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Abstract: We present a theoretical study of the main characteristics of two-color photoionization of hydrogen atoms by
short strong laser pulses. Our numerical approach is performed by numerically solving the time-dependent Schrödinger
equation for a hydrogen atom interacting with Ti:sapphire laser radiation combined with its 15th harmonic. The energy
spectra obtained by the direct numerical solution of the Schrödinger equation are compared with those given by the
Kroll and Watson perturbative approach. This comparison allows us to check the reliability of the latter approximation.
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1. Introduction
During recent years, the availability of increasingly more powerful lasers has stimulated considerable interest in
the study of multiphoton phenomena. In particular, the multiphoton ionization process [1], tunneling ionization
[2], above-threshold ionization (ATI) process [3, 4], and high-order harmonics [5–7] have attracted a great deal
of attention after being exploited in the developement of new sources of coherent radiation. Following the
discovery of these new sources of light it was convenient to study the dynamics of atomic systems in interaction
with two short strong laser pulses: ionization by harmonic photons in the presence of the generating external
laser field.

We propose to study two-color IR-UV multiphoton ionization processes simultaneously using the funda-
mental of a strong IR laser and one of its higher UV harmonics, the latter having a frequency high enough
to ionize the atom, through single-photon absorption. In such a condition, ionization can result from the ab-
sorption of the high-frequency photon together with the exchange of one or several infrared laser photon. In
this context, numerous theoretical and experimental results [8–12] have been published by analyzing the energy
spectra of the obtained photoelectrons. The two-color photoionization spectra reveal the existence of a certain
number of energy peaks situated symmetrically around the harmonic peak. These latter peaks are known as
the side-band peaks, related to the corresponding harmonic peak. They are the signature of an exchange of
many infrared photons by absorption or stimulated emission with the IR laser. Our work consists of numer-
ically solving the time-dependent Schrödinger equation (TDSE) defining the interaction of a hydrogen atom
with short strong laser pulses. The simulation was carried out via an ab initio numerical resolution of the
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TDSE for a three-dimensional (3D) hydrogen atom. For that, we chose the grid method, which consists of the
discretization of the quantities that we want to propagate both in space and in time, i.e. where the partial
derivatives in space are approximated by the method of finite difference to three points. The propagation over
time of the wave function is assured by another integration method similar to that used by Kulander [13]. This
is the Peaceman–Rachford method [14, 15] coupled with an inverse iteration procedure. Once the final wave
function is obtained, a spectral analysis of the ejected electron based on the use of the window operator is
performed. Our aim is to compare the numerical results calculated through the TDSE with those obtained by
the semiclassical treatment theory provided by Kroll and Watson in 1973 [16] for calculating the differential
cross-section of the electron scattering process in the presence of a laser field. The present work is structured
as follows. In Section 2, we review the main steps to numerically solve the TDSE using the grid method and
give a brief summary of the Kroll and Watson approach (KWA). Section 3 is dedicated to the presentation and
discussion of the obtained results. Finally, in Section 4, we give the conclusions of our paper. Atomic units
(ℏ = m = e = 1) are used throughout the derivation.

2. Theoretical approach
2.1. Numerical solution of time-dependent Schrödinger equation
The dynamics of an atom in a strong laser field are known by solving the TDSE:

i
∂

∂t
ψ(r⃗, t) = H(r⃗, t)ψ(r⃗, t). (2.1)

The total Hamiltonian H(r⃗, t) of the system can be decomposed as

H = H0 +Hint(t), (2.2)

where H0 is the time-independent Hamiltonian of the target atom. For hydrogen, it can be written as

H0 = −1

2
∆− 1

r
. (2.3)

The laser–atom interaction is considered within the dipole approximation where the interaction Hamiltonian is
given in the length gauge by

Hint = E⃗(t).r⃗ . (2.4)

For a linearly polarized laser pulse (along the z axis), the electric field is chosen as

E⃗(t) = f(t)
(
EIR sin(ω

IR
t) + EH15

sin(15 ω
IR
t)
)
e⃗z, (2.5)

where e⃗z represents the polarization unit vector and the constants EH15
and EIR are the amplitude of the

harmonic field and the infrared field at the center of the laser pulse, respectively. The envelope f(t) has the
following trapezoidal form:

f(t) =


t/5TIR 0 ≤ t < 5TIR

1 5TIR ≤ t < 35TIR

8− t/5TIR 35TIR ≤ t < 40TIR ,
(2.6)

where the pulse duration is fixed to 40 optical cycles of the infrared laser of period T
IR

