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Abstract: Empirical formulae of rotational spectra consisting two parameters, such as single-term energy formula,
E = aJb for spin J , and ab formula, were used to study the different features of superdeformed band in A = 100–150
mass region nuclei. The nuclear kinematic and dynamic moment of inertia for the ground-state rotational bands were
calculated for this purpose and both showed gradual rise with rotational frequency. The study of ∆I = 2 staggering
effects in the γ -ray energies, where the two sequences J = 4i, 4i + 1 and J = 4i + 2 , (i = 0, 1, . . .) are bifurcated,
was also done. We also calculated the variation of the gamma ray energies from a smooth reference using the fourth
derivative of the gamma ray energies at a given spin. The excellent agreement between the observed and calculated
transition energies are in good support of the two-parameter formula.
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1. Introduction
A superdeformed nucleus is a nucleus that is predicted to occur at specific magic numbers and at deformations
corresponding to the integer ratios of the axes about 2:1:1. Generally, the normal deformation of the nucleus is
about 1.3:1:1. Superdeformed structures have been found mostly in nuclei of the A = 150 and 240 mass regions,
i.e. in the fission isomers low-spin states of elements in the actinide and lanthanide series. Recently, it has also
been discovered in other mass regions, such as A = 60, 80, 130 , and 190 . In the past few years, much effort has
been devoted to study the underlying physics of superdeformed bands and other interesting facts and issues,
such as the identical bands [1], ∆I = 1, 2 staggering [2, 3] and the multipole correlation and exotic structure of
nuclei [4].

A general understanding in the properties of superdeformed nuclei has been attained, but still there are
open problems that need to be further studied. In this paper, we used empirical formula of rotational spectra
consisting two parameters, i.e. single-term energy formula, E = aJb , and ab formula, to study the different
features of superdeformed band in A = 100–150 mass region.

The moment of inertia is one of the most significant quantities to characterize the nuclear rotational
band. There are generally two kinds of moment of inertia (ℑ) for illustrating the high-spin phenomena, i.e. the
dynamic moment of inertia,

ℑ2 = ℏ
dIx
dω

= ℏ2
[
d2E

dI2x

]
, (1)
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and the kinematic moment of inertia,

ℑ1 =
ℏIx
ω

= ℏ2Ix
[
dE

dIx

]
. (2)

Usually, ℑ1 and ℑ2 are obtained from the intraband γ transition energies by using the following formulae:

ℑ1(J − 1) =
(2J − 1)

Eγ(J)
, (3)

ℑ2(J) =
ℏ2

Eγ(J + 2)− Eγ(J)
, (4)

where Eγ(J) ≡ Eγ(J → J − 2) .
The expression for the rotational frequency (ℏω(I)) of the nuclei is

ℏω(I) = Eγ(J + 1 → J − 1). (5)

A number of idealized models are available to study and perceive the idea of nuclear structure that involves
axial rotor [5], axial anharmonic vibrator [6], and γ -soft deformed nuclei [7, 8]. These models can be utilized
for the prediction of B(E2) values and energy sequences. The well-known expression for the ground-state band
energy levels for rotational spectra is

E =
ℏ2

2ℑ(J)
J(J + 1). (6)

The three parametric simplest energy formula for the deformed nuclei is the Bohr–Mottelson energy expansion
in terms of the power of J(J + 1) , [9]

E = AJ(J + 1) +B(J(J + 1))2 + CJ(J + 1))3. (7)

Further, Holmberg and Lipas [10] observed that the moment of inertia of deformed nuclei ascends linearly with
level energy, i.e.

ℑ(J) = bE + a. (8)

Substituting Eq. (8) in Eq. (6), they obtained the two-parameter ab formula

E = a
[√

1 + bJ(J + 1)− 1
]
. (9)

The relation between ℑ and E in rotational spectra for high and low spins is nonlinear, as described by Zeng
et al. [11]. Rephrasing Eq. (8) and equating it with Eq. (5), Zeng et al. developed a new relation between ℑ
and E

ℑ =
1

2ab

(
1 +

√
1 +

2

a
E

)
. (10)

Using Eqs. (8) and (6), they developed a new expression for the energy called the pq formula:

E = a

({
p2 + [p4 + q3]1/2

}1/3

+
{
p2 − [p4 + q3]1/2

}1/3
)
,
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where p = bJ(J + 1)/2 and q = bJ(J + 1)/3 . Brentano et al. [12] further observed that ℑ depends upon the
spin (J) and energy (E) by the relation

ℑ = ℑ0(1 + aJ + bE). (11)

By ignoring the energy term bE in Eq. (10) and replacing it in Eq. (5), Brentano et al. derived a new formula
containing two parameters called the soft rotor formula (SRF),

E =
1

ℑ0(1 + αJ)
J(J + 1). (12)

Gupta et al. [13, 14] replaced the concept of arithmetic mean of two terms used in the Bohr–Mottelson
expression by the geometric mean to introduce a single-term energy formula for ground band level energies of
soft rotor and called it power law,

E = aJb. (13)

The index b can be determined from the ratio,

RJ = E/E(2) = (J/2)b, (14)

for any spin (J) .
The paper is mainly divided into two parts. The first part contains a brief introduction of two- and three-

parameter formula needed to study the properties of SD bands and also to calculate the transition energies,
rotational frequencies ℏω , and kinematic ℑ1 and dynamic ℑ2 moment of inertia. In the second part, we shall
study other properties for SD bands such as identical bands and ∆I = 1 staggering in A ≈ 100–150 mass
region.

