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Abstract: We investigate the Lorentz-violating effects of Standard Model Extension (SME) in single W boson pro-
duction process p p → p γ p → pW− q′X at the Large Hadron Collider (LHC). We employ the Weizsacker–Williams
approximation for photons emitted from one of the incoming proton beams and consider γq → W−q′ as a subpro-
cess in the proton-proton collision. The behavior of the differential cross-section for various orientations of the constant
background fields is obtained by taking into account longitudinal and transverse polarization states of the final W bosons.
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1. Introduction
The Standard Model (SM) of particle physics and Einstein’s general theory of relativity are the most successful
theories to date. Lorentz symmetry is involved as a fundamental assumption in both of these theories and the
unification of these theories is expected to make an agreement at Planck scale, mp ≃ 1019 GeV, for a unified
quantum description of nature. The Planck scale is 1015 times larger than the energy achieved at the LHC.
Therefore, it is currently not possible to conduct experiments directly on the Planck scale. On the other hand,
some suppressed effects emerging from the unified quantum theory at the Planck scale might be observable
in highly sensitive low-energy experiments. One such candidate is the violation of the equivalence principle
associated with Lorentz symmetry breaking [1–4]. As was discussed in the literature, Lorentz violations can
exist in mechanisms of string theory or quantum gravity [5–8]. Any observable signal that may originate from
Lorentz violation can be defined via an effective field theory [9]. The Standard Model Extension (SME) is
such an effective field theory model, which contains violation of the Lorentz symmetry [2, 9]. The minimal
version of SME without gravity offers some useful features: energy-momentum conservation, observer Lorentz
invariance, quantization, hermiticity, microcausality, positivity of the energy, gauge invariance, and power
counting renormalizability [10]. In recent years, the Lorentz-violating coefficients in the minimal SME have
been adopted by experimentalists for reporting sensitivity constraints on Lorentz violation. The minimal SME
has been used comprehensively by theorists and experimentalists to search for leading-order signals of Lorentz
violation [11, 12]. Lorentz violation can be considered especially as a source of new physics effects [13, 14].

In the context of SME, there are two possible classes of Lorentz transformations, namely the observer
and the particle Lorentz transformations. Observer transformations are performed as changes of coordinate
systems as in the conventional Lorentz transformations. On the other hand, particle Lorentz transformations are
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performed on particle fields without changing the observer’s frame. Although these two types of transformations
are equivalent in most cases, the equivalence does not hold when there is a background field [2, 15]. The main
motivation of the SME is that even in the case in which particle Lorentz symmetry is broken, physics can
remain invariant under observer Lorentz transformations. This peculiar situation might happen in the presence
of constant background fields. For instance, assume that we have a constant background tensor field b θϕ .
Then b θϕ transforms as a rank-2 tensor under observer Lorentz transformations, but transforms as 4 × 4

scalars under particle Lorentz transformations. Consequently, observer Lorentz symmetry remains invariant,
but particle Lorentz symmetry is broken.

In this paper, we are interested in the subprocess γq → W−q′ in photon-proton collisions at the Large
Hadron Collider (LHC) in the presence of a constant antisymmetric tensor background field b θϕ . The existence
of this background field throughout the spacetime implies spontaneous Lorentz violation, and we search for
its phenomenological implications. In this respect, we investigate the deviations of SM predictions in the
subprocess γq → W−q′ , which arise from Lorentz violating effects in the WWγ vertex. Thus, we will focus
on the new physics effects in the SME approach. The process γq → W−q′ takes part as a subprocess in
p p → p γ p → pW− q′X in the proton-proton collision. Here q and q′ represent the quark fields and X

represents the proton remnants after deep inelastic scattering. We consider the following eight independent
subprocesses of the main process and sum up the contributions from each subprocess.

(i) γ d → W− u (v) γ u → W− d

(ii) γ d → W− c (vi) γ u → W− s

(iii) γ s → W− u (vii) γ c → W− d

(iv) γ s → W− c (viii) γ c → W− s (1.1)

The other subprocesses are restricted due to the smallness of the CKM matrix elements. Hence, they are
neglected throughout our calculations. We have also neglected subprocesses that include initial state b and t

quarks. This assumption is reasonable, since the quark distributions for b and t quarks give tiny probabilities
with respect to other quarks.

The photon-induced process p p → p γ p → pW− q′X takes place at the LHC via Weizsacker–Williams
photons scattered from one of the initial protons. Since the virtuality of these Weizsacker–Williams photons
is very low, a proton does not disassociate into partons when it emits a Weizsacker–Williams photon [16, 17].
Consequently, such a proton remains intact and can be detected by the detectors. On the other hand, these
intact protons cannot be detected by central detectors. Special detectors called very forward detectors (VFDs)
are needed to detect such proton beams. The LHC is planned to be equipped with VFDs, which can detect
intact protons [18–20]. An important parameter that characterizes VFDs is the momentum fraction loss ξ of
the photon-emitting proton. The range of this parameter determines proton detection acceptance of VFDs. For
a realistic value we will consider a forward detector acceptance range of 0.015 < ξ < 0.15 [18–20].

