrical magnet,

as stated in [3,5], while the mentioned papers used the dual approach and modeled the permanent magnet as a

pair of disks with the same size and the opposite polarity of the magnetic charge. Both approaches (the field

source is either surface current M circulating on the surface of the magnet or is square density of magnetic

monopoles M on the pole areas of the magnet) are based on the idea of a magnet with a constant value of the

magnetization vector M in the whole volume and lead to the same value of the whole dipole moment. The

essential thing for the solution of our problem, determining the braking force affecting the magnet, is that the

magnetic field of a permanent magnet (with a radial and axial component) determined in this way is going to

be considered as a “hard” source of the magnetic field and therefore the edge condition while solving the field

inside the wall of the conductive cylinder. In the case according to Figure 1b, we need to calculate the magnetic

field (its two components) in the vicinity of an ideally thin and infinitely long strip where the constant density

of the surface current flows. In this case the Biot–Savart law can also be applied, or analytic expressions, which

can be derived for the case of the thin and long strip.

Considering quantitative values used in simulation, we have to state that neodymium magnets are

characterized by a high value of magnetization (typical value Jm = 1.3 T) and therefore also the value of

the excitation field. We have to proceed according to the stated typical magnetization value while determining

the field in the vicinity of the magnet. Either we proceed according to the clearly dipole moment or from a

more precise model of two circular discs (b), or the square current of circulating on the magnet perimeter (a).

2.2. Conditional equations derivation

The calculation of braking forces affecting the permanent magnet will gradually be transformed into a calculation

according to the vector potential A, consequently to the determination of the magnetic field and finally to the

determination of the current field of eddy currents in the tube wall. We will determine the braking force as a

force acting between the current field creating the magnet and the current field of eddy currents in the tube

wall.

The foundation is the known equations expressing the intensity of the electrical and magnetic field by

dynamic potentials (vector potentialA and scalar potential Θ). When not considering the displacement currents

in the metal in comparison with the conduction ones, we can write the following equations:

E⃗ = −∂A⃗

∂t
− grad(Φ) B⃗ = rot(A⃗) (1, 2)

rot(B⃗) = µ0.J⃗ = µ0.κ.E⃗ (3)

∇2A⃗− µ0.κ.
∂A⃗

∂t
= 0 (4)

Eq. (4), also known as the homogeneous diffusion equation, is a special case of the wave equation of the

vector potential obtained while not considering displacement currents in the conductor in comparison with the
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conduction ones (µ0 and κ are the permeability of the vacuum and conductivity of copper). The edge condition

for Eq. (4) will be the magnetic field of the permanent magnet on the inner wall of the conductive tube. It is

given by the magnetic field being only insignificantly influenced on the inner wall by the field of eddy currents

in the copper volume. In other words, we can consider the permanent magnet to be a “hard” source of magnetic

field and, with known parameters of the permanent magnet, it is possible to calculate it (in our case by the

Biot–Savart law). The calculated field of magnetic induction is, in accordance with Eq. (2), the rotation of the

vector potential for every place on the inner surface of the tube. There are more advantages to this procedure:

1) the vector potential will have only one nonzero component, the component to the direction of the current;

2) if we fulfill the edge condition for one component of the magnetic field, then the second component of the

field automatically gives us the correct result, and therefore both components of the magnetic field will be

identical with the two components of the magnetic field created on the surface of the conductive wall by a

magnet; 3) in the literature the approach to the view of the mentioned components of the magnetic field of the

permanent magnet are not unified, i.e. in [1] during the theoretical determination of braking force, they work

only with the radial component of the magnetic field, while [6] works with the axial component (in both cited

cases, the experiment corresponds with Figure 1a). While describing the magnetic field by vector potential, this

“dilemma” does not exist.

Let us make use of the fact that we are dealing with a situation in which the speed of fall v is constant.

For the magnet position z(t) in zero initial position, we have:

z(t) = v.t (5a)

In this case the time derivation can be replaced by a spatial one:

∂

∂t
=

∂

∂z
.
∂z(t)

∂t
= v.

