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Abstract: In this study, we introduce a relativistic quantum mechanical wave equation of the spin-1 particle as an
excited state of the zitterbewegung and show that it is consistent with the 2 + 1 dimensional Proca theory. At the
same time, we see that in the rest frame, this equation has two eigenstates; particle and antiparticle states or negative
and positive energy eigenstates, respectively, and satisfy SO(2,1) spin algebra. As practical applications, we derive the
exact solutions of the equation in the presence of a constant magnetic field and a curved spacetime background. From
these solutions, we find Noether charge by integrating the zeroth component of the spin-1 particle current, called charge
density, on hyper surface and discuss pair production from this charge. And, we see that the discussion on the Noether
charge is a useful tool for understanding the pair production phenomenon because it is derived from a probabilistic
particle current.
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1. Introduction
Physics in 2 + 1 dimensional spacetime presents many interesting and surprising results, both experimentally
and theoretically. Therefore, in recent years, 2 + 1 dimensional theories have been widely studied in physical
areas, such as gravity, high-energy particle theory, condensed matter physics (e.g., monolayer structures),
topological field theory, and string theory [1–11]. In the view of general relativity, 2 + 1 dimensional gravity
has a number of solutions such as black hole [12], wormhole [13], and propagating gravitational wave [14,15].
On the other hand, in the view of the 2 + 1 quantum electrodynamics (QED2+1) , the properties of an
electron in graphene can be described by the 2 + 1 dimensional Dirac equation [16–19]. Also, the interquark
potential in quantum chromodynamics is studied in these dimensions and it has a rich structure, as in the 3
+ 1 dimensional spacetime [20,21]. Additionally, in the QED2+1 context, massive or massless Dirac equation
has provided important physical results in flat [22–26] and curved backgrounds [27–31]. Although the physical
properties of the Dirac particle has been widely investigated in the context, the physical behavior of the massive
or massless spin-1 particle has almost never been considered quantum mechanically so far in this framework.

Duffin–Kemmer–Petiau (DKP) equation as a relativistic quantum mechanical wave equation for the
spin-1 and spin-0 particles has a long history [32–38]. The equation has been discussed in the 3 + 1 spacetime
dimensions to see whether or not there exists a classical correspondence in the context of the Maxwell theory
[39]. Also, the relativistic quantum mechanical wave equation for the spin-1 particles is derived as an excited
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state of zitterbewegung in the same dimensions, but it does not include spin-0 part [40–42]. In this connection,
the massless case of the equation was derived as a simple model of the zitterbewegung [43] and its equivalence
with the Maxwell equations in a flat and curved background were discussed [43,44]. The spin-1 equation was
also solved in the exponentially expanding universe and showed that its solutions are identical with complexified
Maxwell equations in the limit m2 → 0 [45].

In 2 + 1 dimensional spacetime, the electrodynamical events are, classically, described by the 2 + 1
dimensional massive Proca gauge theory and Maxwell–Chern–Simons theory, and they are completely different
from the Maxwell theory. Also, contrary to even dimensional cases, in these massive gauge theories; the gauge
fields, F νρ , and potentials, Aµ , are related to each other as follows:

Aµ =
1

2m
εµνρF

νρ, (1)

[46–51] and, at the same time, the spin-1 particle wave equation was discussed in this context. Also, with the
pseudoclassical approach, the spin-1 particle wave equation in the 2 + 1 dimensions was studied by canonical
quantization [52–54]. Nevertheless, discussions still continue on such an equation in the 2+1 dimensional
spacetime structure, physically and mathematically [55–58]. From all these points of view, a relativistic quantum
mechanical wave equation for a spin-1 particle in the 2 + 1 dimensional spacetime should be expected to satisfy
the Proca equation and the relation between vector potentials, Aµ , and tensor fields, Fµν , in classical limit.
On the other hand, to analyze the physical and mathematical behavior of a spin-1 particle interacting with a 2
+ 1 (or 1 + 1) dimensional potential, it has been solved by using the 3 + 1 dimensional DKP equation, but
solutions performed this way bring about a number of problems [59,60]. With these motivations, we discuss,
in detail, a relativistic quantum mechanical wave equation for a spin-1 particle directly derived from the 2 +

1 dimensional Barut–Zanghi model [40] and find a relation between this equation and the 2 + 1 dimensional
Proca theory. As a practical application, we discuss the exact solutions of the wave equation in a constant
magnetic field and a curved background. In addition, we write a current expression of the spin-1 particle in this
context and calculate it from these solutions. And finally, we find the Noether charge derived from the zeroth
component of the current, called charge density, and discuss pair production in terms of this charge. And, we
see that such a discussion is a useful tool for understanding the pair production phenomenon since the charge
is derived from a probabilistic particle current.

