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Abstract: In this paper, we obtain the modified Newton’s gravitational law from deformed Poisson bracket motivated
by the generalized uncertainty principle. The modified Newton’s gravitational law that we obtain contains a term that
plays an important role only in the regime of first order in β̄ . In the ordinary situation or condition, the modified
Newton’s gravitational law reduces to the conventional Newton’s gravitational law.
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1. Introduction
The Planck length is predicted to be the smallest measureable length. This prediction is the consequence of
the various approaches of quantum gravity, such as string theory and loop quantum gravity. These theories

suggest the existence of the smallest measurable length, which is of the order of Planck length LP =
√
ℏG

/
c3 ≃

1.6× 10−35m . This existence of minimum measurable length has also led to the modification of the Heisenberg
uncertainty principle [1–5]. The conventional Heisenberg uncertainty principle does not yield any minimal
length. Hence, the conventional Heisenberg uncertainty principle is modified to the so-called generalized
uncertainty principle. The generalized uncertainty principle is oriented on the deformation of commutation
relation. In the classical limit, the quantum mechanical commutator is replaced by the Poisson bracket [6]. In
this paper, the deformed Heisenberg algebra leads to the deformed Poisson bracket for corresponding classical
variables. The deformed Poisson bracket yields the modified equations of motion.

The work in this paper is inspired by the generalized uncertainty principle. Some classical problems were
already investigated within the framework of deformed Poisson brackets, such as in references [7–11]. In this
paper, we study Newtonian gravitation from the classical limit of deformed Heisenberg algebra as proposed by
Kempf et al. [1]. Their deformed Heisenberg algebra is given as [x, p] = iℏ

(
1 + βp2

)
. Parameter β become

important only when the scale is near the Planck scale. If β → 0 , then the modified Heisenberg algebra would
reduce to the conventional Heisenberg algebra. Besides this, it is also well known that the correspondence
between the quantum mechanical commutator and the Poisson bracket does exist. Consequently, the deformed
Poisson bracket can be generated and the deformed equations of motion are formed. Newtonian mechanics are
thus modified via the extra terms, which become important in extraordinary situations.

In this paper, we work on the classical limit of the deformed commutation relation. The classical limit of
the deformed commutation relation is given by the deformed Poisson bracket. We derive a modified Newton’s
gravitational law from the deformed Poisson bracket. In order to differentiate parameter β as found in the
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generalized uncertainty principle and in the classical limit, we denote β in the classical limit as β̄ . Parameter
β in the work of the generalized uncertainty principle is taken to be relevant only when the scale is near the
Planck scale, while parameter β̄ in this study of classical limit is taken to be significant only when the length
scale is in the regime of the so-called β̄ -scale. Besides this, we would also like to highlight that we consider the
parameter β̄ only up to first order in this study.

It has been known for a long time that an object can escape the gravitational field of another massive
object if the object’s velocity is equal to or more than a minimum velocity, which is called the escape velocity.
This is done by establishing an equation from the principle of conservation of energy. The energy of an escaping
object consists of kinetic and gravitational potential energy and is taken to be constant, where energy = kinetic
energy + gravitational potential energy. The formula for escape velocity can be derived from this energy
equation. However, a modified formula for escape velocity can be obtained from the deformed Poisson bracket.
The energy equation or Hamiltonian equation is thus modified due to the modification of momentum. The
extra term becomes important only when it is under certain circumstances. Extraordinary circumstances will
be explained later.

The presence of minimal length due to the deformed Heisenberg algebra brings a new development to
classical mechanics as well as quantum theory. Some problems were investigated. These include works on the
equivalence principle reconciling with the generalized uncertainty principle [7], a composite system in deformed
space with minimal length [6], some classical dynamics based on the minimal length uncertainty principle [8,9],
and a universe investigated in the framework of the generalized uncertainty principle [12,13].

In Section 2, we introduce the mathematical formalism that is needed. In Section 3, we review the
conventional Newton’s gravitational law. In Section 4–6, we derive the modified Newton’s gravitational law
based on a deformed Poisson bracket. In Section 7, we present the discussion and conclusion.

