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Abstract: In this study, the massless and massive spin-1 particle equations, derived from the excited states of the

zitterbewegung model, are considered for the photon in the cylindrical resonant cavity background. The resonant

frequencies of the particles are also obtained. We show that these frequencies become equivalent in the M2 → 0 limit.
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1. Introduction

Humankind has been illuminated about the mysteries of light as a result of the essential contributions of

theoretical and experimental research, which has attempted to comprehend its nature over many decades. The

crucial enlightenment began with the classical approach, which describes light in terms of an electromagnetic

field and finite speed using four equations [1], and it continued with the idea that the Maxwell equations were

relativistic wave equations [2]. High-energy particles can be characterized by a relativistic particle equation

by virtue of the quantum mechanics that emerges when the wavelengths of particles are comparable to their

sizes. Thus, different relativistic quantum mechanical equations have been proposed to describe the elementary

particles since it was understood that they have a feature called spin. Some of the proposed relativistic particle

equations are the Weyl equation for massless spin-1/2 particles [3], the Dirac equation for massive spin-1/2

particles (which can be reduced to the Weyl equation in the M2 → 0 limit [4]), the Rarita–Schwinger equation

for spin-3/2 particles [5], the Klein–Gordon equation for spin-0 particles [6, 7], and the Duffin–Kemmer–Petiau

(DKP) equation for both spin-0 and spin-1 particles [8–10]. Even though the solutions of all these equations have

been investigated in various spacetime backgrounds, this paper focuses only on the quantum electrodynamics

(QED) of the photon as a spin-1 particle. The equivalence of the spin-1 part of the DKP equation to the

classical Maxwell equations [11] can provide important insights due to the different approach of QED compared

to classical physics. In this context, the massive spin-1 particle equation is derived from the excited states

of the zitterbewegung model, which is essentially equivalent to the spin-1 part of the DKP equation in flat

spacetime [12]. Subsequently, its massless case has been represented as a toy model of the zitterbewegung [13].

Afterwards, the massless and the massive spin-1 particle equations were generalized to curved spacetime [14,15].

The symmetry and the integrability properties of the zitterbewegung model were also investigated in 1+1, 2+1,

and 3+1 dimensional spacetimes [16]. Yet other studies of the spin-1 particle have been performed to calculate
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the Hawking radiation by means of the quantum spin-1 tunneling method [17,18] and the Noether charge in

2+1 dimensional spacetime [19].

The physical behavior of an electromagnetic field in various resonant cavities has been investigated both

theoretically and experimentally [20]. On the other hand, since Planck’s quantum hypothesis, we know that

electromagnetic radiation is composed of the hν energized quanta called photons; a photon is a quantum of the

electromagnetic field [21]. However, the quantum dynamics of the photon in a cylindrical resonant cavity has

not been considered so far. Therefore, we deal with the quantum electrodynamical behavior of the photon in a

cylindrical resonant cavity by using both the massless and massive spin-1 particle equations, which are derived

from the excited states of the zitterbewegung.

An outline of the study is given as follows: the massless spin-1 particle equation is represented and solved

in a cylindrical resonant cavity in Section 2; in Section 3 a similar procedure is followed for the massive spin-1

equation. Finally, we discuss the resonant frequencies by comparing the massless case with the massive case in

the M2 → 0 limit.

2. The massless spin-1 particle in a cylindrical resonant cavity

The massless spin-1 particle equation was derived from the toy model of the zitterbewegung [13]. Its covariant

form in a curved spacetime is

{iℏΣµ(x) [∂µ − Γµ (x)⊗ I − I ⊗ Γµ (x) ]}γδ ψγδ (x) = 0 (1)

where Σµ(x) is defined as σµ(x)⊗I+I⊗σµ(x) and ψγδ (x) is the 4×1 symmetric spinor. The spin connection

for spin-1/2, Γµ (x), is defined by [14] as follows:

Γµ (x) = −1

8
[σν (x) , σν;µ(x)] (2)

where σν (x) are the spacetime dependent Pauli matrices and are obtained from the following relation:

σµ (x) = eµa (x)σ
a (3)

where σa are the constant Pauli matrices and eµa (x) are tetrads satisfying the relation, eµa (x) e
ν
b (x) η

ab = gµν .

The metric tensor of the cylindrical resonant cavity background is gµν = diag[−1,−r2,−1, 1]. The tetrads

can then be written as eµb (x) = diag[1, 1r , 1, 1]. Therefore, the nonzero spin connection in this background is

Γ2 (x) = − i

2
σ3 (4)

Using the spin connection, the massless spin-1 particle equation in the cylindrical resonant cavity can be written
as [

Σ⃗ · ∇⃗+ 2 (I ⊗ I) ∂t −
i

2r
Σ2Σ3

]
ψ = 0 (5)

Thanks to the separation of variables method, the 4× 1 spinor ψ for the cylindrical resonant cavity is defined
as

ψ =


ψ1

ψ2

ψ3

ψ4

 = ei(−ωt+kz+mϕ)


