
Turk J Phys
(2018) 42: 425 – 432
© TÜBİTAK
doi:10.3906/fiz-1803-18

Turkish Journal of Physics

http :// journa l s . tub i tak .gov . t r/phys i c s/

Research Article

Soliton solutions of perturbed nonlinear Schrodinger equation with Kerr law
nonlinearity via the modified simple equation method and the subordinary

differential equation method

Singh Subhaschandra SALAM∗

Department of Physics, Imphal College, Manipur, India

Received: 16.03.2018 • Accepted/Published Online: 28.05.2018 • Final Version: 15.08.2018

Abstract: The objective of this paper was to obtain soliton solutions for a perturbed nonlinear Schrodinger equation
with Kerr law nonlinearity using the modified simple equation method and subordinary differential equation method.
These methods appear to be efficient and they can be applied in seeking exact solutions of many other nonlinear evolution
equations encountered in science and engineering studies.
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1. Introduction
During the past few decades, studies on optical solitons have become popular among researchers in the physical
sciences. Various models have been reported so far to describe the dynamics of solitons. The nonlinear
Schrodinger (NLS) equation is one of the most important nonlinear evolution equations encountered in the
study of nonlinear optics. Five types of nonlinearity are often discussed in the studies of such nonlinear
evolution equations (NLEEs). They are: (i) parabolic law nonlinearity, (ii) Kerr law nonlinearity, (iii) power
law nonlinearity, (iv) dual power law nonlinearity, and (v) log law nonlinearity. In this paper, we consider
a nonlinear Schrodinger equation with perturbation terms to describe the propagation of optical solitons in
nonlinear optical fibers exhibiting Kerr law nonlinearity. A medium that exhibits Kerr law nonlinearity is
one in which the intensity of light passing through it depends on its refractive index. Here, a perturbed NLS
equation with Kerr law nonlinearity [1–10] is written as

iut + uxx + α |u|2 u+ iγ1uxxx + iγ2 |u|2 ux + iγ3

(
|u|2
)
x
u = 0. (1)

Here, the independent variables x and t are the spatial and the temporal variables, respectively, and the
dependent variable u (x, t) is a complex valued function that represents a wave profile. Moreover, the first
term represents a temporal evolution term, the second term represents the group velocity dispersion (GVD)
term, the third term represents the nonlinear term dictated by Kerr law nonlinearity, the fourth term represents
a third order dispersion (TOD) term, the fifth term represents a nonlinear dispersion term, and the sixth
term represents another version of a nonlinear term. Furthermore, i =

√
−1 is the imaginary number and

α, γ1, γ2, γ3 are constants. Eq. (1) has important applications in various fields of physics such as plasma
physics, semiconductor physics, and solid mechanics.
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The rest of the paper is arranged as follows: In Section 2, the modified simple equation (MSE) method and
the subordinary differential equation (sub-ODE) method are described successively; in Section 3, the perturbed
NLS equation is reduced to a nonlinear ordinary differential equation (NLODE); and in Sections 4 and 5, the
MSE and the sub-ODE methods are successively applied for finding soliton solutions to a perturbed nonlinear
Schrodinger equation with Kerr law nonlinearity. In Section 6, a brief conclusion is presented.

2. Outlines of the modified simple equation and sub-ODE methods
In this section, the MSE and the sub-ODE methods are successively outlined as follows.

2.1. Modified simple equation (MSE) method

In this subsection, we outline the MSE method [11,12] for finding exact solutions of nonlinear partial differential
equations (NLPDEs). Let us consider an NLPDE for u (x, t) in the form of

P (u, ut, ux, utt, utx, uxx, ...) = 0, (2)

where P is a polynomial in u (x, t) and its various partial derivatives with respect to the independent variables

x and t . Here, ut = ∂u
∂t , utx = ∂2u

∂t∂x , etc. In order to solve u (x, t) from Eq. (2) by the MSE method, it is
required to perform the following steps:

Step I. The first step is to introduce the transformations

u (x, t) = U (ξ) , ξ = x− vt, (3)

where v is a constant, generally the constant speed of wave propagation.
Using the above transformations, Eq. (2) is reduced to an NLODE of the following form:

Q
(
U,U

′
, U

′′
, U

′′′
, ...
)
= 0, (4)

where Q is a polynomial in U (ξ) and its derivatives while the primes denote derivatives with respect to ξ such

that U
′
= dU

dξ , U
′′
= d2U

dξ2
, etc.