New physics searches through photon-photon and photon-proton processes at the LHC are widespread
in the literature. These studies cover both experimental and phenomenological papers. Some representative
experimental ones are given in [21–27] and phenomenological ones are given in [28–58]. On the other hand, as far
as we know, SME and Lorentz symmetry violation has not been studied in photon-photon and photon-proton
processes at the LHC. Our paper is the first to investigate Lorentz-violating effects in a photon-proton process
at the LHC.
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2. The cross section of γq → W−q′

The subprocess γq →W−q′ is described by three tree-level Feynman diagrams given in Figure 1. In this paper
we will consider a minimal SME scenario and assume that Lorentz-violating effects modify the WWγ vertex.
As in some papers in the literature (for example, see [13, 14]), we neglect other contributions that may come
from SME (for instance, contributions from rank-4 tensors) and assume that the Lagrangian for the WWγ

vertex is given by

LSME =
ige
2
b θϕ(W−

θνW
+
ϕλF

νλ +W+
θνW

−νλFϕλ +W−
ϕλW

+νλFθν), (2.1)

where b θϕ is the constant background tensor, which is antisymmetric and has dimension of inverse mass square.
The field strength tensors for vector fields Wµν and Fµν can be written as follows:

Wµν = ∂µWν − ∂νWµ, (2.2)

Fµν = ∂µAν − ∂νAµ, (2.3)

where Wµ and Aµ are the W boson and photon fields, respectively.

Figure 1. Tree-level Feynman diagrams for the process γq →W−q′ .

The anomalous WWγ vertex function obtained from the SME Lagrangian in Eq. (2.1) is given by

Γµνλ(k1, k2, k3) =
ige
2
b θϕΓθϕµνλ, (2.4)

where

Γθϕµνλ = k1νk2ϕ (k3θgµλ − k3µgθλ) + k1θk2µ (k3νgϕλ − k3ϕgνλ) + k1λk3θ (k2µgϕν − k2ϕgµν)

+k1ϕk3µ (k2θgλν − k2λgθν) + k2λk3ϕ (k1θgµν − k1νgµθ) + k2θk3ν (k1λgµϕ − k1ϕgµλ)

+ (k1 · k2) (k3µgϕνgθλ − k3θgϕνgµλ + k3ϕgµθgνλ − k3νgµθgϕλ)

+ (k1 · k3) (k2λgθνgµϕ − k2θgµϕgλν + k2ϕgµνgθλ − k2µgϕνgθλ)

+ (k2 · k3) (k1νgµθgϕλ − k1λgµϕgθν + k1ϕgθνgµλ − k1θgµνgϕλ) . (2.5)

Here, k1 represents the momentum of the photon and k2 and k3 represent the momenta of W bosons. Since the
background tensor b θϕ is antisymmetric, it contains 6 independent parameters. These independent parameters
can be parametrized by means of three-vectors ei ≡ b0iΛ2 and bi ≡ (1/2)ϵijkbjkΛ2 , where i, j, k = 1, 2, 3

and Λ represents the new physics energy scale [59]. The three-vectors e⃗ and b⃗ are called electric-like and
magnetic-like, respectively, due to the analogy between b θϕ and electromagnetic field strength tensor F θϕ . We
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decompose e⃗ and b⃗ into parallel ep (bp ) and perpendicular ey (by ) components with respect to the collision
plane, which is assumed to be the x− z plane. Then these vectors can be written as e⃗ = (ep sinψ, ey, ep cosψ)

and b⃗ = (bp sinβ, by, bp cosβ) . For details, see Figure 2. Contraction of bθϕ with arbitrary four-vectors aθ and
cϕ is given by the following identity:

aθcϕb
θϕ =

1

Λ2
[⃗b · (⃗a× c⃗ ) + c0 e⃗ · a⃗− a0 e⃗ · c⃗ ]. (2.6)

Figure 2. Scattering process γq → W−q′ in the center-of-momentum frame. The orientations of vectors e⃗ and b⃗ are
shown in the figure.

