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Abstract: In this work, we discuss the gravitational memory effect in higher derivative and infinite derivative gravity
theories and give the detailed relevant calculations whose results were given in our recent works. We show that the
memory effect in higher derivative gravity takes the same form as in pure GR at large distances, whereas at small
distances, the results are different. We also demonstrate that, in infinite derivative gravity, the memory is reduced via
error function as compared to Einstein’s gravity. For the lower bound on the mass scale of nonlocality, the memory
essentially reproduces the usual GR result at distances above very small distances.
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1. Introduction
Reconciling unitarity (i.e. ghost and tachyon freedom) with renormalizability in gravity theories has been
the foremost obstacle to obtain a complete theory of gravity. By adding scalar quadratic curvature terms to
Einstein’s theory such as the higher derivative gravity, R+ αR2 + βR2

µν , renormalizability is restored, but the
theory does not satisfy the requirements of the unitarity due to a contradiction between the massless and massive
spin-2 modes [1]. Thus, the theory has spin-2 Weyl ghost mode that leads to Ostragradsky-type instabilities at
the classical level, which become ghosts at the quantum level. As a consequence, the addition of higher order
curvature terms gives rise to a contradiction between the unitarity and the renormalizability. On the other
hand, another vigorous attempt has recently been proposed as a ghost and singularity-free theory of gravity.
This theory, called infinite derivative gravity (IDG), has the potential to provide a viable theory [2, 3]. Here
the action is built from nonlocal analytic functions Fi(2) [given in Eq. (23)], where 2 is the d’Alembartian
operator (2 = gµν∇µ∇ν ).1 In IDG, the propagator in a Minkowski background is given as

ΠIDG =
P 2

a(k2)
− P 0

s

2a(k2)
=

ΠGR

a(k2)
, (1)

in which P 2 and P 0
s are Barnes–Rivers spin projection operators [2] and ΠGR is the graviton propagator in

pure GR. Also, arbitrary function a is given in terms of Fi(2) [see Eq. (25)]. In order for the theory to be
ghost-free and not have extra scalar dynamical degrees of freedom (DOF) other than the massless graviton
propagating in 3 + 1 dimensions, the a(k2) term should have no roots. For this purpose, a(k2) can be chosen
∗Correspondence: ercan.kilicarslan@usak.edu.tr
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1For recent progress on IDG, see [4–21].
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to be an exponential of an entire function as a(k2) = eγ(
k2

M2 ) , where γ( k2

M2 ) is an entire function. This choice
ensures that the propagator has no new extra dynamical roots compared to pure GR and thus it is only modified
by an arbitrary function a(k2) . In the a(k2) → 0 or k ≪ M limit, the propagator reproduces the usual GR
result. Moreover, the theory is free from Ostragradsky’s ghost instabilities since the modified propagator does
not contain any extra dynamical DOF. With the modified propagator, the infinite derivative extension of GR
has upgraded small-scale behavior. For example, it was recently reported in [15] that IDG has nonsingular
Newtonian potential for the point source as one approaches r → 0 . In [21], the discussion is extended to the
case where there are spin-spin and spin-orbit interactions in addition to mass-mass interactions, and it is shown
that not only mass-mass interactions but also spin-spin and spin orbit interactions are regular and finite at the
origin. Hence, the theory is very well behaved in the small scale, unlike GR. On the other hand, loop divergences
beyond the 1 -loop for IDG would be regulated by introducing some appropriate form factors [22]. Additionally,
IDG also has the potential to solve the problem of singularities in black holes and cosmology [2–9].

In this work, we would like to discuss the gravitational memory effect in higher derivative gravity and
IDG in a flat spacetime and compare these with the result of GR. At this point, one can ask what memory
effect is. Let us give a brief summary: gravitational waves, created by the merger of neutron stars or black
holes, etc., induce a nontrivial effect on a system composed of inertial test particles. In other words, a pulse of
a gravitational wave produces a nontrivial change in the relative separation of test particles. This phenomenon
is known as the gravitational memory effect and comes in two forms: ordinary (or linear) [23] and null (or
nonlinear) [24]. Recently, many works have been done on memory effect in various aspects [25–37]. In fact,
the gravitational memory effect was given as a result in higher derivative gravity [36] and IDG [21] since the
calculations are tedious and lengthy. In this paper, we shall go further and give detailed relevant computations
of gravitational memory effect in these theories.

