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Abstract: We investigated the dispersion relation of surface plasmons (SPs) excited in a medium comprised of a
left-handed material (LHM) layer. We investigated different light polarizations in SP excitation along an LHM-metal
interface. We studied SP excitation through a classical Kretschmann geometry, employing an LHM interlayer between
a dielectric and a metal layer. Using this three-layer configuration, we investigated the effect of LHM medium on
characterizing SP propagation length, which is directly related to the energy of the surface waves.
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1. Introduction
Materials with simultaneous negative permeability and permeability, namely left-handed materials (LHMs),
were first introduced by Pendry et al. [1]. The experimental demonstration of LHM systems, utilizing split
ring resonators or metallic wires, was demonstrated by Shelby et al. [2]. These artificial materials have been
proposed for a variety of applications, such as sensing devices [3], antennas [4], and optical communications [5,6].
SPs have received significant attention due to their extraordinary optical properties [7]. SPs are the surface
waves that propagate along an interface between a dielectric and a metal layer (i.e. propagating SPs) or get
localized around metallic features (i.e. localized SPs), and their energy dissipates as they propagate along this
interface [8,9]. SP excitation through different interfaces has been investigated to employ their unique far- and
nearfield properties [10–15]. Recently, LHMs have been also offered to employ in the excitation of SPs [16–18].
Excitation of these unique surface waves through LHM media could open up new routes to new applications.

In this paper, we investigated the dispersion relation of SPs excited through an interface between an
LHM medium and a metal layer. We readdressed the polarization effect on SP excitation in LHM media and
showed the insufficiency of transverse electric (TE)-polarized light to excite SPs by using Maxwell’s equations.
We modeled a Kretschmann geometry consisting of an LHM interlayer between a dielectric and a metal layer,
and performed finite element method (FEM) simulations and employed generalized pencil of function (GPOF)
method to investigate SP excitation in this geometry. Finally, we theoretically studied the effect of LHMs
on SP energy dissipation rate, which is directly related to SP propagation length. We showed that, thanks
to the presence of LHM medium, SPs can propagate longer distances, which could open up a new route
to photonic devices compensating material losses. This outcome could be very beneficial for, e.g., low-loss
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optical communication, plasmonic platforms allowing strong light transmission or reflection in bio-detection or
spectroscopy applications, or efficient light conversion in photovoltaic applications.

2. Materials and methods
SP dispersion relation for a two-layer system, consisting of a dielectric medium and a metal layer, is ksp =

k0

√
(εdεm)/(εd+εm) , where ksp and k0 are the SP and free-space photon wavenumbers, εd and εm are the

dielectric constants of dielectric and metal layers. Figure 1a shows the FEM simulation (COMSOL Multiphysics)
of a dipole source located along an interface between a dielectric and a metal layer. SP momentum is greater
than that of free-space photon, i.e. light from free space cannot excite SPs. Therefore, for a system consisting
of a flat metal film, an evanescent incident source is required to excite SPs. Since dipoles are the source of both
propagating and decaying (evanescent) electromagnetic fields, they are able to excite SPs at the metal surface.
For the system shown in Figure 1a, the component of the electromagnetic field generated by the dipole at the
metal surface (along x -axis) can be approximated as Υe−jkxx

/√
x , where Υ is the amplitude of the field.

In order to determine the component of the wavevector at the metal surface (kx) , we used the GPOF method
(see Supporting Information text for details), where we can approximate field functions as sum of complex
exponentials [19–21]. Here, we first multiplied the field data by

√
x in order to have only a sum of exponentials,

i.e. Υe−ikxx and then, fitted the data to exponentials to find the wavevector, kx . In Figure 1b, we showed
the tangential component of the wavevector, kx , the wave component which propagates at the metal surface.
The figure demonstrates that the GPOF method successfully extracts the SP wavenumber from the data of the
steady-state simulation, which consist of sum of variety of electromagnetic fields. This result shows that with
distance from the dipole, the wavevector (red dots) converges to SP wavevector (grey line), which shows that
at the locations far from the dipole source, SPs are the dominant electromagnetic fields.

Dipole Source  
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Figure 1. (a) FEM simulation of a dipole locating at a metal surface. (b) Tangential component of the wavevector
extracted by the GPOF method from the FEM simulation (red dots) and the SP wavevector (grey line) calculated by
the SP dispersion relation. Simulation is performed at 852nm , where εm = −3322 − j117 (silver) and εm = 1 .
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3. Results
3.1. SP dispersion relation for LHM–metal interface

LHMs are materials that possess simultaneous negative permittivity (ε) and permeability (µ) [22]. In this
section, we investigated the excitation of SPs for a system consisting of an LHM medium on top of a metal layer
as illustrated in Figure 2. SP momentum is greater than that of free-space photon (ksp > k0

√
εd) , i.e. light

in the form of plane wave is not able to excite SPs. In this system, we have an LHM medium (Layer 2) on top
of a metal layer (Layer 1) with permittivity and permeability, (ε2, µ2) and (ε1, µ1) , respectively

z

x
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E x

LHM (Layer 2)

Metal (Layer 1)

ε2 , μ2

ε1, μ1

z = 0

E y

Hz

Hx
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Figure 2. TM- and TE-polarized evanescent waves impinging on a two-layer medium, consisting of an LHM and a
metal layer.