2. Mathematical formalism
Let us start by considering the conventional Heisenberg algebra:

[x̂, p̂] = iℏ

or
1

iℏ
[x̂, p̂] = 1. (1)

Paul Dirac [6] proposed that there is a correspondence between the quantum mechanical commutator and
Poisson bracket, given as follows:

1

iℏ
[x̂, p̂] = (x, p) . (2)

Eq. (2) reduces to Eq. (1) since (x, p) = ∂x
∂x

∂p
∂p − ∂x

∂p
∂p
∂x = 1 . Recently, many works have been done on the

generalized uncertainty principle, such as in references [14–19]. One of the deformed Heisenberg algebras is the
one proposed by Kempf et al. [1], described as follows:

1

iℏ
[x̂, p̂] =

(
1 + βp̂2

)
(x, p) . (3)

In general, we may write Eq. (3) above as:

1

iℏ
[x̂, p̂] = f(p̂) (x, p) , (4)
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where f(p̂) is the general function of p̂ . It is also known that for any two observablesA, B , we have

1

iℏ

[
Â, B̂

]
= {A,B} . (5)

Comparing Eq. (4) with Eq. (5), we conclude:

{A,B} = f (p) ·
(
∂A

∂x

∂B

∂p
− ∂A

∂p

∂B

∂x

)
. (6)

Now let us introduce a Hamiltonian of the following form:

H =
p2

2m
+ V, (7)

where potential energy V = V (x) . We have to keep in mind that momentum p in Eq. (7) is not the conventional
momentum; it also contain the correction terms in β̄ -scale. In other words, the momentum in Eq. (7) can deal
with the β̄ -scale. Besides this, we also take the assumption that potential energy V in Eq. (7) is also valid in
the regime of the β̄ -scale. The modified Hamilton equations are then given as:

v =
dx

dt
= {x,H} = f (p) · p

m
(8)

and

F =
dp

dt
= {p,H} = −f (p) · dV

dx
, (9)

where v and F are velocity and force, respectively. Eqs. (8) and (9) can reduce to conventional Hamilton
equations for the limit f (p) → 1 . Up to the first order in β̄ , p can be written approximately as [7,10]:

p = p0 + β̄p1 (10)

where p0 = mv is the conventional formula for momentum. In other words, p0 = mv is the formula of
momentum under conventional Newtonian mechanics. If β̄ → 0 , then p = p0 . However, if β̄ ̸= 0 , then
momentum p is different from the conventional momentum p0 = mv . Thus, momentum p is taken to be the
momentum that is valid in the regime of first order in β̄ . The momentum p is approximated only up to first
order in β̄ . As indicated in the Taylor series expansion, the momentum p is slightly divergent from p0 . In
other words, the magnitude of momentum p is close to p0 . We should highlight that the subscript 0 is used
to represent the formula under conventional Newtonian mechanics. For example, the conventional Newton’s
second law is F = dp0

dt and conventional momentump0 = mv . We would also like to stress here that since
x = x0 , the potential energy V is taken to be valid in all scales, including the β̄ -scale.

3. Conventional Newtonian gravitational law
Let us consider an object of mass m escaping away from a gravitational field of a bigger object of mass M . By
employing the spherical coordinates system (r, θ, ϕ) and assuming the object moves along the radial coordinate,
the Hamiltonian of the object of mass m is of the following form:

H =
p20
2m

− GMm

r
, (11)
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where potential energy V = V (r) = −GMm
r . Substituting Eq. (11) into Eqs. (8) and (9) and taking f (p) → 1

or β̄ → 0 , we obtain:

v =
dr

dt
= {r,H} =

p0
m

, (12)

F =
dp0
dt

= {p0,H} = −dV

dr
. (13)

The force F in Eq. (13) is the conventional Newton’s gravitational law since f (p) → 1 and it is given as:

F = −GMm

r2
. (14)

4. Modified Newtonian gravitational law

We now take f (p) = 1 + β̄p2 . Hence, Eqs. (8) and (9) become:

v =
(
1 + β̄p2

)
· p

m
(15)

and

F = −
(
1 + β̄p2

)
· dV
dr

. (16)

We substitute Eq. (10) into β̄p2 in Eq. (15) and, up to the first order of β̄ , we obtain an equation as follows:

v =
p+ β̄p20p

m
. (17)