This paper is organized as follows: in Section 2, we calculate the memory effect in higher derivative
gravity and investigate the effects of quadratic terms on the memory. Section 3 is devoted to computing the
memory effect in IDG and its large and small distance limits. In that section, we also consider the effects of
mass scale of nonlocality on gravitational memory.

2. Memory effect in higher derivative gravity
In this section, we will study the detailed computations for the memory effect in generic even-dimensional flat
backgrounds. To do so, let us first note that the action of higher derivative gravity is given as follows:

I =

∫
dDx

√
−g

{
1

κ
R+ αR2 + βR

2

ab + γ
(
R2

abcd − 4R2
ab +R2

)
+ Lmatter

}
, (2)

where κ is Newton’s constant.2 The source coupled field equations reads

1

κ

(
Rab −

1

2
gabR

)
+ 2αR

(
Rab −

1

4
gabR

)
+ (2α+ β) (gab□−∇a∇b)R

+2γ

[
RRab − 2RacbdR

cd +RacdeR
cde

b − 2RacR
c

b − 1

4
gab

(
R2

cdef − 4R2
cd +R2

)]
+β□

(
Rab −

1

2
gabR

)
+ 2β

(
Racbd −

1

4
gabRcd

)
Rcd) = τab. (3)

2In this part, for the sake of simplicity, we will use the abstract index notation [38] and geometric unit system (G = 1 ).
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Linearization of the field equations in (3) about the Minkowski background metric, gµν = ḡµν + hµν , yields3

[39]

Tab (h) =
1

κ
GL
ab + (2α+ β)

(
ḡab□̄− ∇̄a∇̄b

)
RL + β□̄GL

ab, (4)

in which Tab (h) is the conserved energy momentum tensor, which includes all the quadratic order terms as
Tab = τab +Θ(h2, h3, ...) , L refers to linearization, and GL

ab is the linearized Einstein tensor:

GL
ab = RL

ab −
1

2
ḡabR

L. (5)

Here the linearized Ricci tensor RL
ab and the scalar curvature RL are given respectively as [40]

RL
ab =

1

2

(
∇̄c∇̄ahbc + ∇̄c∇̄bhac − □̄hab − ∇̄a∇̄bh

)
, RL = −□̄h+ ∇̄a∇̄bhab. (6)

Using the linearized form of the tensors, manipulation of (4) reads as[
(4α(D − 1) +Dβ) □̄− (D − 2)

(
1

κ

)]
RL = 2T. (7)

In the de Donder gauge, ∂ahab =
1
2∂bh , which give rises to RL = − 1

2∂
2hab and GL

ab = − 1
2∂

2(hab − 1
2 ḡabh) . By

using these, the field equations take the following form:

(
1

κ
+ β∂2)∂2hab = −2Tab + 2(2α+ β)(ḡab∂

2 − ∂a∂b)R
L − (

1

κ
+ β∂2)ḡabR

L, (8)

which is the equation that we will work with in this section. Note that by using Eq. (7), this equation can be
recast in the following desired form:

hab =− 2Tab

(β∂2 + 1
κ )∂

2
+

4(2α+ β)

(β∂2 + 1
κ )

(
(4α(D − 1) +Dβ) ∂2 − 1

κ (D − 2)

)
∂2

(ḡab∂
2 − ∂a∂b)T

− 2ḡabT(
(4α(D − 1) +Dβ) ∂2 − 1

κ (D − 2)

)
∂2

,

(9)

whose retarded inhomogeneous solution can be found to be

hab =

∫ (
2G1(x, x′)Tab(x

′)− 4(2α+ β)G2(x, x′)(ḡab∂
2 − ∂a∂b)T (x

′) + 2ḡabG
3(x, x′)T (x′)

)
dDx′, (10)

where the scalar Green’s function is defined as

G1(x, x′) =
1

β

(
(∂2 −m2

β)∂
2

)−1

,

G2(x, x′) =
1

β (4α(D − 1) +Dβ)

(
(∂2 −m2

β)(∂
2 −m2

c)∂
2

)−1

,

G3(x, x′) =
1

(4α(D − 1) +Dβ)

(
(∂2 −m2

c)∂
2

)−1

,

(11)

3We will work with the mostly plus signature ηµν = diag(−1, 1, 1, 1) .
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where mβ is the mass of the massive spin-2 graviton given as m2
β = − 1

βκ and mc is the mass of the massive

spin-0 graviton defined as m2
c = D−2

κ(4α(D−1)+Dβ) . To calculate the memory effect, we follow the method of

[25, 26]. For this purpose, let us now consider the incoming massive particles that interact at the point t = 0, x⃗ ,
and some outgoing massive particles created at this point. Then the corresponding energy momentum tensor
of the particle sources can be written as:

