Turkish Journal of Physics

http://journals.tubitak.gov.tr/physics/
Research Article

Turk J Phys
(2018) 42: 157 - 165
(C) TÜBİTAK
doi:10.3906/fiz-1707-27

Theory and application of hydrogen formation in proton-alkali atom collision

Sabbah A. ELKILANY ${ }^{1,2, *}$
${ }^{1}$ Department of Mathematics, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
${ }^{2}$ Department of Mathematics, College of Science, Kafrelsheikh University, Kafrelsheikh, Egypt

Received: 29.07.2017 $\bullet \quad$ Accepted/Published Online: 17.11.2017 \quad Final Version: 26.04.2018

Abstract

The possibility of producing more hydrogen during p-alkali atom collisions is discussed. The coupled static approximation is modified for the first time to make it applicable to the multichannel problem of the collisions of p-alkali atoms. The formation of $\mathrm{H}(1 \mathrm{~s})$ and excited H (in $2 \mathrm{~s}-$ and 2 p - states) in the scattering of p -Li atoms is treated to test the convergence of our method. The modified method is used to calculate the total cross-sections of seven partial waves in a range of energy between 50 and 1000 keV . Our p-Li results are compared with earlier ones.

Key words: Proton-alkali, hydrogen formation, excited hydrogen formation, cross-sections

1. Introduction

The most interesting phenomenon in quantum mechanics is the intermediate states that appear in a nuclear reaction. Most theoretical and experimental studies of proton-atom interactions have been discussed in the last decade by many authors. They calculated the total cross-sections of the interaction. Banyard and Shirtcliffe [1] discussed p-Li scattering using continuum distorted wave (CDW) approximation. Ferrante and Fiordilino [2] studied p-alkali atoms using eikonal approximations. Daniele et al. [3] reported the total cross-sections for p-alkali atom collision using eikonal approximation. Ferrante et al. [4] also investigated the total H-formation cross-sections in p-alkali atoms using Oppenheimer-Brinkman-Kramers (OBK) approximation. Fritsch and Lin [5] studied p-H atom collisions using the coupled-state calculations method. Choudhury and Sural [6] studied p-alkali atom ($\mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \mathrm{Cs}$) collisions in the wave formation of impulse approximation at energies ranging from 50 to 500 keV . Tiwari [7] reported the differential and total cross-sections in H-formation in the collision of $\mathrm{p}-\mathrm{Li}$ and $\mathrm{p}-\mathrm{Na}$ atoms using Coulomb-projected Born approximation.

The present work explores the possibility of producing more hydrogen through p-alkali atom collisions. In the present paper, the coupled static approximation (CSA) method, which is used by Elkilany [8-11], is modified to make it applicable to discuss the multichannel coupled static approximation (MCSA) problem ($n=$ 4) of the collision of $\mathrm{p}-\mathrm{Li}$ atoms at intermediate energies of the projectile. A numerical procedure is generalized to solve the obtained multicoupled equations. Throughout this paper Rydberg units are used and the total cross-sections are expressed in units of $\pi a_{0}^{2}\left(=8.8 \times 10^{-17} \mathrm{~cm}^{2}\right)$ and energy units of keV .

2. Theoretical formalism

The MCSA of protons scattered by alkali atoms may be written as (see Figure 1):

[^0]

Figure 1. Configuration space of p-atom scattering: \bar{x}_{i} and \bar{r}_{i} are the vectors of the proton and the valence electron of the target with respect to the center of mass of the target, $\bar{\rho}_{i}$ is the vector of the proton with respect to the valence electron of the target, $\bar{\sigma}_{i}$ is the vector of the center of mass of H from the target, and M_{T} is the mass of the nucleus of the target.

$$
p+A=\left[\begin{array}{ll}
p+A & \text { Elastic channel (first channel) } \tag{1}\\
H(n \ell)+A^{+} & H(n \ell) \text { formation channels }((n-1)-\text { channels })
\end{array},\right.
$$

where p is the proton, A is an alkali target atom, $H(n \ell)$ is hydrogen formation in $n \ell$-states, and n is the number of open channels.

The Hamiltonian of the elastic channel is given by:

$$
\begin{equation*}
H=H^{(1)}=H_{T}-\frac{1}{2 \mu_{1}} \nabla_{x_{1}}^{2}+V_{i n t}^{(1)}\left(x_{1}\right)=-\frac{1}{2 \mu_{T}} \nabla_{r_{1}}^{2}-\frac{2}{r_{1}}+V_{c}\left(r_{1}\right)-\frac{1}{2 \mu_{1}} \nabla_{x_{1}}^{2}+V_{i n t}^{(1)}\left(x_{1}\right), \tag{2}
\end{equation*}
$$

where H_{T} is the Hamiltonian of the target atom. μ_{T} is the reduced mass of the target atom.