2. Result and discussion
The systematic behaviors of ℑ1 and ℑ2 play a very important role in understanding the properties of superde-
formed band. Figure 1 shows the variation of moment of inertia (ℑ1 and ℑ2 ) with ℏω for 151Tb(SD-2) and
151Dy(SD-2) nuclei. It can be observed that there is decrease in ℑ1 and ℑ2 values with the decrease ℏω .
Figure 2 shows gradual increase of ℑ1 and ℑ2 values with the increase ℏω for 194Hg(SD-1) and 194Pb(SD-1)
nuclei. The data for Figures 1 and 2 have been taken from [15].

2.1. Identical bands in superdeformed nuclei
Over the past few years, there has been considerable interest in the study of SD rotational bands in consecutive
even and odd mass nuclei having almost identical gamma transition energies [1]. More than thirty such SD
rotational bands have been discovered in A = 150–190 mass region [16]. Several explanations were put forward
assuming the existence of such identical bands to be the specific property of superdeformed states of nuclei.
Casten et al. [17, 18] studied the low-spin identical bands in widely dispersed nuclei 156Dy-180Os. There exists
a simple correlation between the nuclei showing identical spectra and their valence proton (Np ) and neutron
(Nn ) boson numbers, which further provide the trace to understand the identical band phenomenon.

The occurrence of identical bands in adjacent even–even nuclei demands the symmetry in ±F0 values of
moment of inertia in the F-spin multiplet besides identical NpNn in the two bands. There are many examples of
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Figure 1. Experimental ℑ1 and ℑ2
(
ℏ2/MeV

)
for 151 Dy(SD-2) and 151 Tb(SD-2) nuclei [15].

Figure 2. Experimental ℑ1 and ℑ2
(
ℏ2/MeV

)
values for 194 Hg(SD-1) and 194 Pb(SD-1) nuclei [15].

identical bands that differ by two mass units and exist in pairs in the A ≈ 190 mass region with the assumption
of 192Hg as a doubly magic core. Generally, the degree of similarity can be seen when the difference between
transition energies ∆Eγ for the identical pair of SD bands and the transition energy Eγ is plotted [19]. It
happens due to the alignment of angular momentum of a pair of nucleons that occupy high intrudes orbital and
form the gradual disappearance of pairing correlations with increasing ℏω .

Figure 3 shows the deviation of transition energy (keV) with NpNn between the two states 194Hg(SD-1)

and 194Pb(SD-1) nuclei having the same value of Np+Nn

2 = 3.5 . The agreement between experimental spectra
of these two nuclei is excellent. Similarly, Figure 4 shows the identical bands between 82Sr(SD) and 82Y(SD)
having NpN=5, 4 for NB = 9 . There is no violation of the symmetry in the spectra of these two SD band nuclei
and the figure shows the staggering pattern.

2.2. Study of ∆I = 2 staggering

Another interesting feature of SD nuclear bands is the ∆I = 2 staggering sequences of states which differ by
four units of angular momentum and are delocated with respect to each other. Many theoretical proposals
were put forward for the possible clarification of the ∆I = 4 bifurcation [20–22]. The variation of the γ -ray
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Figure 3. The deviation of transition energy (keV) with NpNn between the two states for NB =7.
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transition energies from the rigid rotor behavior can be calculated by the staggering quantity [23]

∆4Eγ(J) =
1

16
[6Eγ(J)− 4Eγ(J − 2)− 4Eγ(J + 2) + Eγ(J − 4) + Eγ(J + 4)] . (15)

The formula involves five consecutive transition energies Eγ and hence called five-point formula.
We evaluated the staggering quantity ∆4Eγ and plotted it as a function of rotational frequency ℏω

in Figure 5. The figure shows the staggering pattern ∆4Eγ for the 192Hg(SD-1), 194Hg (SD-1)(SD-2)(SD-
3), and 194Pb(SD-1) band. For 192Hg(SD-1), the staggering values range from −0.3 to 0.3 and as neutron
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Figure 5. ∆4Eγ staggering pattern for the 192 Hg(SD-1), 194 Hg(SD-1)(SD-2)(SD-3), and 194 Pb(SD-1).
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Figure 6. ∆4Eγ staggering pattern for the 152 Dy(SD-1), 151 Dy(SD-4), 153 Dy(SD-2)(SD-3), and 151 Tb(SD-2).

number increases the staggering also increases. Next result that we are going to discuss is the occurrence of
∆I=2 staggering effect in the γ -ray transition energies of 152Dy(SD-1), 151Dy(SD-4), 153Dy(SD-2)(SD-3), and
151Tb(SD-2) (see Figure 6). In this case, the staggering values lie between −0.6 and 0.6.