The outline of this study is as follows: In Section 2, in the 2 + 1 dimensional spacetime, we introduce
a relativistic quantum mechanical wave equation for a spin-1 particle as an excited state of the classical
zitterbewegung model and construct its free particle solutions. We also discuss the particle and antiparticle
solutions of the equation in the rest frame and show that the equation is equivalent to the Proca equation by
defining vector potentials and electromagnetic fields in terms of the components of the spin-1 particle spinor. In
Section 3, we obtain the exact solutions of the spin-1 particle equation in a constant magnetic field. From these
solutions, we derive the energy eigenvalues of the particle and write the current densities and Noether charge.
In Section 4, we find the exact solutions of the equation in the contracting and expanding 2 + 1 dimensional
curved background and we derive the current and Noether charge from these solutions. In Section 5, we evaluate
the results of the study.
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2. The spin-1 particle in the 2+1 dimensional flat spacetime
A relativistic quantum mechanical wave equation for the spin-1 particle introduced in the 3 + 1 dimensions
was discussed as an excited state of the classical zitterbewegung model [40–42]. As the classical model of the
zitterbewegung [40] in the 2 + 1 dimensional spacetime, for which its symmetry and integrability properties are
investigated [61], is quantized, it directly gives us the following relativistic quantum mechanical wave equation
for the evolution of the free spin-1 particle [41]:

{(σ̄µ ⊗ 1 + 1⊗ σ̄µ)Pµ − (1⊗ 1) 2M}Ψαβ (x) = 0, (2)

where M and Pµ are the mass and energy-momentum of the particle, respectively, and σ̄µ is defined in terms
of the Pauli matrices as σ̄µ = (σ3, iσ1, iσ2) , and 1 is unit matrix. The matrices σ̄µ satisfy anticommutation
relations in 2 + 1 dimensional spacetime:

{σ̄µ, σ̄ν} = 2ηµν ,

where ηµν = diag (1,−1,−1) is Minkowski metric in 2 + 1 dimensional spacetime. On the other hand, the
spinor of the spin-1 particle, Ψαβ (x) , is defined as

Ψαβ (r, t) = (ψ+, ψ0, ψ0, ψ−)
T
, (3)

where the T means transpose of the row matrix. In this model, the wave function, Ψαβ (x) , is the symmetric
spinor with rank 2 and it is represented as a direct product of two Dirac spinors in the 2 + 1 dimensions and
the quantization of the classical system requires that Ψαβ (x) should be symmetric with respect to the indices
α , β , where the first (second) indices correspond to the first (second) set of the Dirac spinors. For this reason,
Ψαβ (x) has three linear independent components: ψ+, ψ0, ψ− .

If we choose a plane wave solution as follows:

Ψ(r, t) =


ϕ+
ϕ0
ϕ0
ϕ−

 e−ipµx
µ

, (4)

then the explicit form of the spin-1 particle equation is written in terms of the spinor components, ϕ+, ϕ0, ϕ− :

(P0 −M)ϕ+ + (iP1 + P2)ϕ0 = 0,

(iP1 − P2)ϕ+ + (iP1 + P2)ϕ− − 2Mϕ0 = 0, (5)

(P0 +M)ϕ− − (iP1 − P2)ϕ0 = 0.

If we add and subtract the first and third rows and organize the second row of Eq. (5), the following equations
are obtained, respectively,

P0 (ϕ+ − ϕ−) + iP1 (2ϕ0) =M (ϕ+ + ϕ−) ,

P0 (ϕ+ + ϕ−) + P2 (2ϕ0) =M (ϕ+ − ϕ−) , (6)

iP1 (ϕ+ + ϕ−)− P2 (ϕ+ − ϕ−) =M (2ϕ0) .
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Now, we reorganize Eq. (6) as a first order partial differential equation system:

∂0
(
i
ϕ+ − ϕ−√

M

)
− ∂1

(
2ϕ0√
M

)
=

√
M (ϕ+ + ϕ−) ,

∂0
(
−ϕ+ + ϕ−√

M

)
− ∂2

(
2ϕ0√
M

)
= i

√
M (ϕ+ − ϕ−) , (7)

∂1
(
−ϕ+ + ϕ−√

M

)
− ∂2

(
i
ϕ+ − ϕ−√

M

)
=

√
M (2ϕ0) .

From this equation system, if we define the complex gauge potentials and fields in terms of the spinor components
as spinor valued gauge-one forms and two forms respectively as follows:

A0 =
2ϕ0√
M
, A1 = i

ϕ+ − ϕ−√
M

, A2 = −ϕ+ + ϕ−√
M

(8)

and
F 01 =

√
M (ϕ+ + ϕ−) , F

02 = i
√
M (ϕ+ − ϕ−) , F

12 =
√
M (2ϕ0) , (9)

then using the relations given in Eqs. (8) and (9), we see that Eq. (7) satisfies the well-known relations between
the gauge fields and potentials as follows:

∂µAν − ∂νAµ = Fµν . (10)

According to the definitions in Eqs. (8) and (9), Eq. (7) becomes:

i
√
M∂0 (ϕ+ − ϕ−) +

√
M∂1 (2ϕ0) =M2

(
ϕ+ + ϕ−√

M

)
,

i
√
M∂0 (ϕ+ + ϕ−)− i

√
M∂2 (2ϕ0) =M2

(
ϕ+ − ϕ−√

M

)
, (11)