Step II. In this step, the solution of Eq. (4) is assumed in the form of

U (ξ) =

N∑
j=0

Aj

[
Φ

′
(ξ)

Φ (ξ)

]j (
withΦ

′
(ξ) =

dΦ

dξ

)
, (5)

where Aj is a constant to be determined later such that AN ̸= 0 and Φ(ξ) is a function to be determined later.
Step III. In this step, the possible value of the integer N is to be determined through a balancing of

degrees between the highest order derivative term and the nonlinear term of highest degree appearing in Eq.
(2) or (4). Defining the degree of U (ξ) asD {U (ξ)} = N the degrees of other expressions are expressed as

D

(
dqU

dξq

)
= N + q,D (Up) = Np,D

{
Up

(
dqU

dξq

)s}
= Np+ (N + q) s, etc.

From such balancing of degrees, the value of the integer N can be determined.
Step IV. In this step, the value of N determined in Step III above is to be substituted in Eq. (5) to

obtain the appropriate form of U (ξ) , and then the newly found expression for U (ξ) is to be substituted into
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Eq. (4). As a consequence of this substitution, we will get an equation involving a polynomial in 1
Φ(ξ) . Then

we are to equate the coefficient ofΦ−j (ξ) (j = 0, 1, 2, 3, ...) to zero. Thus, we will obtain a system of equations.
From such a system of equations, we can solve Aj (j = 0, 1, 2, 3, ...) ; Φ

′
(ξ) andΦ(ξ) Substituting the values of

Aj , (j = 0, 1, 2, ...) , N,and all the expressions for Φ(ξ) and Φ
′
(ξ) into Eq. (5), we will obtain the solution of

Eq. (4) and hence of Eq. (2).

2.2. The sub-ODE method or the auxiliary equation method

In this method, the elliptic equation

(
dΨ

dξ

)2

= C0 + C1Ψ+ C2Ψ
2 + C3Ψ

3 + C4Ψ
4, (6)

where Ci(i = 1, 2, 3, 4) are constants, is an important auxiliary equation and it is widely used in solving many
NLPDEs. In this paper, we investigate quasi-rational function solutions of Eq. (6) for the cases of C0 = C1 = 0.

With C0 = C1 = 0,Eq. (6) can be written as

(
dΨ

dξ

)2

= AΨ2 +BΨ3 + CΨ4 (7)

where A = C2, B = C3, C = C4 are constants.
Using symbolic computation software like Mathematica or Maple, one can obtain a set of quasi-rational

function solutions of the auxiliary elliptic equation (Eq. (7)) as listed below.
If A > 0, Eq. (7) will have hyperbolic function solutions such as

Ψ1 =
±2A

∓B +
√
B2 − 4AC cosh

(√
Aξ
) forB2 − 4AC > 0, (8)

and

Ψ2 =
±2A

∓B +
√
4AC −B2 sinh

(√
Aξ
) forB2 − 4AC < 0. (9)

If A < 0andB2 − 4AC > 0, Eq. (7) will have trigonometric function solutions such as

Ψ3 =
±2A

∓B +
√
B2 − 4AC cos

(√
−Aξ

) (10)

and

Ψ4 =
±2A

∓B +
√
B2 − 4ACsin

(√
−Aξ

) . (11)

If A = 0, Eq. (7) will have the following rational function solution:

Ψ5 =
4B

−4C +B2ξ2
. (12)
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3. Reduction of perturbed NLS equation to an NLODE

To reduce the perturbed NLS equation of Eq. (1) to an NLODE, let us introduce the transformations

u (x, t) = U (ξ) ei(kx−ωt), ξ = x− vt (13)

where ω and k are constants and v is the constant speed of soliton propagation.
From Eq. (13), we obtain

iut =

(
−iv

dU

dξ
+ ωU

)
ei(kx−ωt),

uxx =

(
d2U

dξ2
+ 2ik

dU

dξ
− k2U

)
ei(kx−ωt),

α |u|2 u = αU3ei(kx−ωt),

iγ1uxxx =

(
iγ1

d3U

dξ3
− 3γ1k

d2U

dξ2
− 3iγ1k

2 dU

dξ
+ γ1k

3U

)
ei(kx−ωt)

iγ2 |u|2 ux =

(
iγ2U

2 dU

dξ
− γ2kU

3

)
ei(kx−ωt)

iγ3

(
|u|2
)
x
u = 2iγ3U

2 dU

dξ
ei(kx−ωt).