.
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The TDSE in Eq. (2.1) is then written in spherical coordinates as follows:

i ∂
∂tψ(r, θ, ϕ, t) =

[
− 1

2r2
∂

∂r

(
r2
∂

∂r

)
+
L2

2r2
− 1

r
+ E⃗(t).r⃗

]
ψ(r, θ, ϕ, t). (2.7)

The lasers are polarized linearly, which conserves the magnetic quantum number. Therefore, the unknown wave
function ψ can be expanded in terms of spherical harmonics as

ψ(r, θ, ϕ, t) =

ℓmax∑
ℓ=0

Rℓ(r, t)

r
Yℓ,0(θ, ϕ), (2.8)

where the magnetic quantum number m is chosen arbitrarily equal to zero and ℓmax is the maximum number
of the angular momentum ℓ .

By substitution of the latter expansion in Eq. (2.7), we find

i ∂
∂tRℓ(r, t) =

[
− 1

2

d2

dr2
− 1

r
+
ℓ(ℓ+ 1)

2r2
+ rE(t) < Yℓ′ ,0 | cos θ | Yℓ,0 >

]
Rℓ(r, t). (2.9)

The elements of the cosine matrix in the angular momentum basis are given by

< Yℓ′ ,0 | cos θ | Yℓ,0 >= aℓδℓ′,ℓ+1 + aℓ−1δℓ′,ℓ−1 , (2.10)

where coefficients aℓ are given by

aℓ =
(ℓ+ 1)√

(2ℓ+ 1)(2ℓ+ 3)
. (2.11)

In the grid method, the kinetic energy operator in Eq. (2.9) is discretized using the three-point finite
difference method used in the [13]:

i
∂

∂t
Rj,ℓ(t) =− 1

2(∆r)2

[
cj−1Rj−1,ℓ(t)− 2djRj,ℓ(t) + cjRj+1,ℓ(t)

]
+

(
ℓ(ℓ+ 1)

2r2j
− 1

rj

)
Rj,ℓ(t) (2.12)

+ E(t)rjf(t)

[
aℓRj,ℓ+1(r, t) + aℓ−1Rj,ℓ−1(t)

]
,

where rj = (j − 0.5)∆r is the electron radial coordinate, and the coefficients cj and dj are defined by

cj =
j2

j2 − 1
4

, dj =
j2 − j + 1

2

j2 − j + 1
4

. (2.13)

The discretized radial wave function Rj,ℓ is calculated on radial box of 1500 a.u. in size with a spatial
step ∆r = 0.1 a.u. The initial radial state Rj,1s is generated by the inverse power method [17].

The propagation over time of the wave function is assured by split-operator method [15]:

Rk+1
j,ℓ (t+∆t) =

[
I + i∆t

2 H0

]−1[
I + i∆t

2 Hint

]−1[
I − i∆t

2 Hint

][
I − i∆t

2 H0

]
Rk

j,ℓ(t), (2.14)

where I is the unit matrix and ∆t is the temporal step.
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The photoelectron spectra were determined with spectral analysis of the atomic wave function, as obtained
immediately after the pulse end.

In order to avoid the explicit calculation of all the eigenstates of the system, a window operator
Ŵ (Ek, q, γ) is defined as [18, 19]

Ŵ (Ek, q, γ) =
γ2q

(H0 − Ek)2
q + γ2q

, (2.15)

where Ek is the energy of the extracted wave function, γ is the energy width, and q is the order of the window
operator.

By using the window operator in Eq. (2.15), the total probability of finding the energy of the photoelectron
within the interval Ek ± γ at the end of the laser pulse is given by

P (Ek, q, γ) =
⟨
ψf

∣∣ γ2
q

(H0 − Ek)2
q + γ2q

∣∣ψf

⟩
=< χ|χ >

(2.16)

with ∣∣χ⟩ = γ2
q−1

(H0 − Ek)2
q−1 + iγ2q−1

∣∣ψf

⟩
, (2.17)

where γ and q are parameters chosen to allow flexibility in the resolution and accuracy of the energy analysis.
In the present implementation, q = 2 and γ = 10−3 a.u.

