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Abstract: The equation of state of an ideal collection of bosons in the low-density and high-density regime are found using
the method of cluster expansion with Mayer’s generating function. The saturation density and the other thermodynamic
properties are calculated by the application of Mayer’s convergence of the partition function. By calculating the value
of saturation density from the singularity of the partition function series, the differences between the Mayer series
convergence and the virial series convergence for ideal bosons are also established.
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1. Introduction
The equation of state and hence the thermodynamic properties of the ideal quantum systems, like Bose or Fermi,
show significant deviation from the ideal behavior [1]. This can be explained with the help of the quantum
statistical method by considering the symmetric and antisymmetric properties of the wave functions. Bosons
show a peculiar attractive spatial correlation, which can lead to a condensation [2,3] due to the symmetric
nature of the wave functions, and fermions show repulsive spatial correlations due to the antisymmetric wave
functions. Hence, the equation of state of these systems has the nature of the virial series [4,5]. The radius of
convergence of the virial series can be calculated by using the virial coefficients, and the values are obtained
from the studies of Widom [6], Fuchs [7], Yang and Lee [8], Jenson and Hemmer [9], and later by Ziff and
Kincaid [10]. All the above studies are great theoretical works, giving the connection between the radius of
convergence of the virial series in density of ideal bosons with the condensation phenomenon and the connection
to the critical density (ρ0) . Fuchs proved that the radius of convergence (R0=ρ0λ

3) of ideal Bose gas virial
series in density is 12.56 ≤R0≤ 27.73 , and the other above mentioned calculations also give values within the
Fuchs limits. All these show that the radius of convergence of the virial equation of state in density of ideal
Bose gas is far beyond quantum statistically known value of condensation point ρ0λ

3=ζ
(
3
2

)
[4,5,11], where λ

is the thermal wave length and ζ( 32 ) is the Reimann zeta function. All the above studies also show that the
radius of convergence of the virial equation of state in density has no relation with the saturation density at
Bose–Einstein condensation. Here, we use Mayer cluster expansion and the method of Mayer’s convergence of
the partition function to find the thermodynamic properties and the cluster expansion equation of state of ideal
bosons.
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2. Cluster theory with Mayer’s generating function

Due to the attractive spatial correlation, ideal bosons can be treated as a prototype of an imperfect gas, and in
that case, the Hamiltonian H can be represented as

H =

N∑
i=1

p2i
2m

+
∑

i,j,i<j

Uij(|r⃗i−r⃗j |), (1)

where pi are the momenta of the particles, m is the mass, and Uij is the interaction potential that depends
on the distance |r⃗i−r⃗j | between the particles. The partition function can be written as [1,4,5]

QN (V T ) =

′∑
ml

[
N∏
l=1

(
blV

λ3

)ml 1

ml!

]
, (2)

where bl are the cluster integrals. The cluster integrals bl can be represented in terms of the irreducible cluster
integral βk [1,4,5] as

l2bl=
∑
nk

l−1∏
k=1

(lβk)
nk

nk!
(3)

with the restrictive condition
∑l−1

k=1 knk=l−1 . The reverse equation is given in [ 5]

βl−1=
∑
{mi}

(−1)

∑
i
mi−1

(
l−2+

∑
i

mi

)
!

(l−1) !

∏
i

(ibi)
mi

mi!
, (4)

where the summation goes over all sets {mi} that conforms to the condition
∑l

i=2 (i−1)mi=l−1;mi= 0, 1, 2, ... .
In Mayer’s theory of cluster expansion, the partition function can be viewed as the expansion coefficient of the
generating function FM (z) [1,12], where

FM (z) =e
N

∑
l

blvzl

λ3

=
∑
n

anz
n (5)

and z is the fugacity. The coefficients an for n=N give the N particle partition function. In a complex plane,
this series can be represented as a Laurent series and aN is given by

aN=
1

2πi

∫
dz′

z′N+1
FM (z′). (6)