√
M∂1 (ϕ+ + ϕ−) + i

√
M∂2 (ϕ+ − ϕ−) =M2

(
2ϕ0√
M

)
.

and these equations are in the form of the massive Proca equation in the 2 + 1 dimensional spacetimes:

∂µF
µν +M2Aν = 0. (12)

In particular, from the definitions in Eqs. (8) and (9), we notice that the expressions of the vector potentials
and fields in Eqs. (8) and (9), respectively, are related to each other by the following relations:

Aµ =
1

2M
εµνρFνρ, (13)

where εµνρ is the Levi-Civita symbol. These results are consistent with [51], and also if we eliminate the
potentials by using Eq. (13) in the Proca equation, Eq. (12), then we derive the following equation:

∂µF
µν +

M

2
εναβFαβ = 0. (14)
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Therefore, we say that these equations are compatible with the results of the topologically massive gauge theories
[48–51].

To discuss the free particle solutions of the spin-1 particle from Eq. (5), at first, the components ϕ+ and
ϕ− are written as

ϕ± =
P

P0 ∓M
e∓i(φ+π

2 )ϕ0, (15)

where tanφ = P2/P1 and P is the magnitude of the momentum vector, P = (P1, P 2) . Then, substituting ϕ+

and ϕ− into the second row of Eq. (5), we obtain the following free particle relativistic wave equation for ϕ0 :(
P 2
0 − P 2

1 − P 2
2 −M

2
)
ϕ0 = 0. (16)

This is the Proca equation for ϕ0 in the 2 + 1 dimensions and it has the correct energy-momentum condition.
Then, the normalized wave function for Eq. (4) is obtained as

Ψ(r, t) = 1

2
√
|P0|M


(M + P 0) e

−i(φ+π
2 )

P
P

(M − P 0) e
i(φ+π

2 )

 e−ipµx
µ

, (17)

where the normalization condition is given by

Ψ(r, t)∗TΨ(r, t) = |P0|
M

. (18)

In the rest frame, the particle has only two states which are

Ψ(r, t) =


1
0
0
0

 e−iMt for P0 =M (19)

and

Ψ(r, t) =


0
0
0
1

 eiMt for P0 = −M. (20)

They are the particle and antiparticle solutions, and at same time, they are eigenstates of spin operator, S12 ,
with eigenvalues +1 and −1, respectively.

On the other hand, Eq. (5) can also be rewritten as matrix equation in the following form:

(βµPµ −M)Ψ = 0,

where the complex spinor Ψ has the three linear independent components in this representation:

Ψ(x1, x2, t) =
(
ψ+,

√
2ψ0, ψ−

)T
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and β matrices are Hermitian spin-1 matrices in the 2 + 1 dimensional spacetime and they can be defined as

β0 =

 1 0 0
0 0 0
0 0 −1

 , β1 =
i√
2

 0 1 0
1 0 1
0 1 0

 , β2 =
1√
2

 0 1 0
−1 0 1
0 −1 0

 (21)

and, it is clear that they satisfy the following SO(2,1) spin-1 algebra:

[βµ, βν ] = −iϵµνρβρ.

These matrices also satisfy the following relation:

ηµνβ
µβν = 2I.

To discuss the conserved current for the spin-1 particle, we also point out that the Hermitian conjugate of the
βµ matrices obeys the following transformation:

(βµ) = γ (βµ)
T∗
γ,

where γ is

γ =

 1 0 0
0 −1 0
0 0 1

 (22)

and the Hermitian conjugate of the wave function is

ψ̄ = (ψ)
T∗
γ. (23)

Then, in this context, the conserved current for the spin-1 particle becomes

Jµ = ψ̄βµψ (24)

and the current components in terms of the spin-1 particle spinor components are explicitly given as follows:

J0 = |ϕ+|2 − |ϕ−|2 ,

J1 = i (ϕ+ + ϕ−)
∗ √

2ϕ0 − i
√
2ϕ∗0 (ϕ+ + ϕ−) , (25)

J2 = (ϕ+ − ϕ−)
∗ √

2ϕ0 +
√
2ϕ∗0 (ϕ+ − ϕ−) .

By means of the definitions in Eqs. (8) and (9), the components of the current may also be written in terms of
the Proca fields as

J0 =
1

4M

[
|F 01 − iF 02|2 − |F 01 + iF 02|2

]
,

J1 + iJ2 =
i

4M

[(
F 01 − iF 02

)∗
F 12

]
− i

4M

[(
F 12

)∗ (
F 01 + iF 02

)]
, (26)

where J0 corresponds to the difference between the right-handed and left-handed electric fields and J1 and
J2 are the generalization of the Poynting vectors into the 2 + 1 dimensional complex fields. Furthermore, the
current components can be expressed in terms of the gauge potentials and fields as follows:

J0 =
i

4

[(
A∗

1F
10 −A1

(
F 10

)∗)
+
(
A∗

2F
20 −A2

(
F 20

)∗)]
, (27)
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J1 = − i

4

[(
A∗

0F
01 −A0

(
F 01

)∗)
+
(
A∗

2F
21 −A2

(
F 21

)∗)]
, (28)

J2 = − i

4

[(
A∗

0F
02 −A0

(
F 02

)∗)
+
(
A∗

1F
12 −A1

(
F 12

)∗)]
. (29)

It is also important that these results are, formally, consistent with the following expression for the conserved
current of the Proca Fields in 3 + 1 dimensions [62]:

Jµ = φνG∗
µν −Gν

µφ
∗
ν ,

where φν is four vector potential, Gµν is the antisymmetric field-strength tensor.