R+

R0

R0

R−

 (6)
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TEKİNÇAY and SUCU/Turk J Phys

and we find the three first-order differential equations as follows:(
d

dr
+
m

r

)
R0 − i

(ω
c
− k
)
R+ = 0, (7)

(
d

dr
+

1

r

)
(R+ +R−)−

m

r
(R+ −R−)− 2i

ω

c
R0 = 0, (8)

(
d

dr
− m

r

)
R0 − i

(ω
c
+ k
)
R− = 0. (9)

Then, by adding and subtracting these equations, we find the Bessel differential equation [22]:[
d2

dr2
+

1

r

d

dr
+

(
u2 − m2

r2

)]
R0 (r) = 0, (10)

with solution
R0 (r) = N1Jm (ur) +N2Ym (ur) (11)

where N1 and N2 are integration constants and u2 = ω2

c2 − k2 .

Using the Bessel recurrence relations [22] after replacing R0 (r) in both Eq. (6) and Eq. (9), the complete

solution is found as follows:

ψ (r, ϕ, z, t) = ei(−ωt+kz+mϕ)


− i

u

(
ω
c + k

)
[N1Jm−1 (ur) +N2Ym−1 (ur)]

N1Jm (ur) +N2Ym (ur)

N1Jm (ur) +N2Ym (ur)

i
u

(
ω
c − k

)
[N1Jm+1 (ur) +N2Ym+1 (ur)]

 (12)

where Jm (ur) is the Bessel function and Ym(ur) is the Neumann function.

The boundary conditions defining the cylindrical resonant cavity are

ψ (r, ϕ, z) =

{
0, r = 0 and r = a

0, z = 0 and z = L
. (13)

Using the boundary conditions, N2 is chosen as zero due to the divergence of the Neumann function at r = 0

and
ua = χmn at r = a (14)

where χmn are the zeros of the Bessel function. Moreover, eikz yields sin (kz) at z = 0, which defines the free

particle solution in the z direction and sin (kL) = 0 at z = L condition gives the wave numbers k = pπ
L as

p ≥ 0 integers. Consequently, the solution of the cylindrical resonant cavity is rewritten as

ψ (r, ϕ, z, t) = N1sin
(pπ
L
z
)
e
i(−ωt+mϕ)


−ik−Jm−1 (ur)

Jm (ur)

Jm (ur)

+ik+Jm+1 (ur)

 (15)

where k± =

√
1 +

(
k
u

)2 ± k
u .
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3. The massive spin-1 particle in a cylindrical resonant cavity

The massive spin-1 particle equation, derived from the excited states of the zitterbewegung model in a curved

spacetime, is given in its covariant form as

{iℏβµ (x) [∂µ − Γµ (x)⊗ I − I ⊗ Γµ (x) ]−m0c}αβ,γδ ψγδ (x) = 0 (16)

where the Kemmer matrices, βµ (x), are defined as [γ
µ
(x) ⊗ I + I ⊗ γµ(x)]/2, m0 is the mass of the spin-1

particle, c is the speed of light in a vacuum, and ψγδ (x) is the 16×1 symmetric spinor [15]. The spin connection

for spin-1/2, Γµ (x), is defined by [15] as

Γµ (x) = −1

8
[γν (x) , γν;µ(x)] (17)

where γν (x) is the Dirac matrices in the general coordinate frame. These are transformed into a curved

spacetime by means of the tetrads, eµb (x), obtained from the following relation:

γµ (x) = eµb (x) γ
b (18)

and they satisfy anticommutation relation:

γµ (x) γν (x) + γν(x) γ
µ
(x) = 2gµν (19)

The metric tensor of the cylindrical resonant cavity background and the tetrads are given in Section 2.

Therefore, the nonzero spin connection in this background is

Γ2 (x) =
i

2

(
σ3 0

0 σ3

)
(20)

Then the massive spin-1 particle equation in the cylindrical resonant cavity can be written as follows:{
β⃗ · ∇⃗+ β4 (x) ∂t − β2 (x) [Γ2 (x)⊗ I + I ⊗ Γ2 (x) ] + iM

}
αβ,γδ

ψγδ (x) = 0 (21)

where M is defined as m0c/ℏ . Using the separation of variables method, the 16× 1 symmetric spinor, ψ , for

the cylindrical resonant cavity is defined as

ψ (r, ϕ, z, t) =


ψ1

ψ2

ψ3

ψ4

 = ei(−ωt+kz+mϕ)


R1

R2

R3

R4

 (22)

R1(r) =


R1+

R10

R10

R1−

 , R2(r) =


R2+

R20

R20̃

R2−

 , R3(r) =


R2+

R20̃

R20

R2−

 , R4(r) =


R4+

R40

R40

R4−

 (23)
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due to the cylindrical symmetry. Thus, the Hamiltonian in Eq. (21) can be written as
(2∂t + 2iM)I ⊗ I A(x) B(x) 0
−A(x) 2iM(I ⊗ I) 0 B(x)
−B(x) 0 2iM(I ⊗ I) A(x)
0 −B(x) −A(x) (−2∂t + 2iM)I ⊗ I