$$
\begin{equation*}
H=H^{(i)}=H_{i}-\frac{1}{2 \mu_{i}} \nabla_{\sigma_{i}}^{2}+V_{i n t}^{(i)}\left(\sigma_{i}\right)=-\frac{1}{2 \mu_{i}} \nabla_{\rho_{i}}^{2}-\frac{2}{\rho_{i}}-\frac{1}{2 \mu_{i}} \nabla_{\sigma_{i}}^{2}+V_{i n t}^{(i)}\left(\sigma_{i}\right), i=2,3,4, \ldots n \tag{3}
\end{equation*}
$$

The Hamiltonian of the ($n-1$)-rearrangement channels are expressed by:
Here, $H_{i}, i=2,3,4, \ldots n$ are the Hamiltonians of the hydrogen formation atoms, $H(n l)$, respectively. $\mu_{i}, i=2,3,4, \ldots n$ are the reduced masses of $(n-1)-$ channels, respectively.
$V_{c}\left(r_{1}\right)$ is a screened potential and $V_{i n t}^{(1)}\left(x_{1}\right)$ is the interaction potential of the first channel, given by:

$$
\begin{equation*}
V_{c}\left(r_{1}\right)=V_{c \operatorname{Coul}}\left(r_{1}\right)+V_{c e x}\left(r_{1}\right) \tag{4}
\end{equation*}
$$

where $V_{c C o u l}\left(r_{1}\right)$ and $V_{\text {cex }}\left(r_{1}\right)$ are the Coulomb and exchange parts of the core potential, respectively (see ref. [11]), and

$$
\begin{equation*}
V_{i n t}^{(1)}\left(x_{1}\right)=\frac{2}{x_{1}}-\frac{2}{\rho_{1}}+V_{c C o u l}\left(x_{1}\right) \text { where } V_{c C o u l}\left(x_{1}\right)=-V_{c C o u l}\left(r_{1}\right) \tag{5}
\end{equation*}
$$

and $V_{i n t}^{(i)}\left(\sigma_{i}\right)$, is the interaction between the two particles of the considered hydrogen formation and the rest of the target, which is given by:

$$
\begin{equation*}
V_{i n t}^{(i)}\left(\sigma_{i}\right)=\frac{2}{x_{i}}-\frac{2}{r_{i}}+V_{c C o u l}\left(x_{i}\right)+V_{c C o u l}\left(r_{i}\right)+V_{c e x}\left(r_{i}\right), i=2,3,4, \ldots n \tag{6}
\end{equation*}
$$

ELKILANY/Turk J Phys

The total energies E of the n-channels are defined by:

$$
\begin{equation*}
E=E_{i}+\frac{1}{2 \mu_{i}} k_{i}^{2}, i=1,2,3 \ldots n \tag{7}
\end{equation*}
$$

where $\frac{1}{2 \mu_{1}} k_{1}^{2}$ is the kinetic energy of the incident proton relative to the target and $\frac{1}{2 \mu_{i}} k_{i}^{2}, i=2,3,4, \ldots, n$ are the kinetic energy of the center of mass of the hydrogen formation atoms, $H(n \ell)$, respectively, relative to the nucleus of the target. E_{1} is the binding energy of the target atom, and $E_{i}, i=2,3,4, \ldots, n$ refer to the binding energies of the hydrogen formation atoms, respectively.

In MCSA, it is assumed that the projections of the vector $(H-E)|\Psi\rangle$ onto the bound state of the n-channels are zero. Thus, the following conditions are satisfied:

$$
\begin{equation*}
\left\langle\Phi_{i}\right|(H-E)|\Psi\rangle=0, i=1,2,3, \ldots, n \tag{8}
\end{equation*}
$$

The total wave function $|\Psi\rangle$ is expressed by

$$
\begin{gather*}
\Psi=\sum_{i=1}^{n}\left|\phi_{i} \psi_{i}\right\rangle, \tag{9}\\
\psi_{1}=\sum_{\ell} \ell(\ell+1) f_{\ell}^{(1)}\left(x_{1}\right) Y_{\ell}^{0}\left(\hat{x}_{1}\right), \tag{10}\\
\psi_{i}=\sum_{\ell} \ell(\ell+1) g_{\ell}^{(i)}\left(\sigma_{i}\right) Y_{\ell}^{0}\left(\hat{\sigma}_{i}\right), i=2,3, \ldots n \tag{11}
\end{gather*}
$$

where $f_{\ell}^{(1)}\left(x_{1}\right)$ and $g_{\ell}^{(i)}\left(\sigma_{i}\right), i=2,3, \ldots n$ are the radial wave functions of the elastic and the hydrogen formation atoms, respectively, corresponding to the total angular momentum $\ell . Y_{\ell}^{0}\left(x_{1}\right)$ and $Y_{\ell}^{0}\left(\hat{\sigma}_{i}\right) i=2,3, \ldots, n$ are the related spherical harmonics. \hat{x}_{1} and $\hat{\sigma}_{i}, i=1,2,3, \ldots, n$ are the solid angles between the vectors $\hat{x}_{1}, \hat{\sigma}_{i}, i=$ $2,3, \ldots n$ and the z-axis, respectively. $\psi_{i}, i=1,2,3, \ldots n$ are the corresponding scattering wave functions of the n-channels, respectively. Φ_{1} is the wave function for the valence electron of the target atom, which is calculated using ref. [12]. $\Phi_{i}, i=2,3,4, \ldots, n$ are the wave functions of the hydrogen formation atoms, $H(n \ell)$, respectively, which are defined using a hydrogen-like wave function.