∂

∂z
(5b)

When completing Eq. (4) with Eq. (5b), the number of variables in diffusion equation decreases:

∇2A⃗− µ0.κ.v.
∂A⃗

∂z
= 0 (6a)

We introduce the substitution:

µ0.κ.v =
2

Θ
(6b)

The θ constant has the dimension of length, and Eq. (6a) gains the following form:

∇2A⃗− 2

Θ
.
∂A⃗

∂z
= 0 (6c)

Eq. (6c) can be described in more detail by cylindrical coordinates (Figure 1a) or in Cartesian coordinates

(Figure 1b). In the first case, the vector potential will be the function Aφ(r, z), and in the second case, function

Ay(x, z):

∂2Ay

∂x2
+

∂2Ay

∂z2
=

2

Θ
.
∂Ay

∂z
(7)
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2.3. Solution of the conditional equation and dispersive relations

Eq. (7) can be solved by separation of the variables. We always obtain two separated differential equations:

Ay(x, z) = X(x).Z(z) (8)

∂2X(x)

∂x2
− γ2

x.X(x) = 0 (9)

∂2Z(z)

∂z2
− 2

Θ
.
∂Z(z)

∂z
+ γ2

x.Z(z) = 0 (10)

Let us solve here Eqs. (9) and (10). They are connected by a separation constant γx , which can be a complex

number. The solution to Eq. (9) is:

X(x) = C1. exp(−γx.x) + C2. exp(γx.x) (11)

The solution of Eq. (9) in the form of Eq. (11) is composed of two particular solutions, which we label as a

direct and a reverse surface wave. C1 and C2 are temporarily unidentified constants and the complex number

γx is interpreted as a complex propagation factor of a wave; its real part is a damping constant and its imaginary

part is a phase constant. Eq. (10) as well as Eq. (9) are linear differential equations. Corresponding with the

differential equation of Eq. (10) is the characteristic quadratic equation:

ξ2 − 2

Θ
.ξ + γ2

x = 0 (12a)

If we define γx as a complex propagation factor in the direction of the X axis, then the unknown ξ in Eq.

(12a) will represent the complex propagation factor in the direction of the Z axis. Therefore, we introduce the

substitution ξ = γz :

γ2
z − 2

Θ
.γz + γ2

x = 0 (12b)

There are two complex propagation factors in Eq. (12b); each of them describes spreading in the direction of

its own axis. Since the axes are orthogonal to each other, the following applies for the propagation factors:

γ2
x + γ2

z = γ2 (13)

Here, γ is the known propagation factor of a plane electromagnetic wave in a well-conductive environment:

γ2 = j.ω.µ0.κ = j.kz.
2

Θ
(14)

In Eq. (14), besides the imaginary unit j and the previously mentioned copper conductivity and vacuum

permeability, the angular frequency ω and the wave number kz also appear.

kz =
ω

v
=

2.π

L
(15)
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To define the term of angular frequency and respectively the wave number appearing in Eqs. (14) and (15), we

need to introduce a period. We will do it later; now we finish the solution of Eq. (10). After putting Eq. (13)

into (12b), we obtain the roots of Eq. (12b):

γz1 = j.kz γz2 =
2

Θ
− j.kz (16a,16b)

The pair of roots of Eqs. (16a,16b) can be expressed more easily, by definition kθ :

kΘ =
j

Θ
+ kz (17)

γz1 =
1

Θ
+ j.kΘ γz2 =

1

Θ
− j.kΘ (18a,18b)

The solution of Eq. (10) will then be:

Z(z) = (a. cos(kΘ.z) + b. sin(kΘ.z)). exp(
z

Θ
) (19)

Here, aand bare temporarily undefined constants. We should also recall that, according to Eq. (13), we can

also assign γx to the known values γz1 and γz2 of the propagation factor for the direction Z (Eqs. (16a,16b))

because the same value belongs to both roots of Eqs. (18a,18b):

±γx = ±√
γz1.γz2 = ±

√
j.kz.

(
2

Θ
− j.kz

)
= ±

√
γ2 − γ2

z1 (20)

2.4. Introduction of edge periodical conditions

As was stated above in connection with Eqs. (14) and (15), we have to define the term of angular frequency and

wave number. Our experiment, the crossing of the magnet moving in a copper tube at a constant speed, can

be understood as an intermediate phenomenon with an infinitely long period. This one-time intermediate

phenomenon can be replaced by a different one periodically repeating itself. In a repeating (periodical)

intermediate phenomenon, we consider magnets that fall gradually one after the other so that there is a distance

L(Figure 2) .The substitution will be proper if the distance between the magnets is big enough, which means

that the field of the magnet from the chosen area ∈(-L/2, L/2) is only insignificantly influenced by the existence

of the other magnets. In such a case we can define the spatial “period” L , basic wave number kz , and angular

frequency ω = kz.v according to Eq. (15). If we define the wave number and the angular frequency by Eqs.