Tab =
∑
(j)in

min
(j)u(j)au(j)b

dτ(j)

dt
δ3(x − y(j)(t))Θ(−t) +

∑
(i)out

mout
(i)

dτ(i)

dt
u(i)au(i)bδ3(x − y(i)(t))Θ(t), (12)

where Θ is the step function and u(i)a and u(j)a are four normalized velocities. Coherently, one can show that
the propagators can be explicitly described as

G1(x, x′) =
κδ(t− t′ − r)

2(2π)
D−2

2

(
Θ(t− t′)

r
(−1

r

∂

∂r
)

D−2
2 −

√
2

π
(
mβ

r
)

D−3
2 KD−3

2
(mβr)

)

G2(x, x′) =
1

β (4α(D − 1) +Dβ)

[
1

2(2π)
D−2

2 m2
βm

2
c

Θ(t− t′)(−1

r

∂

∂r
)

D−2
2

δ(t− t′ − r)

r

+
δ(t− t′ − r)

(2π)
D−1

2 (m2
β −m2

c)

(
1

m2
β

(
mβ

r
)

D−3
2 KD−3

2
(mβr)−

1

m2
c

(
mc

r
)

D−3
2 KD−3

2
(mcr)

)]

G3(x, x′) = − κ

2(2π)
D−2

2 (D − 2)

(
Θ(t− t′)

r
(−1

r

∂

∂r
)

D−2
2 −

√
2

π
(
mc

r
)

D−3
2 KD−3

2
(mcr)

)
,

(13)

where KD−3
2

(r) is the modified Bessel function of the second kind. With these tools, the retarded solution of

higher derivative gravity can be obtained up to leading order 1
r :

hab(x) =
κ

(2πr)
D−2

2

(
(
∂

∂U
)

D−4
2 − (mβ)

D−4
2 e−mβr

)(
αabΘ(U) + βabΘ(−U)

)

+
κḡabḡcd

(2πr)
D−2

2 (D − 2)

(
− (

∂

∂U
)

D−4
2 + (mc)

D−4
2 e−mcr

)(
αcdΘ(U) + βcdΘ(−U)

)

+
2(2α+ β)ḡcd

β (4α(D − 1) +Dβ) (m2
β −m2

c)

1

(2πr)
D−2

2

{
−m

D−8
2

β e−mβr ḡab

(
m2

β(α
cdΘ(U)

− βcdΘ(−U)) + 2mβδ(U)(αcd − βcd)

)
+ (mc)

D−8
2 e−mcr ḡab

(
(m2

c(α
cdΘ(U)

− βcdΘ(−U)) + 2mcδ(U)(αcd − βcd)

)
+

(m2
β −m2

c)

m2
βm

2
c

KaKb(α
cd − βcd)(

∂

∂U
)

D−4
2 δ(U)

+m
D−8

2

β e−mβr

(
m2

βrarb(α
cdΘ(U)− βcdΘ(−U)) +mβ(α

cd − βcd)(Karb +Kbra)δ(U)

+ (αcd − βcd)KaKbδ(U)′
)
−m

D−8
2

c e−mcr

(
m2

crarb(α
cdΘ(U)− βcdΘ(−U))

+mc(α
cd − βcd)(Karb +Kbra)δ(U) + (αcd − βcd)KaKbδ(U)′

)}
.

(14)
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Here U ≡ t− r is the retarded time, and Ka ≡ −∂aU = ta + ra and ta and ra = ∂ar are unit vectors. In this
setting, we define

αab(r̂) ≡
∑
(i)out

dτ (i)

dt

( mout
(i)

1− r̂ · v(i)

)(
u(i)
a u

(i)
b

)
,

βab(r̂) ≡
∑
(j)in

dτ (i)

dt

( mout
(i)

1− r̂ · v(i)

)(
u(i)
a u

(i)
b

)
.