Eq. (8) can be solved by considering differential equations

$$
\begin{gather*}
{\left[\frac{d^{2}}{d x_{1}^{2}}-\frac{\ell(\ell+1)}{x_{1}^{2}}+k_{1}^{2}\right] f_{\ell}^{(1)}\left(x_{1}\right)=2 \mu_{1} U_{s t}^{(1)}\left(x_{1}\right) f_{\ell}^{(1)}\left(x_{1}\right)+\sum_{\alpha=2}^{n} Q_{1 \alpha}\left(x_{1}\right),} \tag{12}\\
{\left[\frac{d^{2}}{d \sigma_{i}^{2}}-\frac{\ell(\ell+1)}{\sigma_{i}^{2}}+k_{i}^{2}\right] g_{\ell}^{(i)}\left(\sigma_{i}\right)=2 \mu_{i} U_{s t}^{(i)}\left(\sigma_{i}\right) g_{\ell}^{(i)}\left(\sigma_{i}\right)+\sum_{\alpha=1}^{n} Q_{i \alpha}\left(\sigma_{i}\right), i=2,3, \ldots, n,} \tag{13}
\end{gather*}
$$

where the prime on the sum sign means that $i \neq \alpha$, and

$$
\begin{equation*}
Q_{1 \alpha}\left(x_{1}\right)=\int_{0}^{\infty} K_{1 \alpha}\left(x_{1}, \sigma_{\alpha}\right) g_{\ell}^{(\alpha)}\left(\sigma_{\alpha}\right) d \sigma_{\alpha}, \alpha=2,3, \ldots, n \tag{14}
\end{equation*}
$$

$$
\begin{gather*}
Q_{i 1}\left(\sigma_{i}\right)=\int_{0}^{\infty} K_{i 1}\left(\sigma_{i}, x_{1}\right) f_{\ell}^{(1)}\left(x_{1}\right) d x_{1}, i=2,3, \ldots, n \tag{15}\\
Q_{i \alpha}\left(\sigma_{i}\right)=\int_{0}^{\infty} K_{i \alpha}\left(\sigma_{i}, \sigma_{\alpha}\right) g_{\ell}^{(\alpha)}\left(\sigma_{\alpha}\right) d \sigma_{\alpha}, i, \alpha=2,3, \ldots, n, i \neq \alpha . \tag{16}
\end{gather*}
$$

Kernels $K_{i \alpha}, i=1,2,3, \ldots, n, i \neq \alpha$ are expanded by:

$$
\begin{align*}
& K_{1 \alpha}\left(x_{1}, \sigma_{\alpha}\right)=2 \mu_{1}\left(8 x_{1} \sigma_{\alpha}\right) \iint \Phi_{1}\left(r_{1}\right) \Phi_{\alpha}\left(\rho_{\alpha}\right)\left[-\frac{1}{2 \mu_{\alpha}}\left(\nabla_{\sigma_{\alpha}}^{2}+k_{\alpha}^{2}\right)+V_{i n t}^{(\alpha)}\right] Y_{\ell}^{o}\left(\hat{x}_{1}\right) Y_{\ell}^{o}\left(\hat{\sigma}_{\alpha}\right) d \hat{x}_{1} d \hat{\sigma}_{\alpha} \tag{17}\\
& \alpha=2,3, \ldots n \\
& K_{i 1}\left(\sigma_{i}, x_{1}\right)=2 \mu_{i}\left(8 \sigma_{i} x_{1}\right) \iint \Phi_{i}\left(\rho_{i}\right) \Phi_{1}\left(r_{1}\right)\left[-\frac{1}{2 \mu_{1}}\left(\nabla_{x_{1}}^{2}+k_{1}^{2}\right)+V_{i n t}^{(1)}\right] Y_{\ell}^{o}\left(\hat{\sigma}_{i}\right) Y_{\ell}^{o}\left(\hat{x}_{1}\right) d \hat{\sigma}_{i} d \hat{x}_{1}, i=2,3, \ldots n \tag{18}\\
& K_{i \alpha}\left(\sigma_{i}, \sigma_{\alpha}\right)= \tag{19}\\
& 2 \mu_{i}\left(8 \sigma_{i} \alpha_{\alpha}\right) \iint \Phi_{i}\left(\rho_{i}\right) \Phi_{\alpha}\left(\rho_{\alpha}\right)\left[-\frac{1}{2 \mu_{\alpha}}\left(\nabla_{\sigma_{\alpha}}^{2}+k_{\alpha}^{2}\right)+V_{i n t}^{(\alpha)}\right] Y_{\ell}^{o}\left(\hat{\sigma}_{i}\right) Y_{\ell}^{o}\left(\hat{\sigma}_{\alpha}\right) d \hat{\sigma}_{i} d \hat{\sigma}_{\alpha} \\
& \\
& i, \alpha=2,3, \ldots n, i \neq \alpha
\end{align*}
$$