Applying Mayer’s convergence method based on the Cauchy Hadamard theorem [1], the coefficient of a series
expansion can be related to the radius of convergence of the series [1,12]. In the Hadamard series,

H0
0 (zρb) =

∞∑
N=1

QNzN=

∞∑
N=1

aNzN . (7)
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Putting the value of aN from Eq. (6), we get [1]

H0
0 (z,ρb)=

∑
l≥1

lbly
l

ρλ3

1−
∑
l≥1

lblyl

ρλ3

, (8)

where z=ye
−

∑
l≥1

bly
l

ρλ3 , and ρ is the number density of particles. The radius of convergence is the value of

z at the singularity of H0
0 (zρb) , which occurs at 1−

∑
l≥1

lblY
l

ρλ3 = 0 . For this case with y=ρλ3 , the radius of
convergence R1 is given by

R1=Y e
−

∑
l≥1

blY
l

ρλ3

. (9)

Here,

Y= z = (ρλ3)e
−

∑
l≥1

kβk(ρλ
3)k

. (10)

From this, it is clear that R1 is a function of density. Using the relationship between the radius of convergence
of this series (R1) and the partition function, we get the Helmholtz free energy A=NkT lnR1 , and from this,
the equation of state can be derived as shown below [1,12]. Substituting R1 ,

A=NkT

lnY− 1

ρλ3

∑
l≥1

blY
l

 . (11)

Using the equation
∑

l≥1 blY
l=y

[
1−
∑∞

k=1
k

k+1βk(ρλ
3)

k
]

[1], the equation of state is obtained as

P

kT
=

y

λ3

[
1−

∞∑
k=1

k

k+1
βk(ρλ

3)
k

]
. (12)

Since H0
0 (zρb) is not analytic, it has other singularity when

∑
l≥1 l

2blY
l is singular. From the relationship

between bl and βl , we get [1,12,13] ∑
l≥1

l2blY
l
2=

y2
1−
∑
l≥1

kβkyk2
. (13)

It has a singularity at
∑

l≥1 kβky
k
2= 1 and the corresponding radius of convergence R2 is given by

R2=Y2e
−

∑
l≥1

blY
l
2

ρλ3

. (14)

Here, Y2=y2e
−

∑
l≥1 βky

k
2 , which is independent of density. From this R2 , the equation of state is obtained as

P

kT
=
y2
λ3

[
1−

∞∑
k=1

k

k+1
βk(y2)

k

]
. (15)

Here, y2 is the solution of the singularity condition
∑

l≥1 kβky
k
2= 1 . Hence, we have an equation of state with

pressure independent of density, which may correspond to condensation with y2=ρ0λ
3 as a saturation density

[1,12,13].
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3. Equation of state and Bose–Einstein condensation
To find the saturation density for the Bose–Einstein condensation, we use the singularity condition

∑
k≥1

kβky
k
2= 1. (16)

The values of βk for ideal bosons can be calculated using Eq. (4) by using the values of reducible cluster integrals,
bl=

1

l
5
2

[4–11]. The calculated values of the irreducible cluster integrals are shown in Table. Substituting these

values into the singularity condition Eq. (16), we get

y2=ρ0λ
3= 2.6123753486863197. (17)

This is in exact agreement with the quantum statistical calculations [4,5]. In the high-density region, >ρ0 , the
equation of state can be obtained from R2 and is given by

P

kT
=ρ0

[
1−

∞∑
k=1

k

k+1
βk(ρ0λ

3)
k

]
, (18)

where ρ0 can be considered as the saturation density.

Table. Values of irreducible cluster integrals.

