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Abstract: The spin flavor precession (SFP) is investigated in the three neutrino generation case assuming that the
neutrinos are of Majorana type. Approximate analytical formulas including all transition magnetic moments are provided
for the electron neutrino survival probability and νe → νe transition probability in the SFP framework. The accuracy
of the formulas is checked for two different magnetic field profiles in the Sun.
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1. Introduction
The combined analysis of the solar neutrino experiments [1–8] and reactor antineutrino experiment [9,10]
established to confirm the neutrino oscillation strongly indicates the so-called large mixing angle (LMA) region
of the neutrino parameter space [11–16]. In a minimal extension of the standard model, neutrinos have mass;
hence, they also have magnetic moment. In addition to the limits on the neutrino magnetic moments obtained by
experimental and theoretical studies [17–23], an upper bound was recently obtained by GEMMA experiments:
µν < 2.9× 10−11µB at 90% CL [24]. One can also find detailed analyses and discussions on neutrino magnetic
moment in the literature [25–31]. When neutrinos having nonzero magnetic moment propagate in a magnetic
field, their spin can flip. Thus, a left handed neutrino becomes a right handed neutrino, νeL → νeR , which is
deliberated as a possible solution to the solar neutrino deficit [32]. When the matter effect is included, then
a left handed neutrino becomes right handed another type of neutrino: νeL → νµR

or ντR [33]. As distinct
from the Dirac case in which right handed neutrino is considered as sterile which is not detectable by detectors,
in the Majorana case, right handed neutrino is called antineutrino which can be detectable. This mechanism,
called spin flavor precession (SFP), has been studied in different aspects [34–47]. In addition to the neutrino
magnetic moment, a magnetic field profile in the Sun has to be chosen in order to carry out the SFP analysis
quantitatively. The strength of the magnetic field in the Sun is limited by the standard solar model [48,49] such
as ∼20 G near the solar surface [50], 20–300 kG at the convective zone [48] and < 107 G at the solar center
[48]. In this study, two plausible profiles are considered as given in [51]; the first one is of the Gaussian type
having a peak at the bottom of the convective zone (Figure 1a) and the second one is of the Woods–Saxon type
being maximal at the centre of the Sun (Figure 1b).

In this paper, the SFP effect is studied in the case of three neutrino generations assuming that the
neutrinos are of Majorana type and the approximate analytical formula including all neutrino parameters and
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all types of neutrino magnetic moments is provided for the electron neutrino survival probability and νe → νe

transition probability. The accuracy of the formula is checked at different θ12 , δm2
12 values and for two different

magnetic field profiles in the Sun. In Section 2, the formalism of the SFP mechanism is examined for the three
neutrino generations. The deduction of the approximate analytical formulas are given in Sections 3 and 4.
Results and conclusion are presented in the last section.
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Figure 1. Magnetic field profiles: (a) Gaussian shape; (b) Woods–Saxon shape.

2. Spin flavor precession for the three neutrino generations

In the case of three neutrino generations, the evolution equation for Majorana neutrinos passing through the
matter and the magnetic field can be generated by using 6 × 6 rotational matrices consisting of the 3 × 3

standard PMNS (Pontecorvo, Maki, Nakata, Sakata) mixing matrix [52]:

T12 =

(
R12 0
0 R12

)
, T13 =

(
R13 0
0 R13

)
, T23 =

(
R23 0
0 R23

)
. (1)

Here,

R23R13R12 =

 1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e
−iδ

0 1 0
−s13eiδ 0 c13

 c12 s12 0
−s12 c12 0
0 0 1

 , (2)

where cij = cosθij and sij = sinθij and the δ is the CP-violating phase that we will ignore in our discussion.
Hereafter, we will use some useful abbreviations such as:

s2ij = sin2θij , c2ij = cos2θij ,
s2ij = sin(2θij), c2ij = cos(2θij),

∆ij =
δm2

ij

2E
.