The static potentials $U_{s t}^{(1)}\left(x_{1}\right)$ and $U_{s t}^{(i)}\left(\sigma_{i}\right), i=2,3, \ldots, n$ are defined by

$$
\begin{equation*}
U_{s t}^{(1)}\left(x_{1}\right)=<\Phi_{1}\left(r_{1}\right)\left|V_{i n t}^{(1)}\right| \Phi_{1}\left(r_{1}\right)>, \quad U_{s t}^{(i)}\left(\sigma_{i}\right)=<\Phi_{i}\left(\rho_{i}\right)\left|V_{i n t}^{(i)}\right| \Phi_{i}\left(\rho_{i}\right)> \tag{20}
\end{equation*}
$$

Eqs. (12) and (13) are inhomogeneous equations in x_{i}, and $\sigma_{i}, i=1,2,3, \ldots, n$, and possess the general form

$$
\begin{equation*}
\left.\left(\varepsilon-H_{0}\right)|\chi>=| \eta\right\rangle \tag{21}
\end{equation*}
$$

where ε is $k_{i}^{2}(i=1,2, \ldots, n) . \quad H_{0}$ is $-\frac{d^{2}}{d x_{1}^{2}}+\frac{\ell(\ell+1)}{x_{1}^{2}}$ or $-\frac{d^{2}}{d \sigma_{i}^{2}}+\frac{\ell(\ell+1)}{\sigma_{i}^{2}}, i=2,3, \ldots, n .|\chi\rangle$ is $\left|f_{\ell}^{(1)}\left(x_{1}\right)\right\rangle$ or $\left|g_{\ell}^{(i)}\left(\sigma_{i}\right)\right\rangle .|\eta\rangle$ is the right-hand side of the coupled integro-differential equations, respectively.

The solutions of Eqs. (12) and (13) are given (formally) by the Lippmann-Schwinger equation in the form

$$
\begin{equation*}
\left|\chi>=\left|\chi_{o}>+G_{o}\right| \eta>\right. \tag{22}
\end{equation*}
$$

where G_{0} is the Green operator $\left(\varepsilon-H_{0}\right)^{-1}$ and $\left|\chi_{0}\right\rangle$ is the solution of the homogeneous equation

$$
\begin{equation*}
\left(\varepsilon-H_{0}\right)\left|\chi_{0}\right\rangle=|0\rangle, \tag{23}
\end{equation*}
$$

Using Green operator G_{0}, the solutions of Eqs. (12) and (13) are given formally by

$$
\begin{align*}
f_{\ell}^{(1, j)}\left(x_{1}\right)= & \left\{\delta_{j 1}+\frac{1}{k_{1}} \int_{0}^{\infty} \tilde{g}_{\ell}\left(k_{1} x_{1}\right)\left[2 \mu_{1} U_{s t}^{(1)}\left(x_{1}\right) f_{\ell}^{(1, j)}\left(x_{1}\right)+\sum_{\alpha=2}^{n} Q_{1 \alpha}^{(j)}\left(x_{1}\right)\right] d x_{1}\right\} \tilde{f}_{\ell}\left(k_{1} x_{1}\right) \\
& +\left\{-\frac{1}{k_{1}} \int_{0}^{\infty} \tilde{f}_{\ell}\left(k_{1} x_{1}\right)\left[2 \mu_{1} U_{s t}^{(1)}\left(x_{1}\right) f_{\ell}^{(1, j)}\left(x_{1}\right)+\sum_{\alpha=2}^{n} Q_{1 \alpha}^{(j)}\left(x_{1}\right)\right] d x_{1}\right\} \tilde{g}_{\ell}\left(k_{1} x_{1}\right), j=1,2,3, \ldots, n \tag{24}
\end{align*}
$$