Substituting the above relations into Eq. (1) and splitting the resulting equation into real and imaginary parts,
we obtain the following:

The real part:

(1 − 3γ1k)
d2U

dξ2 +
(
ω−k2+γ1k

3)U+(α−γ2k)U
3= 0 (14)

and the imaginary part:

γ1
d3U

dξ3
+
(
2k − v − 3γ1k

2
) dU
dξ

+ (γ2 + 2γ3)U
2 dU

dξ
= 0. (15)

Integrating both sides of Eq. (15) with respect to ξ and choosing the integration constant as zero, we obtain

γ1
d2U

dξ2
+
(
2k − v − 3γ1k

2
)
U +

1

3
(γ2 + 2γ3)U

3
= 0. (16)

From Eqs. (14) and (16), we obtain the constraint conditions

γ1
1− 3γ1k

=
2k − v − 3γ1k

2

ω − k2 + γ1k3
=

γ2 + 2γ3
3 (α− γ2k)

. (17)

Now, instead of solving Eqs. (14) and (16) both, we have to solve either one of the two. Here, let us solve Eq.
(16) only.
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We write Eq. (16) as
d2U

dξ2
+ b1U + b2U

3 = 0, (18)

where

b1 =
2k − v − 3γ1k

2

γ1
, b2 =

γ2 + 2γ3
3γ1

. (19)

Thus, if we solve U (ξ) from Eq. (18), then we can obtain the solution of Eq. (2) using Eq. (13).

4. Application of the MSE method in solving perturbed NLS equation

From Eq. (18), balancing degrees between the highest order derivative term and the term having the highest
nonlinearity, we obtain

N + 2 = 3NyieldingN = 1. Therefore, using Eq. (5), we assume the solution of Eq. (18) as

U (ξ) = A0 +A1
Φ

′
(ξ)

Φ (ξ)
, A1 ̸= 0. (20)

Now, we have

d2U

dξ2
= A1

Φ′′′
(ξ)

Φ (ξ)
− 3

Φ
′
(ξ)Φ

′′
(ξ)

Φ2 (ξ)
+ 2

{
Φ

′
(ξ)

Φ (ξ)

}3
 . (21)

Substituting Eqs. (20) and (21) into Eq. (18), we obtain

A1

Φ′′′

Φ
− 3

Φ
′
Φ

′′

Φ2
+ 2

(
Φ

′

Φ

)3
+ b1

(
A0 +A1

Φ
′

Φ

)
+ b2

(
A3

0 + 3A2
0A1

Φ
′

Φ
+ 3A0A

2
1

Φ
′2

Φ2
+A3

1

Φ
′3

Φ3

)
= 0. (22)

From Eq. (22), equating the coefficients of Φ−j (j = 0, 1, 2, 3) to zero, we obtain

Φ0 : b1A0 + b2A
3
0 = 0. (23)

Φ−1 : A1Φ
′′′
+A1b1Φ

′
+ 3A2

0A1b2Φ
′
= 0. (24)

Φ−2 : −3A1Φ
′
Φ

′′
+ 3A0A

2
1b2Φ

′2
= 0. (25)

Φ−3 : 2A1Φ
′3
+ b2A

3
1Φ

′3
= 0. (26)

From Eq. (23), we obtain

A0 = ±
√

−b1
b2

[neglectingA0 = 0] . (27)

From Eq. (26), we obtain

A1 = ±
√

−2

b2
. (28)
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Substituting these values of A0 and A1 into Eqs. (24) and (25), division of the two resulting equations yields

Φ
′′′

Φ′′ =
√
2b1. (29)

Integration of Eq. (29) with respect to ξ yields

Φ
′′
= C0e

(
√
2b1)ξ (30)

where C0 is an integration constant.
Integrating Eq. (30) further, we obtain

Φ
′
= C1 +

C0√
2b1

e(
√
2b1)ξ (31)

and

Φ = C2 + C1ξ +
C0

2b1
e(

√
2b1)ξ (32)

where C1 and C2 are integration constants.

Now, substituting A0, A1,Φ, and Φ
′ as obtained above into Eq. (20), we obtain

U (ξ) = ±
√

−b1
b2

±
√

−2

b2

C1 +
C0√
2b1

e(
√
2b1)ξ

C2 + C1ξ +
C0

2b1
e(

√
2b1)ξ

. (33)

Substituting Eq. (33) into Eq. (13), we obtain the solution of Eq. (1) as

u (x, t) =

±√−b1
b2

±
√

−2

b2

 C1 +
C0√
2b1

e(
√
2b1)(x−vt)

C2 + C1 (x− vt) + C0

2b1
e(

√
2b1)(x−vt)


 ei(kx−ωt) (34)

with the constraint conditions given in Eq. (17).