(15)

Since the memory is related to the curvature tensor by means of the geodesic equation, one needs to first
compute the linearized Riemann tensor, which is defined as

Rabcd = ∂a∂[dhb]c − ∂c∂[dhb]a. (16)

Finally, to leading order, the linearized Riemann tensor of metric perturbation yields

Rabcd =
κ

(2πr)
D−2

2

K[a∆b][cKd]
d

D−2
2

dU
D−2

2

δ(U)− κ

(2πr)
D−2

2

(mβ)
D−2

2

(
K[a∆b][cKd]

d2Θ(U)

dU2

+mβK[a∆b][crd]
dΘ(U)

dU
+mβK[d∆b][cra]

dΘ(U)

dU
+ 2m2

βr[aᾱb][crd]Θ(U)

+ 2m2
βr[aβ̄b][crd]Θ(−U)

)
e−mβr,

(17)

where we define

∆ab = 2
∑
(i)out

dτ(i)

dt

( mout
(i)

1− r̂ · v(i)

)(
qacu

c
(i)qbdu

d
(i) −

qcdu
c
(i)u

d
(i)

D − 2
qab

)

− 2
∑
(j)in

dτ(j)

dt

( min
(j)

1− r̂ · v(j)

)(
qacu

c
(j)qbdu

d
(j) −

qcdu
c
(j)u

d
(j)

D − 2
qab

)
,

ᾱab = 2
∑
(i)out

dτ(i)

dt

( mout
(i)

1− r̂ · v(i)

)(
qacu

c
(i)qbdu

d
(i) −

qcdu
c
(i)u

d
(i)

D − 2
qab

)
,

β̄ab = 2
∑
(j)in

dτ(j)

dt

( min
(j)

1− r̂ · v(j)

)(
qacu

c
(j)qbdu

d
(j) −

qcdu
c
(j)u

d
(j)

D − 2
qab

)
,

(18)

and qab is the projector that projects the metric onto SD−2 . The relative separation between two massive test
particles at rest is given by the geodesic deviation equation. If ξ is a spatial separation vector, the geodesic
equation takes the form

d2ξi

dt2
= −Ri

0j0ξ
j . (19)

By substituting Eq. (17) into Eq. (19) and then carrying out the integrals twice, we have the following [36]:

∆ξi =

∫ U

−∞
dU ′

∫ U ′

−∞
dU ′′ d

2ξi

dU ′′2 =
2π

(2πr)
D−2

2

(
d

D−4
2

dU
D−4

2

− (mβ)
D−4

2 e−mβr

)
∆i

jΘ(U)ξj , (20)
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where ∆i
j are spatial components of the memory tensor. Observe that the theory gives nontrivial memory

effect and memory is reduced by massive spin-2 mode compared to GR. In four dimensions, memory takes the
following form:

∆ξi =
1

r

(
1− e−mβr

)
∆i

jΘ(U)ξj . (21)

In the large separation limits, the memory reproduces the GR result [25], whereas at small distances, it is
different. On the other hand, in the mβ → ∞ limit, the usual Einsteinian form can be obtained for memory as
expected.

3. Memory effect in IDG

We now consider memory effect for particle scattering in IDG as a function of mass scale of nonlocality. The
Lagrangian density of IDG is [2]

L =
√
−g

[
M2

P

2
R +

1

2
RF1(2)R+

1

2
RabF2(2)R

ab +
1

2
CabcdF3(2)C

abcd + Lmatter

]
, (22)

where MP is the Planck mass, Cabcd is the Weyl tensor, Rab is the Ricci tensor, and R is the scalar curvature.
The infinite derivative functions Fi(2) , which are analytic functions of the d’Alembartian operator, are given
as

Fi(2) =

∞∑
n=1

fin
2n

M2n
, (23)

in which fin are dimensionless coefficients and M is the mass scale of nonlocality. The linearized field equations
about a Minkowski background yield [2]

a(2)RL
ab −

1

2
ηabc(2)R

L − 1

2
f(2)∂a∂bR

L = κTab, (24)

and here nonlinear functions are given as

a(2) = 1 +M−2
P (F2(2) + 2F3(2))2,

c(2) = 1−M−2
P

(
4F1(2) + F2(2)−

2

3
F3(2)

)
2,

f(2) = M−2
P

(
4F1(2) + 2F2(2) +

4

3
F3(2)

)
,

(25)

which leads to the constraint a(2)−c(2) = f(2)2 . After substituting the relevant linearized curvature tensors
(6) into (24), linearized field equations can be obtained:

1

2

[
a(2)

(
2hab − ∂d

(
∂ah

d
b + ∂bh

d
a

))
+ c(2)

(
∂a∂bh+ ηab∂d∂eh

de − ηab2h
)

+ f(2)∂a∂b∂d∂eh
de

]
= −κTab.