ELKILANY/Turk J Phys

$$
\begin{align*}
g_{\ell}^{(i, j)}\left(\sigma_{i}\right)= & \left\{\delta_{j i}+\frac{1}{k_{i}} \int_{0}^{\infty} \tilde{g}_{\ell}\left(k_{i} \sigma_{i}\right)\left[2 \mu_{i} U_{s t}^{(i)}\left(\sigma_{i}\right) g_{\ell}^{(i, j)}\left(\sigma_{i}\right)+\sum_{\alpha=1}^{n} Q_{i \alpha}\left(\sigma_{i}\right)\right] d \sigma_{i}\right\} \tilde{f}_{\ell}\left(k_{i} \sigma_{i}\right) \\
& +\left\{-\frac{1}{k_{i}} \int_{0}^{\infty} \tilde{f}_{\ell}\left(k_{i} \sigma_{i}\right)\left[2 \mu_{i}{\underset{s t}{U}}_{(i)}^{\left(\sigma_{i}\right)} g_{\ell}^{(i, j)}\left(\sigma_{i}\right)+\sum_{\alpha=1}^{n} Q_{i \alpha}^{(j)}\left(\sigma_{i}\right)\right] d \sigma_{i}\right\} \tilde{g}_{\ell}\left(k_{i} \sigma_{i}\right), \tag{25}\\
& i=2,3, \ldots, n \quad j=1,2,3, \ldots, n
\end{align*}
$$

where $\delta_{j i}, i, j=1,2,3, \ldots, n$ specify two independent solutions for each of $f_{\ell}^{(1, j)}\left(x_{1}\right)$ and $g_{\ell}^{(i, j)}\left(\sigma_{i}\right), i=2,3, \ldots, n$, according to the considered channel. The functions $\tilde{f}_{l}(\eta)$ and $\tilde{g}_{l}(\eta), \eta=k_{1} x_{1}$, or $\eta=k_{i} \sigma_{i} i=2,3, \ldots, n$ are related to the Bessel functions of the first and second kinds, i.e. $j_{l}(\eta)$ and $y_{l}(\eta)$, respectively, by the relations $\tilde{f}_{l}(\eta)=\eta j_{l}(\eta)$ and $\tilde{g}_{l}(\eta)=-m y_{l}(\eta)$.

The iterative solutions of Eqs. (24) and (25) are calculated by:

$$
\begin{align*}
f_{\ell}^{(1, j, \nu)}\left(x_{1}\right)= & \left\{\delta_{j 1}+\frac{1}{k_{1}} \int_{0}^{x_{1}} \tilde{g}_{\ell}\left(k_{1} x_{1}\right)\left[2 \mu_{1} U_{s t}^{(1)}\left(x_{1}\right) f_{\ell}^{(1, j, \nu-1)}\left(x_{1}\right)+\sum_{\alpha=2}^{n} Q_{1 \alpha}^{(j, \nu-1)}\left(x_{1}\right)\right] d x_{1}\right\} \tilde{f}_{\ell}\left(k_{1} x_{1}\right) \\
& +\left\{-\frac{1}{k_{1}} \int_{0}^{X_{1}} \tilde{f}_{\ell}\left(k_{1} x_{1}\right)\left[2 \mu_{1} U_{s t}^{(1)}\left(x_{1}\right) f_{\ell}^{(1, j, \nu-1)}\left(x_{1}\right)+\sum_{\alpha=2}^{n} Q_{1 \alpha}^{(j, \nu-1)}\left(x_{1}\right)\right] d x_{1}\right\} \tilde{g}_{\ell}\left(k_{1} x_{1}\right), \tag{26}\\
j= & 1,2,3, \ldots, n ; \nu \geq 1 . \\
g_{\ell}^{(i, j, \nu)}\left(\sigma_{i}\right)= & \left\{\delta_{j i}+\frac{1}{k_{i}} \int_{0}^{\sum_{i}} \tilde{g}_{\ell}\left(k_{i} \sigma_{i}\right)\left[2 \mu_{i} U_{s t}^{(i)}\left(\sigma_{i}\right) g_{\ell}^{(i, j, \nu)}\left(\sigma_{i}\right)+\sum_{\alpha=1}^{n} Q_{i \alpha}^{(j, \nu)}\left(\sigma_{i}\right)\right] d \sigma_{i}\right\} \tilde{f}_{\ell}\left(k_{i} \sigma_{i}\right) \\
& +\left\{-\frac{1}{k_{i}} \int_{0}^{\sum_{i}} \tilde{f}_{\ell}\left(k_{i} \sigma_{i}\right)\left[2 \mu_{i} U_{s t}^{(i)}\left(\sigma_{i}\right) g_{\ell}^{(i, j, \nu)}\left(\sigma_{i}\right)+\sum_{\alpha=1}^{n} Q_{i \alpha}^{(j, \nu)}\left(\sigma_{i}\right)\right] d \sigma_{i}\right\} \tilde{g}_{\ell}\left(k_{i} \sigma_{i}\right), \tag{27}\\
& i=2,3, \ldots, n, j=1,2,3, \ldots, n ; \nu \geq 0 .
\end{align*}
$$

Here, $X_{1}, \sum_{i}, i=2, \ldots n$ specify the integration range away from the nucleus over which the integrals of Eqs. (26) and (27) are calculated using Simpson's expansions.

Taylor expansions of $U_{s t}^{(1)}\left(x_{1}\right), \tilde{f}_{\ell}\left(k_{1} x_{1}\right)$ and $\tilde{g}_{\ell}\left(k_{1} x_{1}\right)$ are used to obtain the starting value of $f_{\ell}^{(1, j, 0)}\left(x_{1}\right)$ (see ref. [11]).