(3)

By taking Ψ and Ψ as

Ψ =

 ψe

ψµ

ψτ

 , Ψ =

 ψe

ψµ

ψτ

 , (4)
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the evolution equation for Majorana neutrinos passing through the matter and the magnetic field can be written
as

i
d

dt

(
Ψ
Ψ

)
=

[
T23T13T12

(
E 0
0 E

)
T †
12T

†
13T

†
23 +

(
V 0
0 −V

)
+

(
0 BM

−BM 0

)](
Ψ
Ψ

)
, (5)

where E , V , and M are the 3× 3 submatrices:

E =

 E1 0 0
0 E2 0
0 0 E3

 , V =

 Vc + Vn 0 0
0 Vn 0
0 0 Vn

 , M =

 0 µeµ µeτ

−µeµ 0 µµτ

−µeτ −µµτ 0

 . (6)

Here, µij is the transition magnetic moment ( i and j denote the e , µ , τ ). The evolution equation we obtain
is

i
d

dt

(
φ
φ

)
= H

(
φ
φ

)
. (7)

Here,

φ =

 φe

φµ

φτ

 =

 c13ψe − s13ψ̃τ

ψ̃µ

s13ψe + c13ψ̃τ

 (8)

and
ψ̃µ = c23ψµ − s23ψτ ,

ψ̃τ = s23ψµ + c23ψτ .
(9)

Identical expressions are true for antineutrinos (just put a bar above). In the evalution equation above, H is

H =

(
H BM ′

−BM ′ H

)
. (10)

Here, after we have substracted off overall phase from the Hamiltonian; H , H , and M ′ are

H =

 1
2

(
c213Vc − c212∆21

)
s212∆21

2 c13s13Vc
s212∆21

2
1
2

(
−c213Vc + c212∆21

)
0

c13s13Vc 0 Vc − 3c213Vc

2 + 1
2 (∆31 +∆32)

 , (11)

H =

 D11
1
2s212∆21 −c13s13Vc

1
2s212∆21 D22 0
−c13s13Vc 0 D33

 (12)

together with the diagonal elements

D11 = − 3
2c

2
13Vc − 2Vn − 1

2c212∆21,
D22 = − 1

2c
2
13Vc − 2Vn + 1

2c212∆21,
D33 = 1

2

(
−2 + c213

)
Vc − 2Vn + 1

2 (∆31 +∆32)
(13)

and

M ′ =

 0 µ12 µ13

−µ12 0 µ23

−µ13 −µ23 0

 . (14)
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Here, we defined

µ12 = c13c23µeµ − c13s23µeτ + s13µµτ ,
µ13 = s23µeµ + c23µeτ ,
µ23 = −c23s13µeµ + s13s23µeτ + c13µµτ .

(15)

The matter potentials for the charged and the neutral current are given by

Vc =
√
2GFNe,

Vn = −GF√
2
Nn.

(16)

Here, GF is the Fermi constant and Ne and Nn are electron and neutron densities, respectively.

3. Deduction of the electron neutrino survival probability
We start with the evolution equation obtained in Section 2 for Majorana neutrinos passing through the matter
and the magnetic field:

i
d

dt

(
φ
φ

)
= H

(
φ
φ

)
. (17)

Here, φ and φ denote the three neutrino and antineutrino flavor parts, respectively. The matrix of H can be
split into two parts as matter and magnetic parts:

H = HM + HB . (18)

Here, HM and HB are

HM =

[
H 0
0 H

]
, (19)

HB =

[
0 BM ′

−BM ′ 0

]
. (20)

We are going to solve the three-by-three blocks and use these solutions to solve the six-by-six matrix later.
Since the upper diagonal part of HM is related to the neutrinos, the evolution equation for the neutrinos

is

i
d

dt

 φe

φµ

φτ

 = H

 φe

φµ

φτ

 . (21)

Let us split H into two parts as well:
H = H0 +H1. (22)