(26)
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Note that if we choose a(2) = c(2) , the GR propagator can be recovered in the large separation limit without
introducing extra DOF. In the de Donder gauge, the linearized field equations (26) can be recast as

a(2)GL
ab = κTab, (27)

where Tab is a conserved source ( ∂aT
ab = 0). Manipulation of Eq. (27) yields

a(2)2hab = −2κ(Tab −
1

2
ηabT ) = −16πT̃ab, (28)

which is the equation that we shall work with. The retarded solution to Eq. (28) is

hab = 16π

∫
Gab

cd(x, x′)T̃cd(x
′)dDx′. (29)

Here, Gab
cd(x, x′) is the retarded Green’s function of the tensorial wave-type equation (28) and it is defined as

Gab
cd(x, x′) = ηa

cηb
dG(x, x′), (30)

where ηa
c is the parallel propagator. The retarded Green’s function of the linearized IDG equation is

GR(x, x
′) =

1

4πr
erf(Mr

2
)δ(t− t′ − r), (31)

where erf(r) is the error function given by the integral

erf(r) = 2√
π

∫ r

0

e−k2

dk. (32)

To calculate the memory effect, let us now again consider the energy momentum tensor given in Eq. (12). Upon
using these, the retarded solution for IDG will read

hab(x) =
4

r

(
α̃abΘ(U) + β̃abΘ(−U)

)
erf(Mr

2
), (33)

where we have defined two tensors:

α̃ab(r̂) ≡
∑
(i)out

dτ (i)

dt

( mout
(i)

1− r̂ · v(i)

)(
u(i)
a u

(i)
b +

1

2
ηab

)
,

β̃ab(r̂) ≡
∑

(j)out

dτ (j)

dt

( mout
(j)

1− r̂ · v(j)

)(
u(j)
a u

(j)
b +

1

2
ηab

)
.

(34)

Clearly, at this stage, there is only one difference between the IDG and the usual GR due to the error function
in Eq. (33). In fact, for the large separations, the retarded solution reduces the form of usual GR, but for the
small distances the solution converges to a constant. The linearized Riemann tensor for metric perturbation
(33) can be calculated, up to O( 1

r2 ) , as

∂d∂a

(erf(Mr
2 )

r
Θ(U)

)
=

(
δ′(U)KaKd

erf(Mr
2 )

r
− M√

πr
δ(U)(Kard +Kdra)e

−M2r2

4

− M3

2
√
π
rardΘ(U)e−

M2r2

4

)
.

(35)
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Consequently, to leading order, the linearized Riemann tensor of the retarded metric perturbation can be
obtained as

Rabcd =4K[a∆b][cKd]δ
′(U)

erf(Mr
2 )

r
− 4

(
M√
π r

K[a∆b][crd]δ(U) +
M√
π r

K[d∆b][cra]δ(U)

+
M3

2
√
π
r[aᾱb][crd]Θ(U) +

M3

2
√
π
r[aβ̄b][crd]Θ(−U)

)
e−

M2r2

4 ,

(36)

where ∆ab , ᾱab , and β̄ab are given in Eq. (18). On the other hand, the relative displacement between two
massive test particles at rest is described by the geodesic deviation equation. By inserting Eq. (36) into Eq.
(19) and later integrating this equation twice, one eventually obtains [21]

∆ξi =

∫ U

−∞
dU ′

∫ U ′

−∞
dU ′′ d

2ξi

dU ′′2 =
1

r
erf(Mr

2
)∆i

jΘ(U)ξj , (37)

where ∆i
j are spatial components of the memory tensor. Note that the relative separation of test particles has

nontrivial change, which is defined by the memory tensor. The memory is reduced via error function compared
to pure GR. In large separation limits as r → ∞ , erf(r) → 1 , the memory takes the usual Einsteinian form as
expected. On the other hand, since IDG is a small-scale modification of GR, for the lower bound on the mass
scale of nonlocality (M > 4keV ) [41], the memory reproduces the GR result above at atomic distances.

4. Conclusions
Studies on gravitational memory effect have recently received more attention since there is a hope that it could
be measured by advanced LIGO. Here we investigate the memory effect in higher derivative gravity and IDG
and give full details of computations whose results were given in [21, 36]. We have computed the memory effect
in higher derivative gravity and showed that memory is different from the pure GR result due to the massive
spin-2 mode whose mass reduces the memory. In large separations, memory takes the same form as in pure
GR. On the other hand, we have demonstrated that gravitational memory in IDG depends on the mass scale
of nonlocality and hence it is different from GR: memory is modified by error function. The memory returns to
the usual GR result at sufficiently large separations.
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