The scattering amplitude for the subprocess γq → W−q′ is calculated by using the helicity amplitude
method. The polarization vectors for photon Aµ(k1) and W boson W ν(k2) fields can be written as follows [60]:

ϵµ(k1, φγ) =
1√
2
(0, −φγ , i, 0) , (2.7)

ϵν(k2, φw) =
1√
2
(0, φw cos α, −i, −φw sin α) , (2.8)

ϵν(k2, 0) =
1

2mw
√
s

(
s−m2

w, −(s+m2
w) sin α, 0, −(s+m2

w) cos α
)
, (2.9)

where φγ and φw indicate transverse polarization states for the photon and W− boson and can take either +1
or –1. Here, mw is the mass of the W boson, s is the Mandelstam parameter, and α is the scattering angle in
the center-of-momentum frame (see Figure 2). Longitudinal polarization state of the W boson is given in Eq.
(2.9) and sometimes represented by φw = 0 . The helicity amplitudes of SME can be written as a sum of SM
and new physics (NW) amplitudes:

MSME
φγ , φw

=MSM
φγ , φw

+MNW
φγ , φw

. (2.10)

Since the initial state photons in γq → W−q′ are emitted from unpolarized proton beams, these Weizsacker–
Williams photons should also be unpolarized. Therefore, we consider the case in which initial state photons

70



SPOR and ŞAHİN/Turk J Phys

are unpolarized whereas final state W bosons are polarized. To get a squared amplitude for unpolarized initial
photons but polarized final W, we sum squared amplitudes for φγ = +1 and φγ = −1 :

|Munpol,φw
|2 = |M+1,φw

|2 + |M−1,φw
|2. (2.11)

Final state W boson polarization can be determined by the angular distribution of its decay products. However,
it is experimentally difficult to distinguish φw = +1 and φw = −1 cases. Hence, we consider only transverse and
longitudinal polarizations states of the final W boson. Squared amplitudes for transverse (tr ) and longitudinal
( lo) polarizations are defined as follows:

|Munpol, tr|2 = |Munpol,+1|2 + |Munpol,−1|2, (2.12)

|Munpol, lo|2 = |Munpol, 0|2. (2.13)

The differential cross-section of the subprocess is then obtained from the following well-known formula:(
dσunpol, tr(lo)

dΩ

)
=
s−m2

w

64π2s2
|Munpol, tr(lo)|2. (2.14)

3. Weizsacker–Williams approximation and the cross-section for p p → p γ p → p W− q′ X

The cross-section of the main process p p → p γ p → pW− q′X is obtained by integrating the cross-section of
γq →W−q′ over initial photon and quark distributions:

σ
(
p p → p γ p → pW− q X

)
=

∫ Q2
max

Q2
min

dQ2

∫ x1max

x1min

dx1

∫ x2max

x2min

dx2

×
(

dNγ

dx1dQ2

)(
dNq

dx2

)
σ̂γq→Wq′ (ŝ) , (3.1)

where Q2 and x1 are the virtuality and energy fraction of initial photons and x2 is the momentum fraction
of the proton’s momentum carried by the quark. dNq

dx2
is the quark distribution function of the proton. In our

calculations parton distribution functions of Martin, Stirling, Thorne, and Watt [61] have been used. dNγ

dx1dQ2

is the photon distribution function, which describes a photon spectrum of virtuality Q2 and energy fraction
x1 . When we employ the Weizsacker–Williams approximation, the equivalent photon distribution for equivalent
photons emitted from the incoming proton beam can be written by the following analytical formula [62–64]:

dNγ

dEγdQ2
=
α

π

1

EγQ2

[(
1− Eγ

E

)(
1− Q2

min

Q2

)
FE +

E2
γ

2E2
FM

]
, (3.2)

where

Q2
min =

m2
pE

2
γ

E (E − Eγ)
, FE =

4m2
pG

2
E +Q2G2

M

4m2
p +Q2

, (3.3)

G2
E =

G2
M

µ2
p

=

(
1 +

Q2

Q2
0

)−4

, FM = G2
M , Q2

0 = 0.71GeV 2. (3.4)
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Here, E is the energy of proton beam, mp is the mass of the proton, and µ2
p =7.78 is the magnetic moment of

the proton. FE and FM are functions of the electric and magnetic form factors.
We analyze the effects of SME by considering two different scenarios. In the first scenario we assume

that e⃗ = 0 but b⃗ ̸= 0 (bp = by = 1). Therefore, in this scenario we have one free parameter, which is the angle

β (see Figure 2). In the second scenario we assume that e⃗ ̸= 0 (ep = ey = 1) but b⃗ = 0 . We then have a free
parameter ψ . In Figure 3, we plot SM differential cross-sections for the main process p p → p γ p → pW− q′X