In Eq. (34), if we choose C1 = 0, C2 = C0

2b1
, we obtain

u (x, t) =

[
±
√

−b1
b2

±
√

−2

b2

{√
2b1e

√
2b1(x−vt)

1 + e
√
2b1(x−vt)

}]
ei(kx−ωt)

=

√
−b1
b2

±1± 2e

√
b1
2 (x−vt)

e−
√

b1
2 (x−vt) + e

√
b1
2 (x−vt)

 ei(kx−ωt)

=

√
−b1
b2

±1±
cosh

{√
b1
2 (x− vt)

}
+ sinh

{√
b1
2 (x− vt)

}
cosh

{√
b1
2 (x− vt)

}
 ei(kx−ωt)

=

√
−b1
b2

[
±1±

{
1 + tanh

(√
b1
2
(x− vt)

)}]
ei(kx−ωt). (35)
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Now, substituting b1 and b2 from Eq. (19) into Eq. (35), Eq. (1) is found to have the solutions

u1 (x, t) = ±i

√
3 (2k − v − 3γ1k2)

γ2 + 2γ3

[
2 + tanh

{√
2k − v − 3γ1k2

2γ1
(x− vt)

}]
ei(kx−ωt) (36)

u2 (x, t) = ±i

√
3 (2k − v − 3γ1k2)

γ2 + 2γ3
tanh

{√
2k − v − 3γ1k2

2γ1
(x− vt)

}
ei(kx−ωt) (37)

if γ1
(
2k − v − 3γ1k

2
)
> 0 .

In similar fashions, if we choose C1 = 0, C2 = − C0

2b1
in Eq. (34), we obtain

u3 (x, t) = ±i

√
3 (2k − v − 3γ1k2)

γ2 + 2γ3

[
2 + coth

{√
2k − v − 3γ1k2

2γ1
(x− vt)

}
ei(kx−ωt)

]
(38)

and

u4 (x, t) = ±i

√
3 (2k − v − 3γ1k2)

γ2 + 2γ3
coth

{√
2k − v − 3γ1k2

2γ1
(x− vt)

}
ei(kx−ωt) (39)

if γ1
(
2k − v − 3γ1k

2
)
> 0.

5. Application of the sub-ODE method (or auxiliary equation method) in solving perturbed NLS
equation

In this section, the sub-ODE method is applied in finding soliton solutions of a perturbed NLS equation.
Multiplying both sides of Eq. (16) by dU

dξ , we obtain

γ1
dU

dξ

d2U

dξ2
+
(
2k − v − 3γ1k

2
)
U
dU

dξ
+

1

3
(γ2 + 2γ3)U

3 dU

dξ
= 0.

Integrating both sides of the above equation with respect to ξ and choosing the integration constant as zero,
we have

γ1
2

(
dU

dξ

)2

+

(
2k − v − 3γ1k

2
)

2
U2 +

1

12
(γ2 + 2γ3)U

4 = 0.

This equation can be written as (
dU

dξ

)2

= AU2 +BU3 + CU4 = 0, (40)

where

A =
v − 2k + 3γ1k

2

γ1
, B = 0, C = − (γ2 + 2γ3)

6γ1
(41)

Here,

B2 − 4AC =
2

3

(
v − 2k + 3γ1k

2
)

γ1

(γ2 + 2γ3)

γ1
. (42)
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Using Eqs. (8) and (42), we can solve U (ξ) from Eq. (40), and if we substitute this U (ξ) into Eq. (13), we
will get solutions of Eq. (1) as

u5 (x, t) = ±

√
6 (v − 2k + 3γ1k2)

γ1 (γ2 + 2γ3)
sech

{(√
v − 2k + 3γ1k2

γ1

)
(x− vt)

}
ei(kx−ωt) (43)

if
γ1
(
v − 2k + 3γ1k

2
)
> 0andγ1 (γ2 + 2γ3) > 0,

and

u6 (x, t) = ±

√
6 (2k − v − 3γ1k2)

γ1 (γ1 + 2γ3)
cos ech

{(√
v − 2k + 3γ1k2

γ1

)
(x− vt)

}
ei(kx−ωt) (44)

if
γ1
(
v − 2k + 3γ1k

2
)
> 0andγ1 (γ2 + 2γ3) < 0.

6. Conclusion
In this paper, we applied the MSE method and the auxiliary equation method (sub-ODE method) in finding
some soliton solutions to a perturbed nonlinear Schrodinger equation, and we can conclude that these methods
are efficient and powerful tools for finding exact solutions of many nonlinear evolution equations generally
encountered in many areas of nonlinear science and engineering. In these two methods, we see that computation
is simpler in the case of the modified simple equation method and, therefore, this method is more advantageous.
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