(14)–(18a,18b), then we can consider it to be the definition of the basic wave number (basic harmonic) and

define all the stated relations of Eqs. (14)–(18a,18b) also for the higher harmonic:

kzn = n.
ω

v
= n.

2.π

L
n = 1, 2, 3..... (21a)

γ2
n = j.kzn.

2

Θ
γxn =

√
γ2
n − γ2

z1n (21b,21c)

γz1n = j.kzn γz2n =
2

Θ
− j.kzn (22a,22b)
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Figure 2. The one-time process replacement by periodical repetition.

kΘn =
j

Θ
+ kzn (23)

γz1n =
1

Θ
+ j.kΘn γz2n =

1

Θ
− j.kΘn (24a,24b)

The solution of Eqs. (9) and (10) can then be written by solution types of Eqs. (11) and (19). In the solution of

Eq. (11) we consider only the first element (direct wave), which physically means that we consider the thickness

of the tube wall thick enough for the direct wave to cease and not create a back wave. The vector potential

(with the orientation in the direction of the Y axis) is expressed in the form of the sum of the infinite series:

Ay(x, z) =
∑
n

exp(−γxn.(x− xb))(an. cos(kΘn.z) + bn. sin(kΘn.z)). exp(
z

Θ
) (25)

Here, an and bn are temporarily not defined constants and the significance of the xb coordinate can be seen

in Figure 1b. We have to mention that Eq. (25) as well as other complex terms represent the complex

representation of harmonic quantities and their real part is a physical quantity (vector potential) at a given

place (x, z).

2.5. Limit point relationships in the case of low speed

Let us notice the previous relationships in the case that velocity v is near zero.

lim
v→0

(γn) = 0 lim
v→0

(kΘn) = kzn (26a,26b)

lim
v→0

(
1

Θ
) = 0 lim

v→0
(γxn) = kzn (26c,2d6)

The vector potential given by Eq. (25) in the limit point and for place x = xb gains the form of the Fourier

series:

lim
v→0

Ay(xb, z) =
∑
n

(an. cos(kzn.z) + bn. sin(kzn.z)) (26)
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These coefficients are determined in such a way that it fulfills the periodical edge condition for both assigned

components of magnetic field induction Bx(xb, z) as well as Bz(xb, z).

Note that according to Eq. (2) the following holds true:

Bx(xb, z) =
−∂Ay(xb, z)

∂z
Bz(xb, z) =

∂Ay(xb, z)

∂x
(28a,28b)

We know that the lines of the B vector form closed paths with no known point and it has, in this case, only

two nonzero components. The condition of zero divergence in this case can be expressed as:

div(B⃗) =
∂Bx

∂x
+

∂Bz

∂z
= − ∂2Ay

∂x.∂z
+

∂2Ay

∂z.∂x
= 0

It is known that divergenceless of the B field is automatically accomplished by a suitable choice of vector

potential. This means that if we chose A so that one of the conditions of Eq. (28) is fulfilled, the second one

will be automatically accomplished. As we can see from the previously stated, Eq. (26) is obtained as a result

of a limit point, where the speed is declining to zero. The question is: where is the boundary of speed where

the limit points of Eqs. (26) and (26) are still valid? The answer is given by Eq. (23), from which we can see

that the limit point of Eq. (26b) will be roughly fulfilled if in Eq. (23) we can neglect the imaginary part in

comparison with the real one. This condition can be mathematically expressed by introducing critical velocity:

vcrit =
2

µ0.κ.L
(29)

The meaning of L(periodical edge conditions) is depicted in Figure 2. Eq. (29) determines the speed border

for higher determined relations. These are valid only at speeds lower than the critical velocity determined by

Eq. (29). Its value for copper conductivity κ =5.977.107 S/m and L = 20 cm is vcrit =13.3 cm/s, which is a

larger value than the terminal velocity of a magnet fall as discovered in experiments [3,4,6].

