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Abstract: We consider a model of damped vibrations based on fractional differentiation. The model given is completely
consistent with the classical model of vibration with viscous damping. We find the relation between the order of fractional
differentiation in the equation of motion and Q-factor of an oscillator. The proposed approach seems more appropriate
for the physical nature of the described system. The experiment with a vibrating piezoelectric plate, performed as part
of the study, showed good agreement with the model and confirmed that the fractional oscillator model can be used to
describe strongly damped vibrations.
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1. Introduction
Damping in any physical oscillatory system always leads to energy dissipation. In particular, damping in
mechanical systems is caused by various friction processes (viscous and dry friction, air resistance, etc.) and
scattering of elastic waves. Attenuation in electrical systems is the result of the conversion of electromagnetic
energy into heat (the Joule–Lenz law, electrical or magnetic hysteresis in dielectrics or magnets) or the emission
of electromagnetic waves, which in various problems is determined by the Poynting vector. Oscillations in
mechanical and electric systems are often described by the same differential equations. This electromechanical
analogy is often applied in modeling of complicated oscillation processes.

As a rule, damping force is proportional to the velocity of the process. In practice, this means that
friction force may be equivalently replaced by a viscous damping force [1]. The dissipation of energy in the case
of an equivalent damping is the same as the one caused by a real friction.

In this paper, we discuss the applicability of the fractional calculus tools for describing free vibration
with damping. The fractional calculus reveals many effective applications in the modern theory of dissipative
processes modeling [2,3]. An oscillator described by a motion equation with fractional derivatives (or integrals)
is usually called a fractional oscillator. The concept of a fractional oscillator and the physical interpretation of
a fractional integral were presumably first given in [4]. At present, many works devoted to fractional oscillators
have been published. We refer to papers [5–15], in which different approaches to the concept and the current
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state of research on the topic can be found. Nevertheless, a detailed comparative analysis of fractional and
classical models with the use of experimental data has not been conducted yet. In addition, there have been no
explicit expressions offered so far for the relation between the order of fractional differentiation and measurable
physical parameters. We consider these issues here. We compare the classical and fractional approaches and
give a physical interpretation of parameters of the fractional model. In addition, our work contains the results
of an experimental investigation of the vibration of a piezoelectric plate. We consider a free vibration and a
vibration in polystyrene foam. The experiment showed good agreement with the model.

A detailed review of recent works in the field of fractional calculus application to dynamic problems of
solid mechanics has been reported in [13]. In particular, the authors of this survey conclude that the use of the
concept of ”fractional” inertia in oscillation models is unpromising for an engineer since there are no explicit
methods for calibrating the parameters of fractional models. Our paper fills, inter alia, this gap.

2. Classical model
First, as an example of a linear differential equation of vibration with damping, consider the spring pendulum
equation given in the dimensionless form

d2u

dξ2
+ 2D

du

dξ
+ u = 0, (1)

u(ξ) =
x(ξ)

x0
, ξ = ω0t,

where x(ξ) is the pendulum displacement, t stands for the time, x0 is the initial displacement, D is the
damping ratio, and ω0 is the natural frequency.

We add to Eq. (1) the initial conditions

u(0) = 1, u′(0) = 0. (2)

For the solution of the Cauchy problem, Eqs. (1) and (2) can be written in the form

u(ξ) = exp(−Dξ)

[
cos(

√
1−D2 ξ) +

D√
1−D2

sin(
√
1−D2 ξ)

]
. (3)

Let us point out some defects of the model in Eqs. (1)–(3). As follows from Eq. (3), the oscillation never
stops in a finite time. This does not match actual physical processes. Moreover, the dissipative force in Eq. (1)
cannot be derived from the principle of least action, because this principle is applicable to conservative systems
only. Despite these defects, the model in Eqs. (1)–(3) is fruitfully applied to describe nature experiments.