3. The spin-1 particle in a constant magnetic field

The motion of charged particles in a magnetic field is an important problem in classical and quantum electro-
dynamics. This problem is a 2+1 dimensional problem because of the axial symmetry [63,64]. Therefore, to
discuss the relativistic quantum mechanical behavior of the charged spin-1 particle in a constant magnetic field,
we write the relativistic wave equation for the spin-1 particle in the presence of electromagnetic fields as

{(σµ ⊗ 1 + 1⊗ σµ)πµ − 2 (1⊗ 1)M}Ψ = 0, (30)

where πµ is the generalized momentum of the particle and the explicit form of it in terms of an electromagnetic
potential, Aµ , is πµ = pµ − eAµ , where e is the charge of the particle. Then, Eq. (30) becomes


2 (π0 −M) i (π1 − iπ2) i (π1 − iπ2) 0

i (π1 + iπ2) −2M 0 i (π1 − iπ2)

i (π1 + iπ2) 0 −2M i (π1 − iπ2)

0 i (π1 + iπ2) i (π1 + iπ2) −2 (π0 +M)



ψ+

ψ0

ψ0

ψ−

 = 0. (31)

Letting π± = π1 ± iπ2 , and writing π0 and π± in polar coordinates, (r, θ) for a constant magnetic field, i.e.
A0 = 0 , A1 = 0 , A2 = Br/2 as follows:

π0 = iE,

π± =Mζe−iθ

(
−i ∂

∂
√
ρ
± 1

√
ρ

∂

∂θ
∓ i

√
ρ

)
,

where B is magnitude of the constant magnetic field, ζ =
√

eB
2M2 , ϵ = E

M and ρ = eBr2

2 . Using separation of

variables method, the components of the general wave function can be written as follows:

ψ+ (ρ, θ) = e−iEt+i(k+1)θφ1 (ρ) ,

ψ− (ρ, θ) = e−iEt+i(k−1)θφ−1 (ρ) , (32)

ψ0 (ρ, θ) = e−iEt+ikθφ0 (ρ) .
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And substituting the expressions of π0 and π± and the components of the general wave function into Eq. (31),
it becomes

(ϵ− 1)

ζ
φ1 (ρ) + 2

√
ρ

(
d

dρ
+

k

2ρ
− 1

2

)
φ0 (ρ) = 0,

(ϵ+ 1)

ζ
φ−1 (ρ)− 2

√
ρ

(
d

dρ
− k

2ρ
+

1

2

)
φ0 (ρ) = 0, (33)

ζ
√
ρ

(
d

dρ
− (k − 1)

2ρ
+

1

2

)
φ1 (ρ) + ζ

√
ρ

(
d

dρ
+

(k + 1)

2ρ
− 1

2

)
φ−1 (ρ) = φ0 (ρ) .

Letting φ0 (ρ) =
χ(ρ)√

ρ , we get the Whittaker differential equation:

d2χ(ρ)

dρ2
+

(
−1

4
+
λ

ρ
+

1
4 − k2

4

ρ2

)
χ (ρ) = 0. (34)

Then, we can construct the general solution in terms of the Whittaker functions, Mλ, k
2
(ρ) , as follows;

 ψ+

ψ0

ψ−

 = Nei(kθ−Et)



−2ζeiθ

ϵ−1

[(
k
ρ − 1

)
Mλ, k2

(ρ) +
( k+1

2 −λ)
k+1 Mλ, k2+1 (ρ)

]
M

λ, k
2
(ρ)

√
ρ

2ζe−iθ

ϵ+1

( k+1
2 −λ)
k+1 Mλ, k2+1 (ρ)


,

where λ− k
2 = ϵ2−1

4ζ2 − ϵ
2 = n+ 1

2 and N is the normalization constant. From this solution, the energy eigenvalues
are obtained as

E± =M
(
ζ2 ±

√
ζ4 + 1 + 2ζ2 (2n+ 1)

)
. (35)

On the other hand, taking the asymptotic form of the solutions in Eq. (32) [65], we get the components of the
current in Eq. (24) as follows:

J0 = |N |2 Γ(k + 1)
2

Γ(n+ k + 1)
2

4

M
ζ2ρ2n+k−1e

−ρ

[(
n+ 1 + ρ

ϵ− 1

)2

−
(

n

ϵ+ 1

)2
]
, (36)