Here, H0 is

H0 =

 1
2

(
c213Vc − c212∆21

)
s212∆21

2 0
s212∆21

2
1
2

(
−c213Vc + c212∆21

)
0

0 0 b

 , (23)

where b is

b = Vc −
3c213Vc

2
+

1

2
(∆31 +∆32) . (24)
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The evolution operator UH for H satisfies the equation

i
d

dt
UH = HUH . (25)

The solution to this equation can be sought by taking UH = U0
HU

1
H . Since the equation i d

dtU
0
H = H0U0

H

associated with H0 is the standard 2× 2 MSW equation with an independent third flavor, the solution can be
chosen as

U0
H =

 ψ1 −ψ∗
2 0

ψ2 ψ∗
1 0

0 0 β

 , (26)

where ψ1(t) , ψ2(t) are 2× 2 MSW solutions with the initial conditions ψ1(t = 0) = 1 , ψ2(t = 0) = 0 [11] and
β is

β = e−i
∫
b dt. (27)

We now can find the complete solution to all of H by looking at H1 :

i
∂U1

H

∂t
= U0

H
†
H1U0

HU
1
H = h(t)U1

H . (28)

Because θ13 is small, we can apply an approximation to the solution of this equation:

U1
H = exp(−i

∫ t

0

h(t′)dt′) =

[
1− i

∫ t

0

h(t′)dt′ − 1

2

∫ t

0

∫ t′

0

h(t′)h(t′′)dt′dt′′ + ...
]

(29)

Then we have the whole solution for H
UH = U0

HU
1
H . (30)

The antineutrino part of HM , H , can be similarly solved. After UH is obtained, the solution matrix
for the HM can be written as:

UM =

[
UH 0
0 UH

]
. (31)

Since the total evolution is characterized by U = UMUB , we need UB which is the solution matrix of HB . By
using the equation satisfied by the evolution operator of H

i
d

dt
U = H U, (32)

we can get

i
d

dt
UB = (U†

MHBUM )UB = hb(t)UB . (33)

Because µB is small, UB can also be found by applying an approximation up to the second order in µB

UB =

[
1− i

∫ t

0

hb(t
′)dt′ − 1

2

∫ t

0

∫ t′

0

hb(t
′)hb(t

′′)dt′dt′′ + ...
]
. (34)
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The state of the system evolves with a unitary operator from the initial state(
φ(t)
φ(t)

)
= U

(
φ(t = 0)
φ(t = 0)

)
(35)

with

U = UMUB =

(
A C
D B

)
, (36)

where A , B , C , and D are 3× 3 matrices. The electron neutrino amplitude can be written from Eq. (8) as

ψe = c13φe + s13φτ , (37)

Since the elements of φ(t) at t = 0 is zero, it is enough to look at the A matrix only to obtain φe and φτ .

 φe

φµ

φτ

 =

 A11 A12 A13

A21 A22 A23

A31 A32 A33

 c13
0
s13

 . (38)

Therefore, one can find
φe = A11c13 +A13s13,
φτ = A31c13 +A33s13.

(39)

The highly oscillating integrations coming out in the solution matrix elements are ignored. However,
stationary phase approximation method [53] can be used for the other integrals in which the SFP resonance
width is considerably small as mentioned in [42]. After the terms that have higher order than s213 are ignored,
only A11 , A31 , and A33 matrix elements are left:

A11 = ψ1(t)
(
1− 1

4

2πΓ2
µB

|d(χ−2κ)/dt|(χ−2κ)=0
|ψ1(tR)|2

)
,

A31 = −ic13s13e−i
∫ t
0
b dt′

∫ t

0
dt′Vc(t

′)ei
∫ t′
0

b dt′′ψ1(t
′),

A33 = e−i
∫ t
0
b dt′ .

(40)

Here,

ΓµB = µeffB,
µeff = c13c23µeµ − c13s23µeτ + s13µµτ ,

κ = ∆21

2 c212,

χ =
Gf√
2
(2Ne − 2Nn) .