for longitudinally, transversely, and unpolarized final W bosons. In all calculations in this work we assume that
the center-of-mass energy of the proton-proton system is 14 TeV. In Figures 4–6, we present the differential
cross-section as a function of the cosine of the β parameter, which specifies the orientation of the magnetic-like
vector in scenario 1. We consider α = 30◦ , 60◦ , 90◦ , 120◦ , and 150◦ values of the scattering angle. In all plots
the new physics energy scale is taken to be Λ = 500 GeV. We observe from these figures that the behaviors of the
differential cross-sections in transversely polarized and unpolarized cases are very similar to each other. On the
other hand, the longitudinally polarized cross-section exhibits a different behavior. In Figures 7–9, we present
the differential cross-section as a function of the cosine of the ψ parameter, which specifies the orientation of the
electric-like vector in scenario 2. We consider α = 30◦ , 60◦ , 90◦ , 120◦ , and 150◦ values of the scattering angle.
Again, in all plots, the new physics energy scale is taken to be Λ = 500 GeV. We observe from these figures
that as in the case of scenario 1 the behaviors of the differential cross-sections in transversely polarized and
unpolarized cases are very similar to each other. However, the longitudinally polarized cross-section exhibits
a different behavior. Therefore, we conclude that in both of the scenarios, the comparison of longitudinally
and transversely polarized cross-sections is useful in probing Lorentz-violating effects of SME in the process
p p → p γ p → pW− q′X . We also observe from Figures 4–9 that the behaviors of the polarized differential
cross-sections are different in different scenarios.

Figure 3. Differential cross-section of p p → p γ p → pW− q′X as a function of scattering angle cosα for the SM.
Figures from top to bottom show longitudinal polarization, transverse polarization, and unpolarized cases, respectively.

72



SPOR and ŞAHİN/Turk J Phys

Figure 4. Differential cross-section of p p → p γ p → pW− q′X as a function of cosβ in scenario 1. Figures from
top to bottom show the following values of the scattering angle: α = 30◦ , 60◦ , 90◦ , 120◦ , and 150◦ . We consider the
longitudinal polarization case.

Figure 5. The same as Figure 4 but for transverse polarization case.
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Figure 6. The same as Figure 4 but for unpolarized case.

Figure 7. Differential cross-section of p p → p γ p → pW− q′X as a function of cosψ in scenario 2. Figures from
top to bottom show the following values of the scattering angle: α = 30◦ , 60◦ , 90◦ , 120◦ , and 150◦ . We consider the
longitudinal polarization case.
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Figure 8. The same as Figure 7 but for transverse polarization case.

Figure 9. The same as Figure 7 but for unpolarized case.
75



SPOR and ŞAHİN/Turk J Phys

In a real experiment the collision plane (the plane spanned by the momenta of the incoming photon and

outgoing W boson) varies at each collision. On the other hand, e⃗ and b⃗ are constant background vectors and
although they are fixed under particle Lorentz transformations we do not know what their real orientations
are. The best thing we can do is to examine the effects of these background vectors on the cross-section under
some simplifying assumptions. For this purpose we have assumed two different scenarios, and each has one
free parameter that defines the orientation of electric-like (scenario 2) and magnetic-like (scenario 1) vectors
in the collision plane. In Figures 10–13, we perform a different analysis. We assume that only one type of
(electric-like or magnetic-like) vector is nonzero, but different from previous scenarios, we consider randomly
chosen orientations for this nonzero vector. Each time we pick a random orientation of the vector, which is
uniformly distributed on a sphere, and we calculate the corresponding differential cross-section. The results of
these calculations are given in Figure 10 and Figure 11 for e⃗ = 0 with b⃗ chosen randomly and in Figure 12 and
Figure 13 for b⃗ = 0 with e⃗ chosen randomly.

Figure 10. Differential cross-sections for randomly chosen orientations of magnetic-like vector b⃗ . The horizontal axis
shows random numbers generated by a random generator. The electric-like vector is taken to be zero ( e⃗ = 0). Figure
on the left shows the differential cross-section for longitudinal polarization state of the W boson. Middle figure shows
transverse polarization and right figure shows unpolarized cases. The scattering angle is α = 30◦ and Λ = 200 GeV.

Figure 11. The same as Figure 10 but for Λ = 500 GeV.
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Figure 12. Differential cross-sections for randomly chosen orientations of electric-like vector e⃗ . The horizontal axis
shows random numbers generated by a random generator. The magnetic-like vector is taken to be zero ( b⃗ = 0). Figure
on the left shows the differential cross-section for longitudinal polarization state of the W boson. Middle figure shows
transverse polarization and right figure shows unpolarized cases. The scattering angle is α = 30◦ and Λ = 200 GeV.

Figure 13. The same as Figure 12 but for Λ = 500 GeV.

4. Conclusion
We have investigated the Lorentz-violating effects of SME in single W boson production p p → p γ p →
pW− q′X at the LHC. We have shown that the differential cross-section is sensitive to electric and magnetic-
like vectors e⃗ and b⃗ , which define the background tensor field. We have also shown that the behavior of the
differential cross-section depends on the polarization state of final W bosons. Therefore, in a real experiment
both the angular distribution of final W bosons and their polarization will provide us essential data to analyze
possible new physics contributions from SME.
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