J1 + iJ2 = |N |2 Γ(k + 1)
2

Γ(n+ k + 1)
2 4Mζρ2n+k− 1

2 e
−iθ

e−ρ [2ϵn+ (ϵ+ 1)(1 + ρ)] , (37)

where the zeroth component of the current, J0 , is called charge density and the rest component of the current,
J1 and J2 , are called current densities, [66,67], and

|N | =
Γ (α)M

(
ϵ2 − 1

)
Γ (2n+ k)

1
2 Γ (k + 1)

(
(ϵ+ 1)

2
[
(k + 1)

2 − 4 + (α+ n)β
]
− (ϵ− 1)

2
4α2

) 1
2

,
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where α = n+k+1 and β = 18n+3k+7 . Under the strong magnetic field, i.e. ξ4 ≫ 1 , the energy eigenvalues
in Eq. (35) and the zeroth component of the current in Eq. (36), i.e. the charge density, become respectively,

E+ ≈ 2Mζ2 +M (2n+ 1) +O
(
ζ−2

)
, (38)

E− ≈ −M (2n+ 1) +O
(
ζ−2

)
, (39)

and

J0
+ =

2Mζ2
[
(n+ 1 + ρ)

2 − n2
]
e−ρρ2n+k−1

πΓ (2n+ k)
[
(k + 1)

2 − 4 + (α+ n)β − 4α2
] , (40)

J0
− =

2Mζ2n2 [ρ+ 2(n+ 1)] e−ρρ2n+k

πΓ(2n+ k)
[
n2 (k + 1)

2 − 4 + (α+ n)β − 4(n+ 1)
2
α
2
] . (41)

On the other hand, under the weak magnetic field condition, i.e. ξ4 ≪ 1 , the positive and negative energy
eigenvalues become

Ẽ+ ≈M
(
1 + 2 (n+ 1) ζ2

)
+O

(
ζ4
)
, (42)

Ẽ− ≈ −M
(
1 + 2nζ2

)
+O

(
ζ4
)

(43)

and then the charge densities for the ± energy eigenvalues are calculated as

J̃0
+ =

2Mζ22n+k−1e− (n+ 1+)
2

π (2n+ k)
[
(k + 1)

2 − 4 + (α+ n)β
] , (44)

J̃0
− =

2Mζ22n+k−1e−n2

π(2n+ k)4α2
, (45)

respectively. Taking the charge densities, J0
+ and J̃0

+ the Noether charges of these densities are computed by
the following relations:

Q± = ∫ (J0)±dS0 (46)

where the Q± are Noether charges and the dS 0 is a hypersurface [67–70]. If the currents, J0
± and J̃0

± , are
integrated on the hypersurface, dS 0 = ρdρdθ , we get the Noether charges, respectively, as follows;

Q+

M
=

2ζ2 [(2n+ 1) + (2n+ k) (4n+ k + 3)]

π
[
(k + 1)

2 − 4 + (α+ n)β − 4α2
] , (47)

Q−

M
=

2ζ2n2(2n+ k)(4n+ k + 3)

πn2
[
(k + 1)

2 − 4 + (α+ n)β
]
− 4(n+ 1)

2
α
2 , (48)
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Q̃+

M
=

2ζ2
[
(n+ 1)

2
+ (2n+ k)(4n+ k + 3)

]
π
[
(k + 1)

2 − 4 + (α+ n)β
] , (49)

Q̃−

M
=
ζ2n2

2πα2
. (50)

We consider the behavior of the proportion Q
M according to the strong and weak magnetic fields, see Figures 1

and 2. From these figures, we see that the Q+

M values coincide with the Q−
M values as from n ≥ 10 under the

strong magnetic field conditions while the Q̃+

M values coincide with the Q̃−
M values as from n ≥ 750 under the

weak magnetic field conditions; however, under both conditions, the difference between the Q+

M values and the
Q−
M values increase as the n values get smaller. Also, given the Noether charge derived from the probabilistic

particle current, we can say that the magnetic field on the particle production is more effective in the small
nvalues with respect to the antiparticle production, but for the large nvalues it is same.

Figure 1. The graph presents Q±
M

as a function of
ζ (ζ4 ≫ 1, k = 3

2
) . a ) The curve for Q−

M
presents a

negative increase for n = 1, and it has a positive maxi-
mum value for n = 2. It also decreases with increasing
values of n . b) The Q+

M
curve reaches to a maximum

value for n = 1. Increasing nshows a similar behavior to
Q−
M

.

Figure 2. The Q̃±
M

is plotted as a function of ζ (ζ4 ≪
1, k = 3

2
) . The Q̃+

M
curves for all of n values get the

same values. Q̃−
M

curves change with increasing nvalues.
Then curves approach to Q̃+

M
curves. The curves merge

for n ≥750. The Q̃+

M
is plotted as a function of ζ (ζ4 ≪

1, k = 3
2
) . For n = 1 and n = 700 in respective panels.