(41)

Substituting φe and φτ and the terms A11 , A31 , and A33 into ψe , we obtain

ψe = ψ1(t)c
2
13

(
1− 1

4

2πΓ2
µB

|d(χ−2κ)/dt|(χ−2κ)=0
|ψ1(tR)|2

)
−ic213s213e−i

∫ t
0
b dt′

∫ t

0
dt′Vc(t

′)ei
∫ t′
0

b dt′′ψ1(t
′) + s213e

−i
∫ t
0
b dt′ .

(42)

Here, the integral can be solved by using the same method given in [11].
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One can finally get the electron survival probability for three neutrino generations in the SFP framework
by ignoring the terms that have higher order than (µB)2

P3×3(νe → νe, µB ̸= 0) =c413P2×2(νe → νe with Nec
2
13, µB = 0)

(
1− 1

2

2πΓ2
µB

|d(χ− 2κ)/dt|(χ−2κ)=0
|ψ1(tR)|2

)

+ s413
[
1 + 2ξc213 + ξ2c413

]
, (43)

where

ξ =
Vc(t = 0)

∆31
. (44)

4. Analytical expression for νe → νe transition probability

If the neutrinos are assumed to be of Majorana type, νe changes to νµ,τ inside the Sun by SFP. After the Sun,
νµ,τ transforms to νe via vacuum oscillation:

νe
SFP→ νµ,τ

Vosc→ νe.

Hence, the electron antineutrino flux, Φνe(E) , on Earth is given by

Φνe(E) = Φνe(E)× P (νe → νe), (45)

where Φνe
(E) is the solar electron neutrino flux with energy E. Therefore, one needs the νe → νe transition

probability to find the electron antineutrino flux on Earth:

P (νe → νe) = P (νe → νµ,τ ;SFP )× P (νµ,τ → νe;V acuumOsc.). (46)

Here, P (νµ,τ → νe;V acuumOsc.) is the well known vacuum oscillation probability given as

P (νµ,τ → νe;V acuumOsc.) = sin2θ12sin
2(
δm2

12

4E
R)

averaging→ 1

2
sin2θ12 (47)

and P (νe → νµ,τ ;SFP ) is the νe → νµ,τ transition probability:

P (νe → νµ,τ ;SFP ) = | ψµ,τ |2. (48)

Here, ψµ,τ can be found with the solution of antineutrino part in Eq. (19) by using the same method given in
Section 3:

ψµ = −ic13

(
2πΓ2

µB

|d(χ− 2κ)/dt|(χ−2κ)=0

)1/2

ψ1(tR)ψ2(tR)
(
c23ψ

∗
1(t) + s23s13ψ

∗
2(t)

)
(49)

and
ψτ = ψµ(c23 → −s23, s23 → c23). (50)
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Figure 2. Survival probabilities for the 10 MeV neutrino energy at different θ12 and δm2
12 values for the Gaussian shape

of magnetic field profile. While the solid lines show the results obtained numerically, the dashed lines show the result
obtained from the approximate analytical expression. The dotted-dashed lines show the errors. Each column (row) uses
the same δm2

12 (θ12 ) values.

5. Results and conclusions

In this paper, the SFP effect studied in 2-neutrino cases [54] was generalized to the more complex 3-neutrino
cases and the νe → νe transition probability was also analyzed. We examined the SFP mechanism in the three
neutrino generations and obtained approximate analytical formulas including all neutrino parameters and all
types of neutrino magnetic moments. It can be easily seen that the results obtained here is reduced to the
2-neutrino cases when the parameters related with the third neutrino flavor are taken to be zero. The accuracy
of the approximate solution obtained by the formulas was checked by comparing it with the exact solution
obtained numerically by diagonalizing the Hamiltonian in Eq. (7) for two different magnetic field profiles in the
Sun. In the calculations, the Gaussian (Figure 1a) and the Woods–Saxon shape (Figure 1b) of magnetic field
profiles extending over the entire Sun were chosen [51]. The figures (Figures 2–6) are plotted as a function of the
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Figure 3. Survival probabilities for the 10 MeV neutrino energy at different θ12 and δm2
12 values for the Woods–Saxon

shape of magnetic field profile. While the solid lines show the results obtained numerically, the dashed lines show the
result obtained from the approximate analytical expression. The dotted-dashed lines show the errors. Each column (row)
uses the same δm2