2.2. Kroll and Watson approach
In order to test the reliability of the method that we have exploited, we propose to compare our results obtained
by the spectral analysis of the wave function, which are calculated numerically by the resolution of the TDSE,
with those obtained by a theoretical semiclassical treatment provided by Kroll and Watson for calculating the
differential cross-section of the electron scattering process in the presence of a laser field. According to Kroll
and Watson, the differential cross-section for the collision process accompanied by the exchange of n photons

(n = 1, 2, 3, ...) is related to the differential cross-section in the absence of the laser field dσ0

dθ by the following
formula [16]: (

dσ(n)

dθ

)
Ek0

=
kn
k0
J2
n(α0.kn)

(
dσ(0)

dθ

)
Ek0

, (2.18)

where k0 =
√

2(ωH15 − Ip) is the ejected electron wave vector in the absence of the IR laser field and

kn =
√
2(ωH15

± nωIR − Ip) (n = 1, 2, 3, ...) denotes its wave vector in the presence of the IR laser after
exchanging n IR-photons, where ωH15 is the energy of the harmonic photon. Jn are the ordinary Bessel
functions and α0 = EIR

ω2
IR

is the constant quiver radius of the free electron in the dressing IR laser. It should

be noted that the KWA is a simple and convenient approximation obtained for multiphoton energy-transfer
processes that accompany the scattering of a charged particle by a scattering potential in the presence of an
external laser field. It is expressed in terms of the differential elastic-scattering cross-section combined with
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known Bessel functions. This approach is valid when the scattering potential is weak or when the laser frequency
is small. We used this approach as an ansatz for the case of a two-color photoionization process.

In order to calculate the ionization differential cross-section by a harmonic photon, i.e. in the absence
of the laser field, it is sufficient to calculate the transition amplitude of the photoionization matrix element,
between the initial bound state |ψ(1s) > of hydrogen and its final continuum state |ψck0

> indexed by the

kinetic energy Ek0
=

k2
0

2 = ωH15
− Ip . Thus, the ionization differential cross-section reads

(
dσ(0)

dθ

)
Ek0

=
∣∣⟨ψck0

|ε⃗H15
.r⃗|ψ1s⟩

∣∣2

=
∣∣ ∫ dr3ψ∗

ck0
(r̂) ε⃗H15 .r⃗ ψ1s(r̂)

∣∣2.
(2.19)

ε⃗H15
is the polarization vector of the harmonic photon.

The total cross-section is then written as follows:

σ(n) =
kn
k0

∣∣S(k0)∣∣ ∫ π

0

sinθ dθ J2
n

(
α⃗0 .⃗k

)
cos2θ (2.20)

with

S(k0) = 8
√
2

1√
k0(1− e−2π/k0)

e−
2
k0

arctan(k0)

(1 + k20)
5/2

. (2.21)

3. Results and discussion
The intensity of the harmonic laser is chosen to ionize the hydrogen atom by absorption of a single photon
of the 15th harmonic of the infrared laser of Ti:sapphire (ωIR = 0.057u.a.). Subsequently, the kinetic energy
EH15

of the ejected electron is simply given by

EH15
= 15ωIR − Ip = 0.355 a.u. (3.1)

In Figure 1, in the absence of a laser field we observe a single photoelectron peak (blue curve) located at energy
EH15

= 0.355 a.u.
In the case of two-color photoionization, the photoelectron spectrum consists of a principal peak related

to the absorption of a harmonic photon accompanied by lateral peaks named SB±n , placed symmetrically on
each side (red curve). These separated satellite peaks of the same quantity, ∆E = ωIR , are associated with the
additional exchange of photons of the IR laser by absorption and/or stimulated emission processes.

The photoelectron peaks are shifted from their positions evaluated by Eq. (3.1) of an order of 10−3 a.u.
This is due to Stark effect, where the energy levels are shifted by an energy quantity given by the ponderomotive
energy Up related to the infrared laser:

UP =
IIR(W/cm2)

ω2
IR(a.u.)I0(W/cm2)

, (3.2)

with I0(W/cm2) = 14.0379× 1016W/cm2 .
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The kinetic energy of the ionized electron can be written as follows:

Ec = ωH15 − (IP + Up), (3.3)

and the kinetic energy of satellite peaks is

EIR = ωH15 ± nωIR − (IP + UP ). (3.4)

In Figure 2, we present the ATI spectra for various infrared laser intensities with a harmonic laser intensity
fixed to IH15

= 109 W/cm2 . By increasing the infrared intensity IIR , the probability of the satellite peaks
increases while the probability related to the harmonic peak decreases, and the birth of other satellite peaks is
possible as well. The phenomenon is seen as if the probability of the harmonic peak was partly transformed
into satellite peaks.

Figure 1. Photoelectron energy spectrum obtained by
photoionization of hydrogen by the Ti:sapphire laser of
fundamental frequency ωH15 = 0.855 a.u. combined with
its 15th harmonics for a harmonic intensity IH15 = 109

W/cm2 and different laser intensities IIR = 0 W/cm2

(single-photon ionization) (blue curve) and IIR = 5×1011

W/ cm2 (red curve).