We first investigated a TM-polarized evanescent wave, propagating along x -direction and decaying along
z -direction as schematically shown in Figure 2. In Layer 2 (z > 0) , electric and magnetic fields are:

H(2)=ŷAe−jk(2)
x x−k(2)

z z+jωt,

E(2)=

(
A

jωε0ε(2)

)
(x̂k(2)

z −ẑjk(2)
z )e−jk(2)

x x−k(2)
z z+jωt.

In Layer 1 (z < 0) ,

H(1)=ŷBe−jk(1)
x x+k(1)

z z+jωt,

E(1)=

(
− B

jωε0ε(1)

)
(x̂k(1)

z +ẑjk(1)
z )e−jk(1)

x x+k(1)
z z+jωt,

where k(1,2)
z determines the decay in the electromagnetic fields in Layers 1 and 2, which could be determined

from the Maxwell’s equations:

∇2H−µrεr
c2

∂2H

∂t2
= 0.

Inserting H(1) and H(2) , we have two conditions:

−(k(2)
x )

2
+(k(2)

z )
2
+
(ω
c

)2
µ(2)ε(2)= 0,

−(k(1)
x )

2
+(k(1)

z )
2
+
(ω
c

)2
µ(1)ε(1)= 0.
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Assuming there is no charge and current source (Js = 0 and ρs = 0) in the system, boundary conditions,
implying the fact that the tangential components of electric and magnetic fields (x - and y -components) at the
interface should be continuous, yields:

A=B A
k(2)
z

ε(2)
= −B

k(1)
z

ε(1)
→ k(1)

z

k
(2)
z

= −ε(1)

ε(2)
.

Using the relationship between kx and kz , SP dispersion wavenumber (ksp=k(1,2)
x ) for the TM-polarized

incident wave is found as:

ksp=
ω

c

√
ε(2)ε(1)(ε(1)µ(2)−ε(2)µ(1))

(ε2(1)−ε2(2))
.

For a TE-polarized light source, in Layer 2 (z > 0) , electric and magnetic fields are:

E(2)=ŷAe−jk(2)
x x−k(2)

z z+jωt,

H(2)=

(
− A

jωµ0µ(2)

)
(x̂k(2)

z −ẑjk(2)
z )e−jk(2)

x x−k(2)
z z+jωt.

In Layer 1 (z < 0) ,

E(1)=ŷBe−jk(1)
x x+k(1)

z z+jωt,

H(1)=

(
− B

jωµ0µ(2)

)
(x̂k(1)

z +ẑjk(1)
z )e−jk(1)

x x+k(1)
z z+jωt.

From the Maxwell’s equations,

∇2E−µrεr
c2

∂2E

∂t2
= 0.

Inserting H(1) and H(2) , we have two conditions:

−(k(2)
x )

2
+(k(2)

z )
2
+
(ω
c

)2
µ(2)ε(2)= 0,

−(k(1)
x )

2
+(k(1)

z )
2
+
(ω
c

)2
µ(1)ε(1)= 0.

Assuming again there is no charge and current source (Js = 0 and ρs = 0) in the system, applying the same
boundary conditions yields:

A=B A
k(2)
z

µ(2)
=B

k(1)
z

µ(1)
→ k(1)

z

k
(2)
z

=
µ(1)

µ(2)
.

Using the relationship between kx and kz , SP dispersion wavenumber (ksp=k(1,2)
x ) for TE-polarized incident

wave is found as:

ksp=
ω

c

√
µ(2)µ(1)(ε(2)µ(1)−ε(1)µ(2))

(µ2
(1)−µ2

(2))
.

In Figure 3, we compared the tangential component of the wavevector on the metal surface, k(1)
x = k(1) sinθ

with SP wavevector, ksp . For the TM-polarized light source (Figure 3, top), kx (black curve) is always smaller
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than ksp (red line), implying that for the LHM–metal configuration, TM-polarized wave is not able to excite
SPs. On the other hand, for the TE-polarized wave (Figure 3, bottom), kx starts to exceed ksp at the critical
angle, θc , shown with a green arrow (see Supporting Information text for the definition of the critical angle),
i.e. TE-polarized incident light source impinging on the surface with an angle of incidence greater than the
critical angle can excite SPs. This phenomenon is in contrast with the classical systems consisting of a dielectric
instead of an LHM medium, where only TM-polarized wave excites SPs [23].

Figure 3. Tangential components of the wavevectors of (top) TM- and (bottom) TE-polarized waves (black curves)
and SP wavevector (red line) for a two-layer configuration composed of an LHM and a metal layer. Calculations are
performed at λ = 633nm , where εLHM = −839 , µLHM = −977 , εm = −116 − j12 , and µm = 1 .