12 (θ12 ) values.

product µeffB , since µeff and B appeared together in the survival probability expression in Eq. (43). µeff

given explicitly in Eq. (41) includes three transition magnetic moments with the upper bound µij ≲ 10−11µB

(i and j denote e , µ , τ ) [31]. Results are presented at different θ12 , δm2
12 values. The best fit values of all

neutrino parameters and their errors are taken from [52].
Electron neutrino survival probabilities obtained by using exact (solid lines) and approximate solution

(dashed lines) for the 10 MeV neutrino energy are shown in Figures 2 and 3 with the errors (dotted-dashed
lines) for the Gaussian and the Woods–Saxon shape of magnetic field profiles, respectively. In these figures, one
can see at what values of µeffB the approximate solution works well.

Figures 4 and 5 show the percent accuracy regions at different θ12 and δm2
12 values for the Gaussian

and the Woods–Saxon shape of magnetic field profiles, respectively. In these figures, compared to the results
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Figure 4. Percent accuracy regions at different θ12 and δm2
12 values for the Gaussian shape of magnetic field profile.

The accuracy rates are given between 100% and 50%. Each column (row) uses the same δm2
12 (θ12 ) values.

from the exact solution, how reliable the approximate analytical formula is shown. The accuracy rates are given
between 100% and 50%. The results obtained from the formula are quite compatible with the exact solution
results (almost in 99.9 percent accuracy) at δm2

12 = 7.54×10−5eV 2 for the Gaussian magnetic field profile and
at δm2

12 = 1 × 10−7eV 2 for the Woods–Saxon magnetic field profile for almost all µeffB values and neutrino
energies. Besides, for the MSW-LMA best fit values (upper right panels of each figures), we have 99.9 percent
accuracy as well nearly up to the 1−2×10−6µBG value of µeffB which is a sufficiently high value for the Sun
at all neutrino energies for both magnetic field profiles. Additionally, it is seen that for δm2

12 = 7.54×10−5eV 2 ,
the formula is also highly reliable at low neutrino energies even for high enough values of µeffB .

In Figure 6, νe → νe transition probabilities are shown for 2 MeV neutrino energy and at best fit LMA
values of θ12 and δm2

12 for the Gaussian shape (a) and Woods–Saxon shape (b) of magnetic field profiles. It
can be seen that the results obtained from the analytical expression (dashed lines) are compatible with the ones
obtained numerically (solid lines) for both magnetic field profiles. This may allow the expression to be used in
the calculations of the solar antineutrino flux on Earth.

In conclusion, even though the evolution equation can be solved numerically, one might need to have an
approximated analytical solution to see the behaviour of the probabilities in SFP framework without performing
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Figure 5. Percent accuracy regions at different θ12 and δm2
12 values for the Woods–Saxon shape of magnetic field

profile. The accuracy rates are given between 100% and 50%. Each column (row) uses the same δm2
12 (θ12 ) values.
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Figure 6. νe → νe transition probabilities for 2 MeV neutrino energy and at best fit LMA values of θ12 and δm2
12 for

the Gaussian shape (a) and Woods–Saxon shape (b) of magnetic field profiles. While the solid lines show the results
obtained numerically, the dashed lines show the result obtained from the approximate analytical expression.
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detailed numerical analysis. The dependence of the analytical probability expressions on the neutrino parameters
can be seen from the expressions between Eqs. (43) and (50). Moreover, the formulas derived here can also be
useful when the data obtained by new solar neutrino experiments is analyzed in the SFP framework.
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