Equations (26) and (27) can be abbreviated to the following:

$$
\begin{gather*}
f_{\ell}^{(1, j, \nu)}\left(x_{1}\right)=a_{1}^{(j, \nu)} \tilde{f}_{\ell}\left(k_{1} x_{1}\right)+b_{1}^{(j, \nu)} \tilde{g}_{\ell}\left(k_{1} x_{1}\right), j=1,2,3, \ldots n ; \nu>0 \tag{28}\\
g_{\ell}^{(i, j, \nu)}\left(\sigma_{i}\right)=a_{i}^{(j, \nu)} \tilde{f}_{\ell}\left(k_{i} \sigma_{i}\right)+b_{i}^{(j, \nu)} \tilde{g}_{\ell}\left(k_{i} \sigma_{i}\right), i=2, \ldots, n, j=1,2,3, \ldots n ; \nu>0 \tag{29}
\end{gather*}
$$

The preceding coefficients of Eqs. (28) and (29) are elements of the matrices a^{v} and b^{v}, which are given by:

$$
\left.\begin{array}{l}
\left(a^{v}\right)_{i j}=\sqrt{2 \mu_{m_{i}} / k_{i}} a_{i}^{(j, v)} \tag{30}\\
\left(b^{v}\right)_{i j}=\sqrt{2 \mu_{m_{i}} / k_{i}} b_{i}^{(j, v)}, i, j=1,2, \ldots, n, \nu>0
\end{array}\right],
$$

ELKILANY/Turk J Phys

and we can obtain the reactance matrix, R^{v}, using the following relation:

$$
\begin{equation*}
R^{v}=b^{v}\left(a^{v}\right)^{-1}, \quad \nu>0 \tag{31}
\end{equation*}
$$

The partial cross-sections in the present work are determined (in πa_{0}^{2}) by:

$$
\begin{equation*}
\sigma_{i j}^{(\ell, v)}=\frac{4(2 \ell+1)}{k_{1}^{2}}\left|T_{i j}^{\nu}\right|^{2}, \quad i, j=1,2,3, \ldots, n, \quad \nu>0 \tag{32}
\end{equation*}
$$

where k_{1} is the momentum of the incident protons, ν is the number of iterations, and $T_{i j}^{\nu}$ is the elements of the $n \times n$ transition matrix T^{ν}, which is given by:

$$
\begin{equation*}
T^{\nu}=R^{\nu}\left(I-\tilde{i} R^{\nu}\right)^{-1}, \quad \nu>0 \tag{33}
\end{equation*}
$$

where R^{ν} is the reactance matrix and I is an $n \times n$ unit matrix and $\tilde{i}=\sqrt{-1}$.
The total cross-sections (in πa_{0}^{2} units) can be obtained (in the ν th iteration) by:

$$
\begin{equation*}
\sigma_{i j}^{\nu}=\sum_{\ell=0}^{\infty} \sigma_{i j}^{(\ell v)}, \quad i, j=1,2,3, \ldots, n, \quad \nu>0 \tag{34}
\end{equation*}
$$

3. Proton-lithium scattering

As an application of our MCSA, we are going to apply the above method in the case of $n=4$ (four-channels CSA) to the scattering of p-Li. Our problem can be written in the following form:

$$
p+L i(2 s)=\left[\begin{array}{ll}
p+L i(2 s) & \text { Elastic channel (first channel) } \tag{35}\\
H(1 s)+L i^{+} & H(1 s) \text { formation channel (second channel) } \\
H(2 s)+L i^{+} & H(2 s) \text { formation channel (third channel) } \\
H(2 p)+L i^{+} & H(2 p) \text { formation channel (fourth channel) }
\end{array}\right.
$$

$\Phi_{1}\left(r_{1}\right)$ is the valence electron wave function of the target (lithium) atom, which is calculated using Clementi's tables [12], and $\Phi_{i}\left(\rho_{i}\right), \quad i=2,3,4$ are the wave functions of the hydrogen formation, which are given by:

$$
\begin{equation*}
\Phi_{2}=\frac{1}{\sqrt{\pi}} \exp \left(-\rho_{2}\right), \quad \Phi_{3}=\frac{1}{\sqrt{32 \pi}}\left(2-\rho_{3}\right) \exp \left(-\rho_{3} / 2\right) \text { and } \Phi_{4}=\frac{1}{\sqrt{32 \pi}} \rho_{4} \cos \theta_{\rho_{4}, \sigma_{4}} \exp \left(-\rho_{4} / 2\right) \tag{36}
\end{equation*}
$$