3.2. SP excitation via Kretschmann geometry utilizing an LHM medium

In this section, we studied a three-layer Kretschmann geometry consisting of an LHM interlayer (Layer 1: ε(1) ,
µ(1)) between a dielectric (Layer 2: ε(2) , µ(2)) and a metal film (Layer 0: ε(0) , µ(0)) as illustrated in Figure
4a. Here, a TE-polarized wave propagating at an angle greater than the critical angle (defined between Layers
1 and 2), excites an evanescent field in the LHM medium. This evanescent field, overcoming the momentum
mismatch, excites SPs on the metal surface [8,24]. In the LHM medium, electric and magnetic fields form a
left-handed orthogonal set. In this system, the main difference from the classical scheme is the direction of the
waves entering the medium right after the LHM layer. As shown in Figure 4b, due to the reverse nature of the
incident light source, the direction of the SPs excited at the metal surface is opposite to that of the one excited
by a standard dielectric–metal system.

The electric field in Layer 2 can be written as:

E(2)=ŷe−jk(2)
x x(A(2)e

jk(2)
z z+B(2)e

−jk(2)
z z),

where B(2) is the amplitude of the wave, which is the sum of multiple reflections from the interface between
Layers 1 and 2, as shown in Figure 4b. Here, we define a generalized reflection coefficient, [25] which is the ratio
between the reflected lights in Layer 2 and the amplitude of the incident wave, i.e. R̃2,1 = B(2)/A(2) . Then,
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Figure 4. (a) Three-layer system exciting SPs via an LHM medium. (b) Multiple reflections and transmissions between
different layers in the Kretschmann configuration utilizing an LHM interlayer.

the electric field in Layer 2 can be written as:

E(2)=ŷA(2)e
−jk(2)

x x(ejk
(2)
z z+R̃2,1e

−jk(2)
z z).

The electric field in the LHM layer is written as:

E(1)=ŷA(1)e
−jk(1)

x x(ejk
(1)
z z+R1,0e

−jk(1)
z (z+2d)).

The amplitude transfer between Layers 2 and 1 for the down-going waves can be written as:

A(1)=A(2)T 2,1+A(1)R1,0e
−jk(1)

z 2dR1,2.

Rearranging the terms, amplitude A(1) can be written in terms of A(2) as:

A(1)=A(2)
T 2,1

1−R1,0R1,2e−jk
(1)
z 2d

.

The amplitude transfer between Layers 2 and 1 for the up-going waves can be written as:

A(2)R̃2,1=A(2)R2,1+A(1)R1,0e
−jk(1)

z 2dT 1,2.

Using the relationship between A(1) and A(2) , the generalized reflection coefficient, R̃2,1 , between Layers 1
and 2 is found as:

R̃2,1=R2,1+
T 1,2T 2,1R1,0e

−jk(1)
z 2d

1−R1,0R1,2e−jk
(1)
z 2d

,

where reflection (Ri+1,i) and transmission (T i+1,i) coefficients are (see Supporting Information text for
details):

Ri+1,i=
√
εi+1 cos θi−

√
εi

√
1−

εi+1
εi

sin2 θi

√
εi+1 cos θi+

√
εi

√
1−

εi+1
εi

sin2 θi

T i+1,i= 1+Ri+1,i .
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For the incidence angle greater than θc , sinθc=
√
µ1ε1/µ2ε2 (see Supporting Information text for the deriva-

tion of the critical angle):

Ri+1,i=
cosθi−j

√
sin2 θi− εi

εi+1

cosθi+j
√

sin2 θi− εi

εi+1

.

Figure 5a shows the FEM simulation of the three-layer configuration, where the incident wave is propagating
with an angle greater than the critical angle (defined for the interface between the dielectric and LHM layers),
showing the steady-state electric field distribution in each layer. Figure 5b shows the electric field amplitude
along the propagation direction (z) . Surface waves propagate on any surface while they are evanescent along
the directions normal to it. In our system, the wave along the interface between LHM and metal layers decays
both along +z and −z directions, exhibiting its surface wave characteristics.
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Figure 5. (a) FEM simulation of the three-layer system, which consists of a dielectric, an LHM, and a metal layer,
showing the steady-state distribution of the electric field amplitude. The incident wave in the dielectric medium is
propagating with an incident angle of 16.2°, where the reflectivity of the system is minimum. (b) Electric field distribution
as a function of distance along the y -direction (propagation direction). Corresponding device parameters are ε(2) = 4 ,
µ(2) = 2 , ε(1) = −43 , µ(1) = −01075 , ε(0) = −11 − j12 , µ(0) = 1 , the wavelength of the incident light is 633
nm and the thickness of the LHM layer is 400 nm. Thicknesses of dielectric and metal layer are assumed to be infinite.
In the figure, the direction of the electric field is also shown.