4. The spin-1 particle in the (2 + 1) dimensional curved spacetime

To discuss the physical and mathematical features of the spin-1 particle in a 2 + 1 dimensional spacetime curved
background, the relativistic quantum mechanical wave equation of the spin-1 particle is easily generalized to a
curved spacetime as follows:

[(σ̄µ ⊗ 1 + 1⊗ σ̄µ) (Pµ − iΩµ)− (1⊗ 1) 2M ] Ψ = 0, (51)

where σ̄µ(x) are the spacetime dependent Dirac matrices and Ωµ is the spin connection of the spin-1 particle in
2 + 1 dimensions and its expression in terms of the spin− 1

2 connection of the spin particles, Γµ(x) , is written
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as
Ωµ = Γµ (x)⊗ 1 + 1⊗ Γµ (x) . (52)

To derive solutions of the spin-1 particle wave equation in a curved spacetime, as an example, we consider the
following 2 + 1 dimensional gravitational background [71]:

ds2 = l2
[
dτ2 − cosh2τ

(
dθ2 + sin2θdϕ2

)]
, (53)

where τ = t/ l and τ ∈ (−∞,∞) , θ ∈ [0, π) , ϕ ∈ [0, 2π) and l is the radius of the universe and related to the
cosmological constant, Λ , as l = 1

|Λ| . Also, the universe is two spheres. It contracts to its minimum area of

4πl2 at τ = 0 and expands again [71]. Then, the metric tensor of the gravitational background and its inverse
are written in the following way:

gµν = diag
(
l2,−l2cosh2τ,−l2cosh2τ sin2θ

)
,

gµν = diag
(
1/l

2
,−1/l

2
cosh2τ,−1/l

2
cosh2τ sin2θ

)
, (54)

respectively, and the gµν is defined in terms of the triad fields, eµi (x) , as follows:

gµν = eµi (x) e
ν
j (x) η

ij . (55)

The triads of the curved background are explicitly written as

eµi (x) = diag (1/l , 1/lcoshτ, 1/lcoshτ sinθ) . (56)

The spacetime dependent Dirac matrices, σ̄µ(x) , are presented in terms of the triads and the constant Dirac
matrices, σ̄i , as follows:

σ̄µ = eµi (x) σ̄
i. (57)

And, the explicit form of the Γµ (x) is

Γµ (x) = −1

8
gανΓ

ν
βµ

[
σ̄α (x) , σ̄β (x)

]
, (58)

where Γν
βµ are the Christoffel symbols, and also its components in the curved background [27] are written as

Γ0 = 0, Γ1 = −1

2
σ̄0σ̄1sinhτ,

Γ2 = −1

2

(
σ̄0σ̄2sinhτ sinθ + σ̄1σ̄2 cosθ

)
. (59)

Then, Eq. (51) in the curved background is as follows:

(∂τ+tanhτ + iMl)ψ+ − i

coshτ

(
∂θ − i

∂ϕ
sinθ

)
ψ0 = 0,
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i

coshτ

(
∂θ + i

∂ϕ
sinθ

+cotθ

)
ψ+ +

i

coshτ

(
∂θ − i

∂ϕ
sinθ

+cotθ

)
ψ− = −2iMlψ0, (60)

i

coshτ

(
∂θ + i

∂ϕ
sinθ

)
ψ0 − (∂τ+tanhτ − iMl)ψ− = 0.

To find the general solution, we use the separation of variable method. In this connection, the rising and
lowering operators of the spin-1 particle, ∂± , are defined as

∂± =

(
∓∂θ + i

∂ϕ
sinθ

+
1

2

(
σ̄0 ⊗ 1 + 1⊗ σ̄0

)
cotθ

)
(61)

and their eigenfunctions in terms of the rotation group djλ,m(θ) are expressed as

Dj
λ,m(θ, ϕ) = ⟨λ|R(θ, ϕ)|jm⟩ = eiλϕdjλ,m(θ). (62)

And, the irreducible representations of the rotation group djλ,m(θ) are given by

djλ,m (θ) =
(−1)

j−m

(λ+m)!

√
(j + λ)! (j +m)!

(j − λ)! (j −m)!
sin(θ/2)2jcot(θ/2)λ+m

×2F1

(
λ− j,m− j;λ+m+ 1;−cot2(θ/2)

)
(63)

[72]. From the separation of variable method, Ψ(τ, θ, ϕ) can be expanded in terms of the angular momentum
eigenfunctions as

Ψ(τ, θ, ϕ) = 4π
∑
jm

(2j + 1)

coshτ


F+(τ)D

j
+1,m(θ, ϕ)

F0(τ)D
j
0,m(θ, ϕ)

F−(τ)D
j
−1,m(θ, ϕ)

 (64)

and the ∂± operators act on Dj
λ,m (θ, ϕ) as follows

∂±D
j
λ,m (θ, ϕ) =

√
(j ± λ+ 1) (j ∓ λ)Dj

λ±1,m (θ, ϕ) . (65)

Then, Eq. (60) is rewritten as

(iMl + ∂τ )F+ (τ)− i

coshτ

√
j (j + 1)F0 (τ) = 0,

(iMl − ∂τ )F− (τ) +
i

coshτ

√
j (j + 1)F0 (τ) = 0,

MlF 0 (τ)−
1

2coshτ

√
j (j + 1) (F− (τ)− F+ (τ)) = 0. (66)