 (24)

where A (x) = I ⊗ σ⃗ · ∇⃗+ δ1I ⊗ σ2Σ3 and B (x) = σ⃗ · ∇⃗ ⊗ I + δ1σ2 ⊗ IΣ3 . The four first-order differential

equations are then written as

−2iω (R1 −R4) + 2iM (R1 +R4)−
[
⃗̄Σ · ∇⃗+ δ1Σ̄2Σ3

]
(R2 −R3) = 0 (25)

−2iω (R1 +R4) + 2iM (R1 −R4) +
[
Σ⃗ · ∇⃗+ δ1Σ2Σ3

]
(R2 +R3) = 0 (26)

2iM (R2 +R3)−
[
Σ⃗ · ∇⃗+ δ1Σ2Σ3

]
(R1 −R4) = 0 (27)

2iM (R2 −R3) +
[
⃗̄Σ · ∇⃗+ δ1Σ̄2Σ3

]
(R1 +R4) = 0 (28)

where ⃗̄Σ = σ⃗⊗ I − I ⊗ σ⃗ and δ1 = −i/2r . Adding and subtracting Eqs. (25) and (26) and Eqs. (27) and (28),

we find transverse (± helicity) states:

(R1 +R4)± =
i

u2

{(
d

dr
± m

r

)
[−ω(R20 +R20̃)∓M(R20 −R20̃)]± 2ikMR2±

}
(29)

(R1 −R4)± =
i

u2

{(
d

dr
± m

r

)
[∓ω (R20 −R20̃)−M(R20 +R20̃)]∓ 2ikMR2±

}
(30)

and longitudinal (zero helicity) states:

(R1 +R4)0 =
i

u2

{
ikM (R20 −R20̃)− ω

[(
d

dr
+

1

r

)
(R2+ +R2−)−

m

r
(R2+ −R2−)

]}
(31)

(R1 −R4)0 =
i

u2

{
−M

[(
d

dr
+

1

r

)
(R2+ +R2−)−

m

r
(R2+ −R2−)

]
+ ikω (R20 −R20̃)

}
(32)

where u2 = ω2

c2 − M2 . After straightforward calculations, we find the following second-order differential

equations: [
d2

dr2
+

1

r

d

dr
+

(
ũ2 − m2

r2

)]
(R20 ±R20̃) = 0 (33)

[
d2

dr2
+

1

r

d

dr
+

(
ũ2 − (m− 1)

2

r2

)]
R2+ = 0, (34)

[
d2

dr2
+

1

r

d

dr
+

(
ũ2 − (m+ 1)

2

r2

)]
R2− = 0 (35)
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where ũ2 is defined as

ũ2 = u2 − k2 = χ2
mn/a

2 (36)

The solutions of Eqs. (33), (34), and (35) are found, respectively:

(R20 ±R20̃) = N±Jm (ũr) (37)

R2+ = N2+ Jm−1 (ũr) (38)

R2− = N2− Jm+1 (ũr) (39)

where N± , N2± are integration constants. For simplicity, the integration constants have values N± = N2± = N .

Finally, the complete solutions are found as follows:

ψ1 = Nsin
(pπ
L
z
)
ei(−ωt+mϕ)k̃+


(
1− i ũk

)
J
m−1

(ũr)

1
2 Jm (ũr)

1
2 Jm (ũr)

−Jm+1 (ũr)

 (40)

ψ2 = Nsin
(pπ
L
z
)
ei(−ωt+mϕ)


Jm−1(ũr)

Jm(ũr)

0

Jm+1(ũr)

 (41)

ψ3 = Nsin
(pπ
L
z
)
ei(−ωt+mϕ)


Jm−1(ũr)

0

Jm(ũr)

Jm+1(ũr)

 (42)

ψ4 = Nsin
(pπ
L
z
)
ei(−ωt+mϕ)k̃−


Jm−1(ũr)

−1
2 Jm(ũr)

−1
2 Jm(ũr)

−
(
1− i ũk

)
J
m+1

(ũr)

 (43)

where k̃± =

[√
1 + ũ2+M2

k2 ± M
k

]−1

.

4. Concluding remarks

In this study, the massless and massive spin-1 particle equations derived from the zitterbewegung model are

solved in the cylindrical resonant cavity background. From these solutions we obtain expressions for the resonant
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frequencies of the photon in the cylindrical resonant cavity background. From Eq. (14) for the massless case

and from Eq. (36) for the massive case, we obtain resonance frequency relations, respectively:

ωmnp =
c

a

√
χ2
mn + p2π2

( a
L

)2
(44)

and

ωmnp =
c

a

√
χ2
mn + p2π2

( a
L

)2
+M2a2 (45)

The resonant frequency relation for the massless case in Eq. (44) is equivalent to the classical result [20], while

the resonant frequency relation for the massive case in Eq. (45) confirms this result in the M2 → 0 limit, but

with m,n , and p being quantum numbers in this context. The case where the resonant frequency is affected

by only the m and n quantum numbers occurs when the length of the cavity is much larger than the radius.

In contrast, the case where the resonant frequency is affected by only the p quantum number occurs when the

cavity length is much smaller than the radius.
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