In Figure 6, we compared the calculated generalized reflection coefficient, R̃2,1 (red dashed line) and
the reflection amplitude determined from FEM simulation (green line). In the FEM simulation, reflection
is calculated by fitting a sum of exponentials in the GPOF method, i.e. E = Ae−jkz + Be+jkz , where
R̃2,1 = B/A . As shown in the figure, the calculated and simulation results coincide excellently with each
other.
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Figure 6. Generalized reflection coefficient (red dashed line) and the reflection extracted by the GPOF method from
the FEM simulation (green line) for the three-layer configuration, consisting of a dielectric, an LHM, and a metal
layer. Corresponding device parameters are ε(2) = 4 , µ(2) = 2 , ε(1) = −43 , µ(1) = −01075 , ε(0) = −11 − j12 ,
µ(0) = 1 , the wavelength of the incident wave is 633 nm and the thickness of the LHM layer is 400 nm.

3.3. Effect of the LHM medium on SP propagation length

SP propagation length (Lsp) is the distance SPs travel until their intensity diminishes by the factor of e2 . It
is calculated by taking the imaginary part of SP wavevector (the part corresponding to the energy dissipation)
[26].

Lsp=
1

2k
′′

sp

.

For the system consisting of an LHM and a metal layer, SP wavevector becomes

ksp = ( ω/c)
√
µ2(ε1µ2 − ε2)

/
(µ2

(2)−1) , where ε2 and ε1 (µ2 and µ1 = 1) are permittivity (permeability)

of the LHM and metal layers, respectively. SP propagation length is the upper limit for the subwavelength
photonic devices, employing plasmonic components. For the two-layer configuration depicted in Figure 2, we
used permittivity and permeability functions shown below:

ε(2)= 1−
ω2

pL

ω−jγ
,

µ(2)= 1− Fω2
0

ω2−ω2
0−jΓLω

,

where ωpL is the LHM plasma frequency (frequency of the bulk longitudinal electron excitations), γ is the
damping parameter, F is a parameter between 0 and 1, ΓL is the scattering rate (parameter showing the
dissipation of electron motion), and ω0 is the frequency at which effective permeability diverges. The frequency-
dependent permittivity of the metal is determined by the Drude model:

ε(1)= 1−
ω2

p

ω2−jΓω
,

where ωp is the plasma frequency of the metal and Γ is the scattering rate.
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Figure 7 shows the real (green line) and imaginary (red line) parts of the permittivity and permeability of
the LHM and metal layers, demonstrating that when the LHM layer has negative permittivity and permeability,
SP propagation length increases (blue line). This could be explained by the enhancement in the excitation of
the evanescent field along the medium above the metal layer, creating stronger surface waves that can propagate
longer distances before their energy dissipates.

Table 7. Change in the SP propagation length with respect to the change in the permittivity (εLHM = ε
′
LHM −j

ε
′′
LHM ) and permeability (µLHM = µ

′

LHM −j µ
′′

LHM ) of the LHM medium and the permittivity of the metal
layer (εMetal = ε

′
Metal −j ε

′′
Metal) . Corresponding device parameters are (LHM) ωpL/2π = 1015 Hz (0.66 eV),

ω0/2π = 4 × 1015 Hz (2.63 eV), γ = 003ωpL , ΓL = 003 ω0 , F = 056 and (Metal) ωp/2π = 12 × 1015 Hz (7.9
eV), Γ = 1.45 × 1013 Hz (0.06 eV).

In the presence of real (ε′(2) , µ′
(2)) and imaginary (ε′′(2) , µ′′

(2)) parts of permittivity and the
permeability, the complex wavevector in the LHM layer can be written as:

k(2)=
ω

c

√
n=

ω

c

√
ε(2)µ(2)=

ω

c

√
(ε′(2)−jε′′

(2)
)(µ′

(2)−jµ′′
(2)

)

=
ω

c

√
(ε

′

(2)µ
′

(2)−ε
′′

(2)µ
′′

(2))−j(ε
′

(2)µ
′′

(2)−ε
′′

(2)µ
′

(2)).

Figure 8 shows the imaginary parts of the wavenumber of the incident wave in LHM medium (red line)
and SP wavevector (green line) excited at the interface between the LHM and the metal layers. Here, at
the wavelength (denoted with a dashed black line) where the LHM medium has negative permittivity and
permeability, imaginary part of the incident evanescent field becomes less lossy. This results in surface waves
with wavevector of smaller imaginary parts, demonstrating the decrease in the energy dissipation rate, which
helps SP propagate longer distances. Hence, the simultaneous negative permittivity and permeability of the
LHM layer can excite SPs with less lossy components such that they are able to propagate longer distances.
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Table 8. Imaginary parts of the wavenumber of the incident wave in the LHM medium (red line) and SP wavevector
(green line). Corresponding device parameters are (LHM) ωpL/2π = 1015 Hz (0.66 eV), ω0/2π = 4 × 1015 Hz (2.63
eV), γ = 003ωpL , ΓL = 003 ω0 , F = 056 and (Metal) ωp/2π = 12 × 1015 Hz (7.9 eV), Γ = 1.45 × 1013 Hz
(0.06 eV).

An ideal plasmonic platform of metallic apertures or particles could dramatically enhance the local
electromagnetic fields associated with SPs by lowering the dissipation energy. SPs in periodic metallic systems
could propagate longer wavelengths, constituting periodic elements that could communicate more efficiently.
Experimental realization of such systems, i.e. covering plasmonic surfaces with LHM media, could open doors
to plasmonic platforms with strong optical responses associated with large nearfield enhancements.