Again substituting Eq. (10) into β̄p20p in Eq. (17), we get

p = p0 − β̄p30, (18)

where p0 = mv . We now substitute Eq. (10) into β̄p2 in Eq. (16), and up to the first order of β̄ , we obtain

F = −
(
1 + β̄p20

)
· GMm

r2
. (19)

In the limit β̄ → 0 , the conventional Newtonian gravitational law is recovered. In general, the gravitational
force is dependent on conventional momentum p0 = mv . In conventional classical mechanics, the total energy

of an object moving in a gravitational field is given by E0 =
p2
0

2m − GMm
r , where p0 = mv . Therefore, Eq. (19)

can also be written as:

F = −GMm

r2
− β̄

(
2E0m+

2GMm2

r

)
GMm

r2
. (20)

The gravitational force is thus also said to be dependent on the total energy of an object in a gravitational field.
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5. Modified Newtonian gravitational law when E0 = 0

We now consider a special case where E0 = 0 . The object can escape from the gravitational field and hence

v =

√
2GM

r
. (21)

We now differentiate velocity v in Eq. (21) with respect to time t to obtain the gravitational acceleration g0

as follows:

g0 =
dv

dt
= −GM

r2
. (22)

Eq. (22) is indeed the standard Newton’s gravitational acceleration. It is appropriate to set E0 = 0 . The
velocity v in Eq. (21) gives the velocity of the escaping object as a function of radial distance in the entire
gravitational field. The differentiation of v with respect to time t is the Newton’s gravitational acceleration
g0 = −GM

r2 . If E0 = 0 , the object can just barely escape the gravitational field. If E0 > 0 , the kinetic energy is
dominant and the object will keep moving and will not stop even beyond the gravitational field. If E0 < 0 , the
potential energy is dominant and the object will be attracted by the gravitational force and fall down. Since
force F in Eq. (20) is intended to be able to provide the gravitational force in the entire gravitational field, it
is appropriate to set E0 = 0 . In the case where E0 = 0 , Eq. (20) reduces to the following:

F = −GMm

r2
− β̄

(
2G2M2m3

r3

)
. (23)

Eq. (23) is the modified Newton’s gravitational law. We could obtain the gravitational potential energy by
integrating gravitational force over radial distance. By integrating Eq. (23) over the radial distance from r to
∞ , the modified gravitational potential energy is given as follows:

V̄ = −GMm

r
− β̄

(
2G2M2m3

r2

)
. (24)

Both V̄ and V (r) = −GMm
r are potential energy, but what is the difference between them? To answer this

question, we may want to recall Eq. (19), F = −
(
1 + β̄p20

)
· GMm

r2 . We can actually rewrite this equation as
follows:

F = −dV

dr
= −

(
1 + β̄p20

)
· dV
dr

, (25)

where V = −GMm
r and V̄ = −GMm

r − β̄
(

2G2M2m3

r2

)
. We can see from Eq. (25) that the potential momentum-

independent energy is given by V = −GMm
r , while the potential momentum-dependent energy is given by

V̄ = −GMm
r − β̄

(
2G2M2m3

r2

)
.

Now we would like to find the gravitational acceleration g (we have to highlight here thatg ̸= g0 , where
g0 = −GM

r2 ) . In a simple way, we can establish an equation as follows:

mg = −GMm

r2
− β̄

(
2G2M2m3

r3

)
. (26)
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Subsequently, g is given as follows:

g = −GM

r2
− β̄m2

(
2G2M2

r3

)
. (27)

One might think that the equivalence principle is violated since now the gravitational acceleration g in Eq. (27)
is dependent on the mass of the object, m . However this is not true. From references [6,7], we can see that
parameter β̄ for a macroscopic object can be written as

β̄ =
∑
i

µi
3β̄i, (28)

where µi = mi∑
i
mi

. The symbol β̄i denotes the parameters of individual particles that form the macroscopic

object or system, while mi is the mass of the individual particle. If the macroscopic object or system consists
of the same N particles, then m1 = m2 = m3 = ...... = mN and β̄1 = β̄2 = β̄3 = ...... = β̄N . The total mass of
the macroscopic object or system is given as m = m1 +m2 +m3 + .....+mN = NmN . The β̄ in Eq. (28) can
then be rewritten as follows:

β̄ =
β̄N

N2
. (29)