From these equations, the F0 (τ) can be defined as

F0 (τ) =
1

2Mlcoshτ

√
j (j + 1) (F− (τ)− F+ (τ)) = 0, (67)
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and substituting it into the first and second rows of Eq. (66), we get the following equations for the F± (τ) :

[
∂2τ + 2 (tanhτ) ∂τ ± 2iMltanhτ+M2l2 +

j (j + 1)

cosh2τ

]
F± (τ) = 0. (68)

These differential equations are satisfied by the following solutions [73]:

F+ (τ) =

(
1− tanhτ

2

)j+1 [
C+ξ(τ)

− iMl
2 F1(τ)+D−ξ(τ)

iMl
2 +1

F2(τ)
]
, (69)

F− (τ) = −
(
1− tanhτ

2

)j+1 [
D+ξ(τ)

− iMl
2 +1

F3(τ)+C−ξ(τ)
iMl
2 F4(τ)

]
, (70)

where the Fi (τ) functions are abbreviations of the Hypergeometric functions as follows;

F1 (τ) = 2F1 (−j − iMl,−j − 1;−iMl;−ξ (τ)) ,

F2 (τ) = 2F1 (−j + iMl,−j + 1; 2 + iMl;−ξ (τ)) ,

F3 (τ) = 2F1 (−j − iMl,−j + 1; 2− iMl;−ξ (τ)) ,

F4 (τ) = 2F1 (−j + iMl,−j − 1; iMl;−ξ (τ))

and ξ (τ) = 1+tanhτ
1−tanhτ . Also, the coefficients C± and D± are related each other by the following relations:

C± =

(
Ml ± i

2

)2
+ 1

4(
j + 1

2

)2 − 1
4

D±. (71)

To construct the wave function when τ goes to −∞ , we consider the asymptotic forms of F+ (τ) , F0 (τ) and
F− (τ) in Eqs. (67), (69), and (70), then the wave function is written as

Ψ(τ, θ, ϕ) =
∑
jm

2
√
2j + 1eτ

−

(C+e
−iMlτ+e2τD−e

iMlτ )Dj
+1,m(θ, ϕ)

√
j(j+1)

Ml eτ (F+e
−iMlτ+F−e

iMlτ )Dj
0,m(θ, ϕ)

−(e2τD+e
−iMlτ+C−e

iMlτ )Dj
−1,m(θ, ϕ)

 , (72)

where F+ = C++e2τD+ and F− = C−+e2τD− The asymptotic expressions of the particle Ψ+ and antiparticle
Ψ− solutions can be written separately as the following

Ψ+ = 2
√
2j + 1eτe−iMlτ


C+D

j
+1,m (θ, ϕ)

−
√

j(j+1)

Ml eτ
(
C++e

2τD+

)
Dj

0,m (θ, ϕ)

−D+e
2τD

j
−1,m (θ, ϕ)

 , (73)
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Ψ− = 2
√
2j + 1eτeiMlτ


D−e

2τDj
+1,m(θ, ϕ)

−
√

j(j+1)

Ml eτ (C−+e
2τD−)D

j
0,m(θ, ϕ)

−C−D
j
−1,m(θ, ϕ)

 , (74)

where C+ and C− are normalization coefficients, and they are calculated as

|C+| = |C−| =
1

l

[
1− c1e

2τ + 3c2e
4τ − c3e

6τ
]− 1

2 , (75)

where c1, c2 , and c3 are

c1 =
j (j + 1)

M2l2
,

c2 =
j2(j + 1)

2

M2l2(1 +M2l2)
,

c3 =
j3(j + 1)

3

M4l4(1 +M2l2)
.

To discuss the particle creation in this background, we construct the particle and the antiparticle solutions as
τ → ∞ . As τ goes to ∞ , the wave function is

Ψ̃ (τ, θ, ϕ) =
∑
jm

2
√
2j + 1e−τ


(C̃+e

−iMlτ + e−2τ D̃−e
iMlτ )Dj

+1,m (θ, ϕ)

− 1
Ml

√
j (j + 1)e−τ (F̃+e

−iMlτ + F̃−e
iMlτ )Dj

0,m (θ, ϕ)

−(e−2τ D̃+e
−iMlτ + C̃−e

iMlτ )Dj
−1,m (θ, ϕ)

 , (76)

where F̃+ and F̃− are F̃+ = C̃+ + e−2τ D̃+ and F̃− = C̃− + e−2τ D̃− . The asymptotic expressions of the
particle +Ψ̃ and antiparticle −Ψ̃ solutions can be written separately as follows:

+Ψ̃ = 2
√
2j + 1e−τe−iMlτ


C̃+D

j
+1,m (θ, ϕ)

−
√

j(j+1)

Ml e−τ
(
C̃+ + e−2τ D̃+

)
Dj

0,m (θ, ϕ)

−e−2τ D̃+D
j
−1,m (θ, ϕ)

 , (77)

−Ψ̃ = 2
√

2j + 1e−τeiMlτ


D̃−e

−2τD
j
+1,m(θ, ϕ)

−
√

j(j+1)

Ml e−τ (C̃− + e−2τ D̃−)D
j
0,m(θ, ϕ)