4. Results and discussion

We start our calculations on p-Li scattering by testing the variation of the static potentials $U_{s t}^{(1)}\left(x_{1}\right)$ and $U_{s t}^{(i)}\left(\sigma_{i}\right), i=2,3,4$, of the considered channels with the increase of $x_{1}, \sigma_{i}(i=2,3,4)$. In the second step, we consider the integration range, $I R$, to be $32 a_{0}$ with Simpson's interval of 0.0625 to obtain the considered integration. It is found that excellent convergence can be obtained with Simpson's interval of $h=0.0625$, $n=512$ points, and $\nu=50$. We have calculated the total cross-sections of $\mathrm{p}-\mathrm{Li}$ scattering corresponding to $0 \leq \ell \leq 6$ at incident energies between 50 and 1000 keV . The Table shows the present total cross-sections of
Table. Present σ_{12}, σ_{13}, and σ_{14} (in πa_{0}^{2}) of p-Li scattering with the results of [1], [2], [3], and [7].

$\begin{aligned} & \mathrm{k}^{2} \\ & \mathrm{keV} \end{aligned}$	Present $H(1 s)$ σ_{12}	Banyard and Shirtcliffe [1] (1s) (CDW)	Ferrante and [2] (1s) (OBK)	Daniele et al. [3] (1s) (eikonal)	Present H(2s) σ_{13}	Banyard and Shirtcliffe [1] (2s) (CDW)	Ferrante and Fiordilino [2] (2s) (OBK)	Tiwari [7] (2s) (CPB)	Present H(2p) σ_{14}	Banyard and Shirtcliffe [1] (2p)
50	$4.6753 \mathrm{E}-2$				$9.0561 \mathrm{E}-3$		$6.5 \mathrm{E}-1$	$3.596 \mathrm{E}-3$	$8.2737 \mathrm{E}-4$	
100	$1.9672 \mathrm{E}-2$		$6.84 \mathrm{E}-3$	$4.8947 \mathrm{E}-3$	$4.8653 \mathrm{E}-3$		$1.0 \mathrm{E}-3$	$6.746 \mathrm{E}-4$	$3.5363 \mathrm{E}-4$	
150	$1.1757 \mathrm{E}-2$				$2.2135 \mathrm{E}-3$		$4.9 \mathrm{E}-3$	$1.294 \mathrm{E}-4$	$1.5765 \mathrm{E}-4$	
200	$7.5246 \mathrm{E}-3$	$8.166 \mathrm{E}-3$	$1.873 \mathrm{E}-3$	$5.6149 \mathrm{E}-4$	8.9237E-4	$1.048 \mathrm{E}-3$	$2.8 \mathrm{E}-3$	$3.294 \mathrm{E}-5$	$1.2033 \mathrm{E}-4$	$1.467 \mathrm{E}-04$
250	$5.4237 \mathrm{E}-3$				$6.0929 \mathrm{E}-4$			$1.327 \mathrm{E}-5$	$9.0672 \mathrm{E}-5$	
300	$3.5916 \mathrm{E}-3$				$3.5432 \mathrm{E}-4$			$8.489 \mathrm{E}-6$	$6.5326 \mathrm{E}-5$	
350	$2.3321 \mathrm{E}-3$				$2.3564 \mathrm{E}-4$				$4.6673 \mathrm{E}-5$	
400	$1.3622 \mathrm{E}-3$				$1.5465 \mathrm{E}-4$				$2.3917 \mathrm{E}-5$	
450	$5.7923 \mathrm{E}-4$				$8.6726 \mathrm{E}-5$				$8.7861 \mathrm{E}-6$	
500	$3.5588 \mathrm{E}-4$	$3.878 \mathrm{E}-4$			$4.5163 \mathrm{E}-5$	$5.212 \mathrm{E}-5$		$9.828 \mathrm{E}-7$	$4.7005 \mathrm{E}-6$	$5.751 \mathrm{E}-06$
550	$2.6345 \mathrm{E}-4$				$4.0872 \mathrm{E}-5$				$3.2793 \mathrm{E}-6$	
600	$2.0526 \mathrm{E}-4$				$3.2844 \mathrm{E}-5$				$2.2395 \mathrm{E}-6$	
650	$1.6767 \mathrm{E}-4$				$2.3643 \mathrm{E}-5$				$1.5457 \mathrm{E}-6$	
700	$1.2358 \mathrm{E}-4$				$1.5971 \mathrm{E}-5$				$1.0823 \mathrm{E}-6$	
750	8.6739E-5				$9.8174 \mathrm{E}-6$				$8.8835 \mathrm{E}-7$	
800	$5.3231 \mathrm{E}-5$	$5.778 \mathrm{E}-5$			$6.8517 \mathrm{E}-6$	$7.711 \mathrm{E}-6$		$2.278 \mathrm{E}-7$	$6.5791 \mathrm{E}-7$	$7.604 \mathrm{E}-07$
850	$4.0683 \mathrm{E}-5$				$5.3567 \mathrm{E}-6$				$5.6372 \mathrm{E}-7$	
900	$3.0095 \mathrm{E}-5$				$4.3973 \mathrm{E}-6$				$4.5517 \mathrm{E}-7$	
950	$2.5657 \mathrm{E}-5$				$3.0035 \mathrm{E}-6$				$3.3423 \mathrm{E}-7$	
1000	$2.0139 \mathrm{E}-5$	$2.189 \mathrm{E}-5$			$2.4529 \mathrm{E}-6$	$2.906 \mathrm{E}-6$		$9.366 \mathrm{E}-8$	$2.7116 \mathrm{E}-7$	$2.716 \mathrm{E}-07$