Figure 7 shows the variation of staggering index with ℏω for 142Eu(SD), 143Eu(SD), 144Eu(SD-2), and
144Eu(SD-3). The SD nuclei 142Eu(SD), 143Eu(SD), and 144Eu(SD-3) show large amplitude of staggering index
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Figure 7. ∆4Eγ staggering pattern for the 142 Eu(SD), 143 Eu(SD), 144 Eu(SD-2), and 144 Eu(SD-3).
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Figure 8. ∆4Eγ staggering pattern for the 133 Nd(SD), 134 Nd(SD-1), 134 Nd(SD-2), 135 Nd(SD),136 Nd(SD-1), and
137 Nd(SD).

while 144Eu(SD-2) shows low amplitude of staggering index at low value of ℏω . However, when ℏω increases,
the amplitude of staggering index also increases. Figure 8 shows the large amplitude of staggering index for
133Nd(SD), 134Nd(SD-1), 134Nd(SD-2), 135Nd(SD), 136Nd(SD-1), and 137Nd(SD).
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Figure 9. ∆4Eγ staggering pattern for the 149 Gd(SD-1), 149 Gd(SD-2), 149 Gd(SD-3),149 Gd(SD-4),149 Gd(SD-5) and
149 Gd(SD-6).

Similarly, Figure 9 shows the variation of staggering index with ℏω for 149Gd(SD-1), 149Gd(SD-2),
149Gd(SD-3), 149Gd(SD-4), 149Gd(SD-5), and 149Gd(SD-6). The superdeformed bands 149Gd(SD-1) and
149Gd(SD-2) have small amplitude of staggering that increases with the increase in ℏω . For 149Gd(SD-3) and
149Gd(SD-4), the amplitude of staggering is large at initial stage and decreases with the increase in ℏω .

Comparison between the predictions of the applied model and the corresponding experimental result is
given in Table. The calculated values of ab formula and power law for 192Hg(SD-1) and 194Hg(SD-1)(SD-2)
nuclei are compared with their experimental values and are in good accordance with experimental values. In
maximum cases, the deviation from the experimental values is lesser than 10%.

3. Conclusion
The above analysis is conducted to understand the implication of identical bands. It seems to be necessary
that two truly identical bands must have the same band head moments of inertia. Transition energies of many
superdeformed bands were calculated and the nuclear staggering effects within the transitions energies of some
superdeformed nuclei were analyzed. The systematic behavior suggests that the band moment of inertia turns
out nearly similar for two signature partner bands but the same could not be said for identical SD bands.
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Table. The calculated and experimental values of band transition for J+2 to J for 192 Hg(SD-1), 194 Hg(SD-1) (SD-2),
130 Ce(SD-4),131 Ce(SD-1), and 133 Ce(SD-1) nuclei.

Spin 192Hg(SD-1) ab power 194Hg(SD-1) ab power 194Hg(SD-2) ab power
Eγ(J+2→J) Eγ(J+2→J) Eγ(J+2→J)

12 300.1 300.1 301.2 296.0 296.5 295.4 283.1 282.1 280.1
14 341.4 340.1 339.0 337.2 338.0 337.2 323.4 324.0 325.0
16 381.6 382.5 384.4 416.5 415.2 417.3 363.1 360.3 366.3
18 421.1 423.1 425.4 454.7 453.5 451.9 402.0 401.2 405.2
20 458.8 455.6 459.1 491.7 490.4 488.3 440.3 443.2 443.2
22 496.0 496.4 498.3 527.8 526.7 525.3 477.7 480.1 479.1
24 532.1 531.5 534.3 562.9 561.2 561.7 514.2 513.3 516.4
26 567.4 569.3 568.2 596.9 595.8 593.5 549.9 547.3 548.3
28 601.7 604.5 603.2 630.1 629.9 626.6 584.9 582.3 586.4
30 634.9 632.2 629.9 662.3 660.2 663.1 619.3 616.3 623.5
32 668.1 666.2 667.2 693.6 691.2 695.8 652.3 650.1 655.1
Spin 130Ce(SD-4) ab power 131Ce(SD-1) ab power 133Ce(SD-1) ab power

Eγ(J+2→J) Eγ(J+2→J) Eγ(J+2→J)
2 1261.0 1244.5 1230.6 590.0 575.0 556.8 748.0 733.7 712.6
4 2592.0 2610.1 2619.2 1252.0 1268.8 1270.9 1557 1572.9 1575.1
6 3995.0 3988.8 4074.5 1985.0 1979.4 2005.7 2430.0 2424.7 2505.0
8 5473.0 5371.2 5474.8 2789.0 2695.2 2876.8 3367.0 3280.3 3481.5
10 7028 7023.8 7109.6 3663.0 3413.3 3783.3 4370.0 4237.7 4494.3
12 8662.0 8140.1 8672.3 4606.0 4132.5 4700.5 5438.0 5008.9 5536.8
14 10379.0 95255.0 10258.0 5617.0 5345.0 5647.4 6570.0 6457.8 6604.9
16 1216.0 11234.0 11865.7 6698.0 6345.8 6620.6 7768.0 7572.8 7695.3
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