4. Discussion
In conclusion, we studied the dispersion relation of SPs created along an LHM–metal interface. We investigated
light polarizations enabling SP excitation through LHM platforms and showed that unlike the classical scheme,
with LHM, SPs are excited through a TE-polarized incident light source. We theoretically investigated the
excitation of SPs with a Kretschmann geometry utilizing an LHM interlayer between a dielectric and a metal
layer through FEM simulations and GPOF calculations. We also studied the effect of LHMs on SP propagation
length and showed that systems utilizing an LHM layer can excite SPs with lower energy dissipation rate,
allowing longer propagation distances. This could be very advantageous for applications demanding low-loss
optical components, where material losses can be compensated with the use of an LHM layer.
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SUPPORTING INFORMATION 

Generalized pencil of function (GPOF) method 

GPOF is a linear method to approximate functions by sum of complex exponentials. It consists 

of two steps, (i) solving the matrix equation, and (ii) finding the roots of polynomials. 

Electromagnetic signals can be approximated as:  

𝑦 𝑡 = 𝑅!𝑒!!!!
!!! 0 ≤ 𝑡 ≤ 𝑇, 

where 𝑅! is the residue, 𝑠! is the complex pole of the signal (𝑠! = −𝛼! + 𝑗𝜔!), 𝛼! is the damping 

factor, and 𝜔! is the angular frequency (𝜔! = 2𝜋𝑓!). 

After sampling the data with the sampling period, electromagnetic signal approximation can be 

written as: 

𝑦 𝑘𝑇! = 𝑅!𝑧!!!
!!! 𝑘 = 0,…  ,𝑁 − 1, 

where 𝑧! is the complex pole in the 𝑍 domain,  𝑧! = 𝑒!!!! = 𝑒(!!!!!!!)!!, 𝑖 = 1,…  ,𝑀. After 

sampling, the problem turns into finding the optimum values of 𝑀, 𝑅, and 𝑠 from the sampled 

signal 𝑦 𝑘𝑇! . In the GPOF method, 𝑧! is found as the solution of the generalized eigenvalue 

problem. The GPOF method extracts the poles from an exponentially damped sinusoid and treats 

the pole extraction as a general eigen-analysis problem. For the following set of information 

vectors, 𝑦!, 𝑦!, … , 𝑦!: 

𝑦! = 𝑦! ,𝑦!!!,… ,𝑦!!!!!!! ′. 

Considering a data matric of noisy data, i.e. 𝑌 = 𝑦!,𝑦!,… ,𝑦! , in the GPOF method, the 

information matrix is divided into two matrices in order to determine the eigenvalues of the 

system. Defining two matrices with sizes (𝑁 − 𝐿)×𝐿, 𝑌!  and 𝑌! : 

𝑌! = 𝑦!,𝑦!,… ,𝑦!!! ,   𝑌! = 𝑦!,𝑦!,… ,𝑦!!! . 

Hence, the matrices can be written as: 
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𝑌 =

𝑦(0) 𝑦(1) … 𝑦(𝐿)
𝑦(1) 𝑦(2) … 𝑦(𝐿 + 1)
⋮ ⋮ ⋮ ⋮

𝑦(𝑁 − 𝐿 − 1) 𝑦(𝑁 − 𝐿) … 𝑦(𝑁 − 1) (!!!)×(!!!)

, 

𝑌! =

𝑦(0) 𝑦(1) … 𝑦(𝐿 − 1)
𝑦(1) 𝑦(2) … 𝑦(𝐿)
⋮ ⋮ ⋮ ⋮

𝑦(𝑁 − 𝐿 − 1) 𝑦(𝑁 − 𝐿) … 𝑦(𝑁 − 2) (!!!)×!

, 

𝑌! =

𝑦(1) 𝑦(2) … 𝑦(𝐿)
𝑦(2) 𝑦(3) … 𝑦(𝐿 + 1)
⋮ ⋮ ⋮ ⋮

𝑦(𝑁 − 𝐿) 𝑦(𝑁 − 𝐿 + 1) … 𝑦(𝑁 − 1) (!!!)×!

. 

We first define an error measurement system which gets the information of the system by 

checking and comparing the data of input 𝑢(𝑡) and output 𝑦(𝑡). We can then describe the time 

response of the system as: 

ℎ 𝑡 = 𝐴!𝑒!!!!
!!! , 

where 𝜆! is the pole of the system. Then, the convolution of the system with noise 𝑞(𝑡) can be 

written as: 

𝑦 𝑡 = ℎ 𝑡 ∗ 𝑢 𝑡 + 𝑞 𝑡 = 𝑒!!!𝐴! 𝑒!!!![𝑢 𝜏 + 𝑞 𝜏 ]𝑑𝜏!
!

!
!!! . 

The set of pencil is then: 

𝑦! 𝑡 − 𝜆𝑦! 𝑡 ,…  ,𝑦! 𝑡 − 𝜆𝑦!!! 𝑡 ;𝑢! 𝑡 ,…  ,𝑢!!! 𝑡 , 

and they are independent if 𝜆 becomes one of the system poles. 