p-Li scattering with those of Banyard and Shirtcliffe [1], Ferrante and Fiordilino [2], Daniele et al. [3], and Tiwari [7] in the energy range of $50-1000 \mathrm{keV}$. Our results and the available compared results in the range of energy of $500-1000 \mathrm{keV}$ are also displayed in Figures 2-4. In Figure 5 we also show the present results of the total cross-sections of the four channels (elastic and the hydrogen formation $(H$ (1s), H ($2 s$), H (2p)) in the same range of energy $(50-1000 \mathrm{keV})$. The present values of the total cross-sections of the four channels have trends similar to the comparison results. Our values of the total cross-sections of the four channels decrease with the incident energies. The calculated total cross-sections σ_{12} of $H(1 s)$ are about $7.85 \%-8 \%$ lower than the results of Banyard and Shirtcliffe [1]. The total cross-sections σ_{13} of H (2s) are about $11.1 \%-15.6 \%$ lower than those of Banyard and Shirtcliffe [1]. Our results of the total cross-sections σ_{14} of $H(2 p)$ are about $13.5 \%-18.3 \%$ lower than the available values of Banyard and Shirtcliffe [1]. We also noticed that the available compared results of Ferrante and Fiordilino [2], Daniele et al. [3], and Tiwari [7] are higher than our results. The present calculations show that we have more H-formation if we open more excited channels of hydrogen formation in the collision of protons with lithium atoms. The present calculated total cross-sections have the same trend as

Figure 2. $\sigma_{12}\left(\operatorname{in} \pi a_{0}^{2}\right)$ of $\mathrm{p}-\mathrm{Li}$ scattering with those of Banyard and Shirtcliffe [1].

Figure 4. σ_{14} (in πa_{0}^{2}) of p -Li scattering with those of Banyard and Shirtcliffe [1].

Figure 3. σ_{13} (in πa_{0}^{2}) of $\mathrm{p}-\mathrm{Li}$ scattering with those of Banyard and Shirtcliffe [1].

Figure 5. $H(1 s), H(2 s)$, and $H(2 p)$ cross-sections (in πa_{0}^{2}) of $\mathrm{p}-\mathrm{Li}$ scattering.
the comparison results and give good agreement with the available previous results of Banyard and Shirtcliffe [1].

5. Conclusions

p-Li scattering was studied using MCSA as a four-channel problem (elastic, $H(1 s), H(2 s)$, and $H(2 p))$. Our interest was focused on the formation of ground, $H(1 s)$, and excited hydrogen, $H(2 s)$, and $H(2 p)$ in p-Li scattering. The difference between the four-channel problem and the three- or two-channel problems is in improving the total cross-sections of the considered channel by adding the effect of more kernels of the other three channels (in the two-channel problem, we have only one kernel, and in three channels, we have two kernels), which give more H -formation in the considered states. We expect that we can obtain more hydrogen formation if we open more channels in our calculation, which we will consider in future work.

References

[1] Banyard, K. E.; Shirtcliffe, G. W. J. Phys. B 1979, 12, 3247-3256.
[2] Ferrante, G.; Fiordilino, E. Il Nuovo Cimento B 1980, 57, 1-9.
[3] Daniele, R.; Ferrante, G.; Fiordilino, E. Il Nuovo Cimento B 1979, 54, 185-195.
[4] Ferrante, G.; Fiordilino, E.; Zarcone, M. Il Nuovo Cimento B 1979, 52, 151-163.
[5] Fritsch, W.; Lin, C. D. Phys. Rev. A 1983, 27, 3361-3364.
[6] Choudhury, K. B.; Sural, D. P. J. Phys. B 1992, 25, 853-867.
[7] Tiwari, Y. N. Pramana 2008, 70, 753-758.
[8] Elkilany, S. A. Journal of Theoretical Chemistry 2014, $2014,820672$.
[9] Elkilany, S. A.; Al-Dawy, A. A. Chin. Phys. Lett. 2014, 31, 093401-093405.
[10] Elkilany, S. A.; Al-Dhawi A. A. Can. J. Phys. 2016, 94, 75-78.
[11] Elkilany, S. A. Can. J. Phys. 2015, 93, 1283-1291.
[12] Clementi, E.; Roetti, C. Atomic Data Nuclear Data Tables 1974, 14, 177-478.

[^0]: *Correspondence: sabbelkilany@yahoo.com