Hence, β̄m2 = β̄Nm2

N2 = β̄Nm2
N . Therefore, g in Eq. (27) is now not dependent on mass m but dependent on

the term β̄Nm2
N . The term β̄Nm2

N is the same for all objects of different mass. This is due to the assumption
that all objects consist of the same particles. Hence, the equivalence principle is preserved. The authors in [7]

also showed that, by supposing
√
β̄1m1 =

√
β̄2m2 = ........ =

√
β̄NmN = γ , the effective parameter β̄ for a

macroscopic body is given by β̄ = γ2

m2 , where γ is considered as a fundamental constant and taking the same
value for all objects. Therefore, the parameter β̄ is proportional to 1

m2 . Since γ2 is a fundamental constant,
Eqs. (23), (24), and (27) can be rewritten in the following way:

F = −GMm

r2
− KM2m

r3
, (30)

V̄ = −GMm

r
− KM2m

r2
, (31)

and

g = −GM

r2
− KM2

r3
, (32)

where constant K = 2G2γ2 .

6. Modified Newtonian gravitational law when E0 = −GMm
2r

In this section, we consider a case where an object is orbiting around a central mass M . From the conventional
Newton’s law of gravitation, the energy of an object orbiting around a central mass M is given by:

E0 = −GMm

2r
. (33)

64



SIONG/Turk J Phys

Hence, Eq. (20) reduces to:

F = −GMm

r2
− β̄m2

(
G2M2m

r3

)
. (34)

The gravitational potential energy and gravitational acceleration are thus given by:

V̄ = −GMm

r
− β̄m2

(
G2M2m

r2

)
(35)

and

g = −GM

r2
− β̄m2

(
G2M2

r3

)
. (36)

Eqs. (34), (35), and (36) can be rewritten as follows:

F = −GMm

r2
− LM2m

r3
, (37)

V̄ = −GMm

r
− LM2m

r2
, (38)

and

g = −GM

r2
− LM2

r3
, (39)

where L = G2β̄m2 = G2γ2 . Now we can determine the magnitude of rotation velocity v from the following

formula:g = v2

r . Therefore:

v2 =
GM

r
+

LM2

r2
. (40)

In conventional Newtonian mechanics, Eq. (40) reduces to v2 = GM
r where v decreases with respect to r .

However, we now show that the square of rotation velocity, v2 , is corrected by the second term of the right-
hand side.

7. Discussion and conclusions
We consider two cases: in the first case, an object is escaping from a gravitational field, whereas in the second
case, an object is orbiting around a central mass. We have obtained the momentum-dependent gravitational
potential energy, momentum-dependent gravitational force, and momentum-dependent gravitational accelera-
tion. They are Eqs. (30) and (37), Eqs. (31) and (38), and Eqs. (32) and (39). The K -terms and L -terms
become important if the magnitude of M2/r3 is large. The values of K and L are yet to be determined from

experiments. If we assume that the K -terms or L -terms become important only if KM2

r3 ≥ x or LM2

r3 ≥ x ,

then M2

r3 ≥ x
K or M2

r3 ≥ x
L . We believe that under normal conditions, such as for an ordinary star or planet,

the K -terms orL -terms are expected to be negligible and hence the conventional Newton’s gravitational law
must be used. The gravitational accelerations of Eqs. (27) and (36) seem to be dependent on m ; however, this
is not true. In the future, it would be worthwhile to investigate the theoretical value of fundamental constant
γ2 = β̄m2 .
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In order to apply Eqs. (30), (31), (32), (37), (38), (39), and (40), the object must be moving in a
gravitational field so that the object has momentum; otherwise, the conventional Newton’s law of gravitation
must be used. In the future, we would like to study the possibility of explaining flat galaxies’ rotation curves
based on the momentum-dependent formulas. It is learned from conventional Newtonian mechanics that the
rotation velocity of an object in a galaxy decreases with distance from the center. However, observations
indicate that the rotation velocity is independent of the distance from the center of a galaxy (flat rotation
curves). To solve this problem, the second term on the right-hand side of Eq. (40) is treated as a correction
term for compensating the decrease in rotation velocity. Hence, Eq. (40) may be used to explain the flat
galaxies’ rotation curves. Nevertheless, its validity in explaining the flat galaxies’ rotation curves depends on
the empirical value of constant L .
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