Figure 2. Photoelectron energy spectrum obtained by
photoionization of hydrogen by the Ti:sapphire laser of
fundamental frequency ωIR = 0.057 a.u. combined with
its 15th harmonics ωH15 = 0.855 a.u. for a harmonic in-
tensity IH15 = 109 W/cm2 and different laser intensities.

As we have already explained, in Figure 3, in addition to the peak associated with the ionization of
hydrogen by the absorption of a harmonic photon of frequency ωH15 , two satellite peaks named SB+1 and
SB−1 , separated by 2ωIR , appear on the spectrum. These two peaks correspond to the absorption and emission
of a single photon infrared. As we see in Figure 3, there is good agreement between the spectrum obtained with
the TDSE results (black curve) and those obtained by the KWA approximation (red curve).

In order not to be limited by the ionization threshold, it is necessary to increase the energy of the
harmonic photon responsible for the ionization of hydrogen in the presence of the infrared laser field, which
makes it possible to have more satellite peaks on the spectrum, i.e. to have a greater exchange of infrared
photons.

We choose to take, for example, the 41st harmonic of a Ti:sapphire laser, but this can pose a problem of
reflection on the boundaries of the simulation box, because the ejected electron will move much more rapidly
in the continuum due to the large value of kinetic energy acquired from the harmonic field and the risk would
be to have a problem in the convergence of numerical results. Consequently, it is necessary to increase the size
of the simulation box to avoid this problem of reflection.

143



CHADDOU et al./Turk J Phys

3.1. Convergence of TDSE results
Several criteria are possible to verify the convergence of the results. Among these, we retain the evolution of

the norm of the wave function over time, Nℓmax
(t) =

Rmax∑
r=0

∣∣ψℓmax(r, t)
∣∣2∆r , for some maximum values of the

angular momentum of the free electron ℓmax .
The convergence criterion is verified to a decrease of the norm Nℓmax(t) when the value of maximum

angular momentum increases; this is clearly observed in Figure 4. For example, if we take the case of a high
value of ℓmax , a decrease of the order of ∼ 10−10 is seen in Figure 4, i.e. N90 ≪ N1

105 , and this allowed us to
ensure the convergence of our program and the results obtained.

Figure 3. Comparison of photoelectron spectra obtained
by solving the TDSE and those obtained by KWA for a hy-
drogen atom interacting with a linearly polarized infrared
laser field of intensity IIR = 5 × 1011 W/cm2 combined
with its 15th harmonic of intensity IH15 = 109 W/cm2 .

Figure 4. Temporal evolution of the norm of the wave
function with different Lmax values.

After confirming the convergence of the results, we compare the energy spectrum of the ejected electron
obtained by calculating the probability P (Ek, n, γ) from the numerical solution of the TDSE with the spectrum
obtained by calculating the differential cross-section using the KWA. The two spectra are shown in Figure
5 for laser intensities of 5 × 1011 W/cm2 and 5 × 1012 W/cm2 . We choose the last intensity in order to
increase the number of satellite peaks as much as possible. From this figure we can say that qualitatively there
is good agreement between the two spectra, but they are a little different quantitatively, which ensures the
reliability of the numerical methods used for the resolution of the TDSE. Indeed, the number of satellite peaks
is identical and also their intensities, even if some variations on the order of 10% are observed between the
approximation and the exact calculation. It should be noted that the KWA is much less demanding in terms of
computational power than the resolution of the TDSE. In addition, we obtain interesting results concerning the
relative importance of the contributions of the Born terms as compared with the above-mentioned sophisticed
numerical treatment.
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Figure 5. Comparison of photoelectron spectra obtained by solving the TDSE and those obtained by KWA for a
hydrogen atom interacting with a linearly polarized infrared laser field of intensity a) IIR = 5 × 1011 W/cm2 and b)
IIR = 5× 1012 W/cm2 combined with its 41st harmonic of intensity IIR = 5× 1012 W/cm2 .

4. Conclusion
We have presented a set of results obtained by numerical solution of the three-dimensional time-dependent
Schrödinger equation. We have discussed the case of processes that can take place in the simultaneous presence
of the fundamental of an IR laser and its 15th harmonic with a frequency large enough to ionize the hydrogen
atom by single-photon absorption. To check the validity of our results, we have compared the obtained two-color
spectra through direct solution of the TDSE with those obtained using the KWA. This comparison shows good
agreement between the two methods. We can therefore conclude that the methods employed in the resolution
of the TDSE are very useful in describing the two-color ionization process of hydrogen. This work was devoted
mainly to the ATI spectra of two-color photoionization. The scattering of the freed electron assisted by infrared
radiation is behind the phenomena of absorption and emission of infrared photons. In a future work, we will
give more attention to this scattering problem.
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