When the noise of the data is ignored, the information data is written as: 

𝑦 𝑡 = 𝑒!!!𝐴! 𝑒!!!!𝑢 𝜏 𝑑𝜏!
!

!
!!! . 

The output of the system is: 

𝑦 𝑡 = 𝐴!𝑝!(𝑡)!
!!! , 

where 𝑝! 𝑡 = 𝑒!!! 𝑒!!!!𝑢 𝜏 𝑑𝜏!
!      𝑗 = 1,… ,𝑛 . 
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Considering a linear filter between input and output, we can write them as: 

𝑢!!! 𝑡 = 𝑢! 𝜏 𝑑𝜏
!
! 𝑖 = 1,… ,𝑛

𝑦!!! 𝑡 = 𝑦! 𝜏 𝑑𝜏
!
! 𝑖 = 1,… ,𝑛

. 

The information data is formulated as:  

𝑦!!! 𝑡 = 𝐴!
!!(!)

!!
! − !!!!(!)

!!
!!!!!

!
!!!

!
!!! 𝑖 = 1,… ,𝑛. 

This equation implies that the pencil sets 𝑦! 𝑡 − 𝜆𝑦! 𝑡 ,…  ,𝑦! 𝑡 − 𝜆𝑦!!! 𝑡 ; 

 𝑢! 𝑡 ,…  ,𝑢!!! 𝑡  are linearly dependent when 𝜆 takes the same value with one of the system 

poles as the pencil set bounds the independent set of functions, 𝐴!𝑝! 𝑡 ,…  ,𝐴!𝑝! 𝑡 ; 

𝑢! 𝑡 ,…  ,𝑢!!! 𝑡  by the 2𝑛×2𝑛 matrix as follows: 

𝐸 𝑋
0 𝐼 , 

where 𝐼 and 0 are the identity and zero matrices of order 𝑛. Here, the matrix assumption depends 

on the matrix 𝐸: 

𝐸 = 𝑒!" = (1− 𝜆 𝜆!) 𝜆!!!! 𝑖, 𝑗 = 1,… ,𝑛, 

where 𝑀 < 𝐿 < 𝑁 −𝑀, 𝑧! becomes eigenvalue of the system of the matrix pencil 𝑌! − 𝑧[𝑌!]. 

Here, the classical eigenvalue problem is defined as the solution of 𝐴 𝑣! = 𝜆!𝑣!, 𝑛 = 1,… ,𝑀, 

where 𝜆 is the eigenvalue and 𝑣! is the eigenvector of the matrix 𝐴 . 

Two matrices [𝑌!] and [𝑌!] can be described as: 

𝑌! = 𝑍! 𝑅 𝑍! 𝑍! , 𝑌! = 𝑍! 𝑅 𝑍! , 

where 

𝑍! =

1 1 … 1
𝑧! 𝑧! … 𝑧!
⋮ ⋮ ⋮ ⋮

𝑧!!!!!! 𝑧!!!!!! … 𝑧!!!!!! (!!!)×!

, 
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𝑍! =

1 𝑧! … 𝑧!!!!

1 𝑧! … 𝑧!!!!
⋮ ⋮ ⋮ ⋮
1 𝑧! … 𝑧!!!! !×!

, 

𝑍! = 𝑑𝑖𝑎𝑔 𝑧!, 𝑧!,… , 𝑧! , 

𝑅 = 𝑑𝑖𝑎𝑔 𝑅!,𝑅!,… ,𝑅! . 

The pencil matrix equation becomes 𝑌! − 𝜆 𝑌! = 𝑍! 𝑅 𝑍! − 𝜆[𝐼] [𝑍!]. When 𝜆 = 𝑧! 

(𝑖 = 1,2,…  ,𝑀), ith row of 𝑍! − 𝜆[𝐼] becomes zero and its rank becomes 𝑀 − 1. When 

𝑍! − 𝜆[𝐼] is zero, two matrices, 𝑍!  and 𝑍!  vanishes. Hence, 𝑧! is found as the generalized 

eigenvalue of the matrix pair ( 𝑌! ; 𝑌! ). The problem then turns into finding the eigenvalues of 

the matrix pencil problem. We first write the convolution matrix ([]! denotes pseudo-inverse): 

[𝑌!]! 𝑌! = [𝑍!]![𝑅]!![𝑍!]![𝑍!][𝑅][𝑍!][𝑍!]
. = [𝑍!]! 𝑍! 𝑍!                                    . 

Using the vector, 𝑝! (= [𝑝! ,𝑝!!!,… ,𝑝!!!!!]!), and the generalized eigenvector of 𝑌! -𝑧 𝑌!  

[𝑌!]! 𝑌! 𝑝! = 𝑝! 𝑖 = 1,… ,𝑀
[𝑌!]! 𝑌! 𝑝! = 𝑧!𝑝! 𝑖 = 1,… ,𝑀. 

Then, we calculate the pseudo inverse using the singular value decomposition of 𝑌! : 

𝑌! = 𝑠!𝑢!𝑣!!!!!,! = 𝑈 𝑆 𝑉 !