2.6. Determining the current density in metal and the breaking force affecting the magnet

If in Eq. (25) the unknown coefficients an and bn are determined in such a way so that they accomplish the edge

conditions, we obtain the expression describing the field of vector A. Then we can determine the expression

describing the density of the conductive current in the conductor. By filling Eq. (2) into Eq.(3) and by further

modification, we get:

Jy(x, z) =
∑
n

Jy(x, z)n = − 1

µ0
.∇2Ay(x, z) = − 1

µ0

∑
n

γ2
n.Ay(x, z)n (30a)

Ay(x, z)n = exp(−γxn.(x− xb))(an. cos(kΘn.z) + bn. sin(kΘn.z)). exp(
z

Θ
) (30b)

At the known distribution of the current density in metal we can calculate the braking force effects (for a length

unit) on the strip so that we first determine the force component for the direction of the Z axis from the force

working between the whole strip (1 m long and w wide) and the elementary (differentially small) current flowing

through the surface element dS= dx.dz in a perpendicular direction to the layout (Figure 3). This quantity is

labeled as the density of the force and its dimension will be in N/m3 :

132
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Fp(x, z)n =
µ0.K

2π
.

w
2∫

−w
2

Re(Jy(x, z)n).(z − z′)

x2 + (z − z′)2
.dz′ (31)

The numberK is the density of the surface current flowing through the strip and it has dimension A/m. If

this force density is integrated through a relevant surface and we add up every element of the set, we get the

braking force acting on the length unit of the conductor:

F1 =
∑
n

L
2∫

−L
2

15xb∫
xb

Fp(x, z)n.dx.dz (32)

3. Results, discussion, and comparison with the literature

Results given by Eq. (32) were obtained by a simulation in the math software Mathcad. The dependence of

the braking force on 1 m of a strip is carried out for different values of excitation current on the graph (Figure

4a). The graph is on both axes in logarithmic scale and the critical speed is marked there. In values lower

than the critical velocity, the dependence is linear, which is in accordance with the results given in [3] and [5].

The deviation of simulated values from the linear dependence occurs in the area of critical speed, where our

determined solution of Eqs. (30a, 30b) of the differential equation of Eq. (6a) does not meet the edge condition

of Eqs. (28a,28b). We did not consider the modification of the solution for speeds higher than the critical one

(Eq. (29)), but it must be noted that the critical speed can be affected by the choice of the L parameter. By

reduction of L , the critical speed is increased. However, the negative part is that it affects the magnetic field

of the magnet by its virtual neighbors. It is interesting to watch the influence of the excitation current of the

strip on the angular coefficient of particular linear dependencies in Figure 4a. This influence is depicted on

the graph in Figure 4b, where the size of the excitation current is carried out on the horizontal axis and on

the vertical axis, also in logarithmic scale, the angular coefficient of individual dependencies from Figure 4a is

carried out. The curve in Figure 4b is in log/log projection linear and corresponds with great precision to the

quadratic dependence of unitary force (force per meter) on the size of the excitation current and respectively on
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the intensity of the magnetic field of the falling magnet. The last statement corresponds with the conclusions of

other papers, i.e. in [5] a result where the speed of the magnet fall is indirectly proportionate to the quadrate

of the magnetic moment of a falling magnet.
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Figure 4. The Mathcad software results. (a) Blue line – simulation, red line – slope of the curve at the beginning, w =

2 cm, L = 20 cm, xb = 2 mm, I = 12.67 (A), 38 (B), 114 (C), 342 (D), 1024 (E) A. (b) Size of the excitation current

dependency of the angular coefficient of individual dependencies from Figure 4a.

It is interesting to notice that a significant number of papers dedicated to the issue of calculation of the

braking force affecting the magnet falling in a conductive tube give us results that the authors mark as being in

great accordance with the experiment despite the fact that the calculation method is slightly different in these

papers. The issue of braking forces calculation is a complex problem that requires simplifications although

the physical basis of the inspected phenomenon must be preserved. We assume that the physical basis of the

inspected phenomenon should be the consideration of eddy currents as a local parameter, which is determined

by solving the corresponding differential equation. Only after that can we introduce integral parameters, which

can be, as a rule, expressed and calculated more easily.
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