−C̃−D
j
−1,m(θ, ϕ)

 , (78)

where C̃+ = a1C+, C̃− = b2C−, D̃+ = b1D+ , and D̃− = a2D− . Here, C̃+ and C̃− are normalization
coefficients and the a1, b1, a2, and b2 are

a1 =
Γ (−iMl) Γ(−iMl + 1)

Γ (−iMl − j) Γ(−iMl + j + 1)
,
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a2 =
Γ (2 + iMl) Γ(iMl − 1)

Γ (−j + iMl) Γ(j + iMl + 1)
,

a3 =
Γ (2− iMl) Γ(−iMl − 1)

Γ (−iMl − j) Γ(−iMl + j + 1)
,

a4 =
Γ (iMl) Γ(iMl + 1)

Γ (−j + iMl) Γ(j + iMl + 1)
.

Taking Eq. (77) and Eq. (78), we obtain the normalization coefficients as follows:

∣∣∣C̃+

∣∣∣ = ∣∣∣C̃−

∣∣∣ = 1

l

[
1− c1e

−2τ + 3c2e
−4τ − c3e

−6τ
]− 1

2 . (79)

The current for the spin-1 particle in 2 + 1 dimensional curved spacetime can be computed by using Eqs. (21)
and (24). Therefore, using Eqs. (73)–(75) and (24), the particle charge density

(
J0
+

)
and the antiparticle charge

density
(
J0
−
)

are obtained in the following way:

(J0)± =± 1

l
4e2τ (2j + 1) |C+|2Dj

±1,m(θ, ϕ)∗Dj
±1,m(θ, ϕ)

− |D±|2 e4τDj
∓1,m(θ, ϕ)∗Dj

±1,m(θ, ϕ)} (80)

and using the orthogonality relation for the rotation group [72], the Noether charges from these densities are
calculated as

Q± ∼= ±1

l

(
1 + c1e

2τ +O
(
e4τ
))
. (81)

In the same way, from Eqs. (77), (78), and (24), the particle charge density,
(
J̃0
+

)
, and the antiparticle charge

density,
(
J̃0
−

)
, as τ goes to ∞ , are obtained in the following way:

(J̃0)± =± 1

l
4e−2τ (2j + 1) {

∣∣∣C̃+

∣∣∣2Dj
±1,m(θ, ϕ)∗Dj

±1,m(θ, ϕ)

−
∣∣∣D̃±

∣∣∣2 e−4τDj
∓1,m(θ, ϕ)∗Dj

±1,m(θ, ϕ)} (82)

and, from these densities, the Noether charges for the particle and antiparticle are calculated as

Q̃± ∼= ±1

l

(
1 + c1e

−2τ +O
(
e4τ
))
. (83)

These results show that as τ goes to ±∞, Q̃±
|Λ| and Q±

|Λ| respectively, converge to ±1 . This means that the

universe only is composed of the ±|Λ| vacuum energies in its beginning and ending time.

5. Concluding remarks
In this study, we have introduced a relativistic quantum mechanical wave equation of the spin-1 particle as
an excited state of the zitterbewegung. This wave function has three independent components. And taking
a complex vector potential, Aµ , and fields, Fµν , in terms of three components, we show that the equation
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is consistent with the 2 + 1 dimensional Proca theory. At the same time, we see that this equation has two
eigenstates, particle and antiparticle states or negative and positive energy eigenstates, respectively, in the rest
frame and satisfy SO(2,1) spin algebra. Apart from the free particle solution of the equation, we have derived
the exact solutions of it in presence of the constant magnetic field and the curved background. From these
solutions, we have constructed the current components and observed a spin-1 particle current in presence of
a constant magnetic field that decreases by e−ρ , while the spin-1 particle current in the curved spacetime
oscillates in time, which means that there are temporary particle creations. On the other hand, from the charge
densities, we evaluate the Noether charges and we see that the Q+

M values coincide with the Q−
M values as from

n ≥ 10 under the strong magnetic field conditions, while the Q̃+

M values coincide with the Q̃−
M values as from

n ≥ 750 the weak magnetic field conditions. In this situation, the presence of magnetic field triggers the particle
production more than antiparticle production in the small n values, but in the large values, the particle and

antiparticle production are the same. Also, in the curved background, as τ goes to ±∞ , the Q̃±
|Λ| and Q±

|Λ| ,

respectively, converge to ±1 . So, it can be said that, in the beginning and ending of the time, the universe
may have completely been composed of the particle and antiparticle with the positive and negative |Λ| vacuum
energies, respectively.

If we compare the interactions of a spin-1 particle with a constant magnetic field and a curved spacetime
background, we see that the excitation energies are proportional to the zitterbewegung frequencies, M + eB

M

and M
|Λ| respectively. So, 1 + eB

M2 corresponds to 1
|Λ| , the inverse of the cosmological constant.

Finally, besides the results obtained in this study, we also see that the consistent spin-1 particle wave
equation in the 2 + 1 dimensional spacetime is a usefull tool for discussing the Hawking radiation [73].
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