[𝑌!]! = 𝑉 𝑆 !![𝑈]!
, 

where 𝑈 = [𝑢!,… ,𝑢!] is the matrix containing the left singular vectors of 𝑌! , 𝑉 =

[𝑣!,… , 𝑣!] is the matrix containing the right singular vectors of 𝑌! , and 𝑆 = 𝑑𝑖𝑎𝑔[𝑠!,… . , 𝑠!] 

([]! denotes the conjugate transpose of a matrix).  

When the data 𝑦(𝑡) is noisy, we choose the singular values, 𝑠!,… . , 𝑠!, to be the 𝑀 

largest values of [𝑌!] ([𝑌!]! is the truncated pseudo inverse of [𝑌!]). Now, [𝑌!]! − [𝑌!] 

multiplied by [𝑉]! yields: 

𝑍 − 𝑧! 𝐼 𝑧! = 0 𝑖 = 1,… ,𝑀, 
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where 𝑍 = [𝑆]!![𝑈]! 𝑌! 𝑉  and 𝑧! = [𝑉]!𝑝!. 𝑍  is an 𝑀×𝑀 matrix, 𝑧! and 𝑧! are eigenvalue 

and eigen vector of 𝑍 , respectively. The optimal choice of 𝑀 can be done with the following 

procedure. The SVD of 𝑌  is 𝑌 = 𝑈 𝑆 𝑉 !, where 𝑈  and 𝑉  are unitary matrices 

composed of eigenvectors of 𝑌 𝑌 ! and 𝑌 ! 𝑌 , respectively and [𝑆] is the diagonal matrix 

composed of the singular values of [𝑌], i.e. 𝑈 ! 𝑌 𝑉 = [𝑆]. 

After finding the singular values of 𝑌 , we start to compare the ratio of different singular 

values. We define a singular value 𝑠!, i.e. 𝑠! 𝑠!"# ≈ 10!!, where 𝑝 is the number of significant 

decimal digits in the data. For the ratio of the singular values lower than 10!!, singular values 

are noisy and cannot be used to reconstruct the data. [𝑉!] is the filtered matrix which is 

constructed after selecting the value, 𝑀, and filtering the data, so it contains only 𝑀 dominant 

right singular vectors of [𝑉]. 

𝑉! = [𝑣!, 𝑣!,… , 𝑣!]. 

The two matrices, [𝑌!] and [𝑌!] turn into: 

[𝑌!] = 𝑈 [𝑆!][𝑉′!]!, 

[𝑌!] = 𝑈 [𝑆!][𝑉′!]!, 

where [𝑆!] is obtained from the 𝑀 columns of [𝑆] corresponding to the 𝑀 dominant singular 

values. Thus, the eigenvalues of the following matrix for the noiseless matrix, [𝑌]: 

( 𝑌! − 𝜆 𝑌! )!×! → ( 𝑌! ! 𝑌! − 𝜆[𝐼])!×! 

are equivalent to the eigenvalues of the matrix below: 

([𝑉!!]−  𝜆 𝑉!! !) → ( 𝑉!! !)!( 𝑉!! !)! −  𝜆[𝐼]. 

The algorithm provides the minimum variance when estimating 𝑧! in the presence of noise. After 

finding 𝑀 and 𝑧!, 𝑅! can be found from the following matrix solution: 
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𝑦(0)
𝑦(1)
⋮

𝑦(𝑁 − 1)

=

1 1 … 1
𝑧! 𝑧! … 𝑧!
⋮ ⋮ ⋮ ⋮

𝑧!!!!!! 𝑧!!!!!! … 𝑧!!!!!!

𝑅!
𝑅!
⋮
𝑅!

 

 

Critical angle between two dielectric layers 

For an incident wave travelling between two media, it obeys the Snell’s law, i.e. 𝜀!𝜇! sin𝜃! =

𝜀!𝜇! sin𝜃!. When 𝜀! ≫ 𝜀!, a critical angle is defined as the angle which makes the refraction 

angle 𝜃! = 𝜋 2 such that no transmission exists from layer 2 to 1: 

𝜃! = 𝜃! ⇒ 𝜃! = 𝜋 2 ⇒ 𝜃! = sin!! !!!!
!!!!

 . 

 

Reflection coefficient of a TE-polarized wave propagating between two dielectric layers 

In order to determine the reflection coefficients for the Kretschmann geometry, we utilize the 

three-layered system where we have multiple reflections and transmission between different 

layers (Figure 4b). For a TE-polarized wave propagating between two dielectric media,  

𝐸!!! = 𝑦 𝐸!!!! 𝑒!!!!
!!! !!!!!

!!! ! + 𝐸!!!! 𝑒!!!!
!!! !!!!!

!!! ! , 

𝐸! = 𝑦 𝐸!!𝑒!!!!
! !!!!!

! ! + 𝐸!!𝑒!!!!
! !!!!!