3. Fractional model
Let us derive a fractional oscillator equation. We write an equation of motion in the form

p(x, t) =

t∫
0

G(t− t′)F (x, t′)dt′, (4)

where p(x, t) is the momentum, F (x, t) is the force, and G(t) is the storage function. The storage function G(t)

determines the momentum change in response to the acting force. For a system without dissipation, the storage
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function is the Heaviside step function. This case corresponds to a conservative system with ideal memory.
That is, the momentum does not change after an impulse force action. A system with dissipation gradually
“forgets” the initial force action. The Heaviside step function smears out and, in � simple case, transforms into
the two-parameter power function

G(t) =
1

Γ(α)

b

(ω0t)1−α
, 0 < α ≤ 1, (5)

where b is a positive number and α is a parameter that determines the intensity of the energy dissipation.
There is no dissipation if α = 1 . We substitute Eq. (5) into Eq. (4) and invert the fractional integral. From
the formula for elastic force F (x, t) = −kx (k is the spring stiffness), we get the fractional oscillator equation

d1+αu

dξ1+α
+ bu = 0, (6)

where d1+α

dξ1+α stands for the Caputo fractional derivative of order 1 + α :

d1+αu(ξ)

dξ1+α
=

1

Γ(1− α)

ξ∫
0

d2u(s)

ds2
ds

(ξ − s)α
.

For the solution of the Cauchy problem Eq. (2) for Eq. (6) can be written in the form

u(ξ) = E1+α(−bξ1+α). (7)

Here Eρ(z) is the Mittag-Leffler function, which is defined by

Eρ(z) =

∞∑
k=0

zk

Γ(ρk + 1)
, ρ ≥ 0.

It is known [16] that function Eρ(z) has at most a finite number of real zeroes for ρ ∈ (0, 2) , which depends
on ρ . This means that the fractional oscillation has a limited duration, in contrast to the classical model [15].

4. Interpretation of parameters
Thus, we have two models of vibration with damping for a string pendulum. The former takes the dissipation
into account by appending an additional term, namely the viscous friction force, to the motion equation (1).
The latter uses the storage function (Eq. (5)) in order to consider the dissipation that gives the fractional
differential equation (6). To compare solutions in Eq. (3) and Eq. (7), and to determine the numerical values
of the parameters D , b , and α, providing the highest closeness of these solutions, a computing experiment was
performed. The calculations were performed using Mathcad 15.0. The Mittag-Leffler function E1+α(−bξ1+α)

in Eq. (7) was numerically calculated as an approximate solution to the Volterra-type integral equation

u(ξ) +
b

Γ(1 + α)

ξ∫
0

(ξ − η)αu(η)dη = 1.
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This approach allowed us to calculate the value E1+α(−bξ1+α) with good accuracy for large ξ (in contrast to
an approach based on summation of the power series, for example). The optimization was undertaken by the
method of least squares with respect to all three parameters. The computation showed that the parameter b is
close to unity for the wide range of D and α , and, without loss of acceptable accuracy, we can set b = 1 in Eq.
(6). Taking into account the asymptotic formula for the Mittag-Leffler function (see [16], Theorem 1.5.2), the
optimization with respect to the parameters D and α,with b = 1, yields the following approximate relation
between the parameters of the models:

α =
π

arcctg
(
− 1

2Q

) − 1, Q =
π

δ
, (8)

ω = ω0 sin
(

π

1 + α

)
, (9)

where Q = 1/(2D) is the Q-factor of the oscillatory system, δ is the logarithmic decrement, and ω is the
damped natural frequency. It follows from the result of the computing experiment that the relations between
Eq. (8) and Eq. (9) are held with quite good accuracy for Q > 3 . As an example, Figure 1 shows the graphs
of rapidly damped oscillations corresponding to Eq. (3) and Eq. (7) for b = 1 , D = 0.2 , and α = 0.745 .
The increase in the oscillator damping enlarges the quantitative difference between Eq. (3) and Eq. (7), but
the qualitative correspondence remains. When the Eqs. (8) and (9) are satisfied, the quantitative difference
between Eq. (3) and Eq. (7) becomes negligible for high-Q oscillatory systems. Expanding Eq. (8) into series
in terms of powers of 1/Q , we get [17]

α ≈ 1− 2

πQ
. (10)

This formula gives a simple relation between the order of fractional differentiation and the Q-factor. Figure
2 shows the graphs of the function α(Q) constructed using Eq. (8) and Eq. (10). From this figure, it can
be seen that the approximate formula (Eq. (10)) can be used for Q ≥ 10 . It follows from the above that an
experimental verification of the fractional oscillator model must be carried out for strongly damped oscillatory
systems.