β1 3.535533905932738× 10−1

β2 4.950089729875255× 10−3

β3 1.483857712887233× 10−4

β4 4.425630118996707× 10−6

β5 1.006361644748311× 10−7

β6 4.272405418573282× 10−10

β7 −1.174926531930948× 10−10

β8 −7.936985074019214× 10−12

β9 −2.984404389769838× 10−13

β10 −4.462901839886734× 10−15

β11 3.051320702281767× 10−16

β12 3.074464622622820× 10−17

β13 1.506932077279162× 10−18

β14 3.889612806544511× 10−20

Taking the difference in specific volume between two phases as ∆vs=v0 [4], we have

dP0

dT
=

L

T∆vs
, (19)

where L is the latent heat given by

L=
5kT

2
0.5135124467952001, (20)
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which proves the first order phase transition nature of Bose–Einstein condensation. Fugacity can be calculated
at the beginning of phase transition and is obtained as z= 0.999999999999998 ≈ 1 at critical density so that
the value of chemical potential and Gibbs free energy are zero. The dependence of fugacity to the number
density is plotted and is shown in Figure 1. When the density increases, the value of radius of convergence
R1 also increases. At the saturation density, the radius of convergence R1 becomes equal to R2 . After the
saturation density, the radius of convergence can be calculated by Eq. (14). The numerical value of the radius
of convergence at the saturation density is obtained as
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Figure 1. Variation of fugacity with density.

R2= 0.59839006994955. (21)

The value of Helmholtz free energy at saturation density is given by

A=NkT ln (0.59839006994955). (22)

Simplifying,
A= −NkT (0.5135124467952). (23)

When density increases, after the saturation density, the radius of convergence reaches 1 (one) as shown in
Figure 2. This shows that the value of Helmholtz free energy is a minimum at maximum density of Bose–
Einstein condensation. The variation of R1 and R2 with density are also shown in Figure 2. The equations of
states given by Eqs. (12) and (18) in the low- and high-density regions are shown in Figure 3. The horizontal
portions in the isotherms, where the pressure is independent of volume, is the region of condensation. The other
thermodynamic quantities like internal energy U , specific heat CV , and entropy S are also obtained and are
given below.

U= −NkT 2 ∂lnR2

∂T
. (24)

Substituting R2 , we get

U=
3

2

NkT

ρλ3
1.3414872572509124. (25)

The specific heat is given by

CV =
15Nk

4ρλ3
y2

(
1−
∑
k

k

k+1
βky

k
2

)
. (26)
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Figure 2. Variation of radius of convergence with density. Figure 3. Isotherms of ideal Bose gas.

Substituting the values, we get

CV =
15Nk

4ρλ3
1.3414872572509124 (27)

and entropy

S=
5Nk

2ρλ3
y2

(
1−
∑
k

k

k+1
βky

k
2

)
. (28)

Substituting the values,

S=
5Nk

2ρλ3
1.3414872572509124. (29)

Thus, by the use of the generating function given by Mayer and studying the radius of convergence of the series,
all the thermodynamic properties of the ideal bosons in the region of condensation are calculated, and the
results show an exact agreement with the quantum statistical calculations. In Yang and Lee’s theory [14], the
first order phase transition occurs when the saturation density corresponds to the singularity of the partition
function series. Our analysis gives proof for the first order character of Bose–Einstein condensation by following
Lee and Yang’s theory.

4. Discussion and conclusions
Bose–Einstein condensation phenomenon was discussed using cluster expansion and Mayer’s convergence method
using the generating function provided by Mayer. It was shown that Mayer’s series converges with a radius
of convergence which is different from the virial series convergence, and the condensation occurs in a region
where the series of the partition function diverges and the value of saturation density can be found from the
singularity condition of the Hadamard series. The equations of states for ideal bosons in the high-density
and low-density regions were obtained. The saturation number density and other thermodynamic properties
were also calculated, and the results matched well with the quantum statistical calculations. The isotherms
for this first order phase transition were drawn and the horizontal region of the isotherm where pressure was
independent of volume showed the region of phase transition. Our analysis proves that cluster expansion and
Mayer’s convergence with Mayer’s generating function can be effectively used to calculate the thermodynamic
properties of ideal Bose system at condensation.
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