! ! , 

defining 𝑅!!!,! and 𝑇!!!,! as the reflection and transmission coefficients of the incident wave 

from layer 𝑖 + 1 to 𝑖, and 𝐸! as the amplitude of the incident wave, then the amplitude of the 

electric field in each medium can be written as follows: 

𝐸!!!! = 𝐸!, 𝐸!!!! = 𝑅!!!,!𝐸!, 𝐸!! = 0, 𝐸!! = 𝑇!!!,!𝐸!. 

Then the electric field in two media becomes: 

𝐸!!! = 𝑦𝐸!𝑒!!!!
!!! ! 𝑒!!!!

!!! ! + 𝑅!!!,!𝑒!!!!
!!! ! , 



7	
	

𝐸! = 𝑦𝑇!!!,!𝐸!𝑒!!!!
! !𝑒!!!!

! !. 

Substituting these electric field definitions to Maxwell’s curl equation (∇×𝐸 = −𝑗𝜔𝜇𝐻), 

magnetic fields are determined as: 

𝐻!!! = − !!!!!!!
!!! !

!"#
( −𝑧𝑗𝑘!

!!! − 𝑥𝑗𝑘!
!!! 𝑒!!!!

!!! ! + [−𝑧𝑗𝑘!
!!! +

𝑥𝑗𝑘!
!!! ]𝑅!!!,!𝑒!!!!

!!! !), 

𝐻! = − !!!!,!!!!!!!!
! !

!"#
(−𝑧𝑗𝑘!

! − 𝑥𝑗𝑘!
! )𝑒!!!

! !. 

The boundary condition, implying that the tangential components of electric and magnetic fields 

(𝑥 and 𝑦) are continuous, yields: 

1+ 𝑅!!!,! = 𝑇!!!,! 𝑘!
!!! 1− 𝑅!!!,! = 𝑘!

! 𝑇!!!,!. 

Hence, the reflection coefficient of the TE-polarized wave is obtained as (𝑘! = 𝑘! 𝜀 cos𝜃): 

𝑅!!!,! =
!!
!!! !!!

!

!!
!!! !!!

! ⟶ 𝑅!!!,! =
!! !!!! !"#!!!!!!! !! !"#!!
!! !!!! !"#!!!!!!! !! !"#!!

. 

Arranging terms and using  cos! 𝜃 = 1− sin! 𝜃: 

𝑅!!!,! =
!!!! !"#!!!!! !! !!

!!!!
!!

!"#! !!

!!!! !"#!!!!! !! !!
!!!!
!!

!"#! !!
. 

 

Reflection coefficient of a TE-polarized wave propagating at an angle greater than the 

critical angle between two dielectric layers 

When the incident angle is greater than the critical angle, 𝜃! = sin!! 𝜀! 𝜀!!!: 

sin𝜃! > sin𝜃! =
!!
!!!!

→ sin𝜃!!! > 1. 

The inequality is satisfied for the complex solutions of 𝜃!!!: 
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𝑘! = 𝑥𝑘!
! − 𝑧𝑘!

! , 

where 

𝑘!
! = 𝑘! sin𝜃!, 

𝑘!
! = 𝑘! cos𝜃! = 𝑘! 1−

𝜀!!!
𝜀!

sin! 𝜃! = 𝑘! 𝜀! 1−
𝜀!!!
𝜀!

sin! 𝜃! 

 ⟶ 𝑘!
! = 𝑘! 𝜀!!!

!!
!!!!

− sin! 𝜃! = 𝑗𝑘!!! sin! 𝜃! −
!!
!!!!

. 

Then the electric and magnetic fields in each vector are written as: 

𝐸!!! = 𝑦𝐸!𝑒!!!!!! !"#!!!!! 𝑒!!!!!! !"#!!!!! + 𝑅!!!,!𝑒!!!!!! !"#!!!!! , 

𝐸! = 𝑦𝑇!!!,!𝐸!𝑒!!!! !"#!!!𝑒
!!!!! !"#! !!!

!!
!!!!, 

𝐻!!! = − !!!!!!!!! !"#!!!!!

!"#
( −𝑧𝑗𝑘!!! sin𝜃!!! − 𝑥𝑗𝑘!!! cos𝜃!!! 𝑒!!!!!! !"#!!!!! +

[−𝑧𝑗𝑘!!! sin𝜃!!! + 𝑥𝑗𝑘!!! cos𝜃!!!]𝑅!!!,!𝑒!!!!!! !"#!!!!!), 

𝐻! = − !!!!,!!!!!!!! !"#!!!

!"#
−𝑧𝑗𝑘! sin𝜃! + 𝑥𝑘!!! sin! 𝜃! −

!!
!!!!

𝑒
!!!!! !"#! !!!

!!
!!!!

!
. 

Here, the field in layer 𝑖 is evanescent (exciting SPs in layer 𝑖 + 1) when 𝜀!!! ≫ 𝜀! and the 

incident angle is greater than the critical angle defined between two layers. Using the continuous 

boundary conditions for both electric and magnetic fields, the reflection coefficient is calculated 

as:  

𝑅!!!,! =
!"#!!!! !"#! !!!

!!
!!!!

!"#!!!! !"#! !!!
!!

!!!!

. 
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