5. Experiment
To test the model under consideration, we conducted an experiment with damped vibration of a piezoelectric
plate. The experiment was conducted under standard laboratory conditions (at temperature of 25 °C and
atmospheric pressure of 100 kPa). Electric signals were generated and measured by an USB PC oscilloscope
and a signal generator Velleman PCSGU250. We investigated the vibrations of the free plate and the vibrations
of the plate in polypropylene foam. The plate used consists of a brass base with a diameter of 27 mm and a
thickness of 0.1 mm, and a metal-coated piezoelectric element with a diameter of 18.5 mm and a thickness of
0.35 mm. A square wave signal of 2.3 kHz was fed to the plate. The waveform allowed us to observe both inverse
and direct piezoelectric effects during the experiment. Due to the inverse piezoelectric effect, each level shift of
the signal provoked a sharp displacement of the plate. This initiated the damped vibration of the plate, and
the direct piezoelectric effect gave rise to an alternating electrical signal that reflected the natural vibrations of
the plate. Figure 3 shows examples of the waveforms.
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Figure 1. The damped vibration of a string pendulum:
the dotted line corresponds to formula in Eq. (3); the solid
line corresponds to formula in Eq. (7).

Figure 2. The dependence of the order of the fractional
derivative in the oscillation equation in Eq. (6) on the Q-
factor: the dotted line corresponds to formula in Eq. (8);
the solid line corresponds to formula in Eq. (10).

Figure 4 shows the highlighted segments of the waveforms that correspond to the vibrations of the
piezoelectric plate. The circles refer to the data of the experiment, and the solid curve refers to the values
calculated by formula (7). As can be clearly seen, the fractional model agrees well with the experimental data.
The damped natural frequency ω and the fractional derivative of order α for the free plate take the values
0.632 rad/µs and 0.998, respectively. In the case of the plate in polystyrene foam, those are ω = 0.629 rad/µs

and α = 0.98 . These values allow us to obtain the Q-factors for both cases: Q = 318.31 and Q = 31.831 , as
well as the undamped natural frequency of the piezoelectric plate: f0 = ω0/(2π) ≈ 0.1 MHz.

Figure 3. The waveforms: (a) corresponds to the free
plate; (b) corresponds to the plate in the polystyrene foam.

Figure 4. The highlighted waveforms of the piezoelectric
plate: (a) refers to the case of the free plate; (b) refers to
the case of the plate placed in the polystyrene foam.
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Thus, the experiment showed that the parameter α in the model based on Eq. (6) characterizes energy
dissipation and vibration damping. In practice, this can serve as a basis for a new method for studying oscillatory
electromechanical processes using the fractional oscillator model and a Q-meter instrument.

6. Conclusions
Fractional differentiation can have a constructive role in modeling various oscillatory processes with damping.
The fractional derivative in the equation of motion (Eq. (6)) takes into account energy dissipation, and formula
in Eq. (8) gives a relation between the order of fractional differentiation and the Q-factor of the oscillatory
system.

Moreover, this approach can be extended to describe dissipative processes in various oscillatory physical
systems, such as vibration of solids or propagation of elastic waves in viscoelastic media. The use of Eq. (4) as
the equation of motion with the storage function in Eq. (5) leads to the fractional diffusion-wave equation

∂1+αu

∂ t1+α
− λ∆u = f(r, t). (11)

Here ∆ denotes the Laplace operator and f(r, t) is a source function. Eq. (11) can be used to simulate the
propagation of sound waves in strongly scattering media. This equation also seems to be quite an appropriate
alternative to the telegraph equation in electrical engineering. Investigations of various initial-boundary value
problems for Eq. (11) broaden the opportunities for analytical study of the dissipation effect in problems of
mechanics and electrodynamics.
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