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Abstract: The bounds of entanglement on antiferromagnetic (AF) isotropic Heisenberg spin-1/2 chain including dipole–
dipole interaction (D) were investigated. The Quantum Monte Carlo method based on loop algorithm was employed to
calculate the two-spin and single-spin expectation values mediating the lower and upper bounds. It was revealed that
D and Bz (the applied magnetic field) were pivotal parameters in controlling either entanglement creation/extinction or
entanglement enhancement/weakening. Rival regions indicated a revival phenomenon depending on the temperature for
various strengths of D which also showed a nonmonotonic behavior under certain Bz identifying critical points. Even if
thermal agitations break the stability of strong D entanglement, it remains invariable at very low temperatures.
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1. Introduction
Quantum entanglement, as a fascinating kind of quantum correlation, enables a strong “spooky” interdependence
between the subparts of a system. It is an important tool on performing dense coding [1–3], teleportation
[4], quantum computing, and information processes [5–7]. Also, it is an eligible tool to precisely understand
the quantum phase transitions (QPTs), particularly in condensed matter physics. Heisenberg model is an
appropriate candidate to study entanglement due to its literal and simplistic structure [8–10]. A wide range
of studies have focused on both isotropic, anisotropic, AF (antiferromagnetic), and mixed Heisenberg systems
with either absence or presence of external fields by neglecting dipole–dipole interactions [11–20]. Various
entanglement measurement methods allow investigations in both bipartite and multipartite entanglement such
as concurrence, entanglement witness, entanglement entropy, and localizable entanglement (LE) which are used
to reveal the dependence of entanglement on certain physical quantities, e.g., anisotropy and magnetic field
[11–21]. In spin systems, localizable entanglement ensures the maximum amount of bipartite entanglement
via performing local measurement on the remaining part of multipartite system. Analytical and numerical
solutions especially Quantum Monte Carlo simulations (QMCs) are intensely used to investigate the quantum
correlations on aforementioned Heisenberg models in the lack of dipole–dipole interactions. Arnesen et al. [21]
indicated a range of critical temperature values which cause vanishing of entanglement, however, increasing
temperature actually enhanced the entanglement of spin pairs. Thermal entanglement measurements based on
concurrence of isotropic XY model zero-field, provide maximized entanglement in ground state whereas strong
external magnetic field was the main reason for extinction of entanglement at T = 0 [11]. As stated in [19], the
second order QPT under zero-field and revival phenomena were observed for AF spin-1/2 chain in the lack of
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dipole–dipole interaction. DaSilva found that entanglement increased with increasing exchange constant J of
spin-1/2 particles located at adjacent sites of the lattice [20].

In this study, the effect of dipole–dipole interaction on LE was investigated, and the lower and upper
bounds were determined in the case of AF isotropic Heisenberg spin-1/2 chain where exchange, Zeeman and
dipole–dipole interactions were included to the Heisenberg Hamiltonian. Bounds of localizable entanglement
were ascertained by QMC method based on loop algorithm. ALPS package [22] was used to simulate the spin-
1/2 Heisenberg chain resulting in expectation values. Bounds were constructed with these simulated values
via a simple python script. The long-ranged entangled pairs of spins (qubits) were traced to provide a distant
information transfer.

2. Materials and methods
Heisenberg Hamiltonian of 1D spin-1/2 chain is described by Eq. (2.1), where Jx, JyJz are exchange constants,

Bz is the applied magnetic field, and ĤD represents the dipole–dipole interaction. The first term is the
exchange interaction and the second one denotes the Zeeman energy which originates from applied external
field Bz . ĤD is explicitly described in Eq. (2.2). Note that D is used to determine the strength of dipole–
dipole interaction and rjk is the distance between spin-1/2 particles. Ŝx

i , Ŝ
y
i and Ŝz

i represent Pauli spin
matrices.
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ĤD = D

N∑
j=1

N∑
k=1

 S⃗j . S⃗k

r3jk
− 3

(
S⃗j .r⃗jk

)(
S⃗k.r⃗jk

)
r5jk

 (2.2)

All the possible states of the two spins are handled with density matrix, ρ̂ = e−βĤ∑
e−βĤ

(thermal equilibrium)

where β = 1
kBT denotes the inverse temperature and kB is the Boltzmann constant. The denominator of this

fraction is called as partition function and describes the statistical properties including two-spin correlations
of a system in thermal equilibrium. Figure 1 illustrates the 1D Heisenberg spin-1/2 chain at low (Figure 1a)
and high (Figure 1b) temperatures, respectively, and spin pairs on which the entanglement measurement was
performed are linked with curved-up lines.

Figure 1. Illustration of 1D AF spin-1/2 chain at (a) low and (b) high temperatures.

LE provides an important way to determine the maximum amount of entanglement between the two
parts of a system via performing local measurements on the rest part. Popp et al. [8] suggested measuring LE
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by declaring assistive notions as upper and lower bounds (LElb
ij ≤ LEij ≤ LEup

ij ) . The lower bound (LElb
ij)

is directly connected to the two-point correlation function Qαβ
ij (ψ) for a given pure state |ψ⟩ of N qubits (Eq.

(2.3)).
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Besides, upper bound (LEub
ij ) is based on entanglement of assistance (EoF) and generally is formulated as in

Eq. (2.4) [8,23,24].
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Simulation processes are performed by constructing a chain with N = 40 spin-1/2 particles resulting in
expectation values, [ERR : md : MbegChr = 0x2329,MendChr = 0x232A,nParams = 1] and [ERR : md :

MbegChr = 0x2329,MendChr = 0x232A,nParams = 1] (α = x, y, z and β = z) , using a loop algorithm
[25,26]-based simulator which was already included in the ALPS package [22]. Note that the spin chain
corresponds to an infinite chain between 10–100 spins [18,19]. We deemed 2 × 107 steps suitable for the
measurement process (correlations and thermodynamic quantities) and 2 × 106 steps for the thermalization
process, respectively. QMC simulations are executed using 24 threads to mimic the chain with parallel processing
for various D, kT , and Bz values, at a temperature scale kT ∈ (0, 4].

3. Results and discussion
Exchange coupling constants, Jα (α = x, y, z) , were set as –1 for AF isotropic model. The bound values of
nearest neighboring spins (qubits) were calculated under zero field for various D strengths at certain temperature
values in terms of kT . At first sight, it can be clearly seen in Figure 2 that LElb

ij values monotonically increased
via ascending D strengths while a decreasing behavior took place while increasing temperature as it can be
naturally expected. Furthermore, LElb

ij values never vanished even at high temperatures. Note that only the
two-site terms, that originated from the exchange and dipole–dipole interactions, were in charge. We deduced
that LElb

ij did not lose unity with overlapping of all D strengths (except when D = 0) at present temperature
scale (not shown here).

Thermal agitations led LElb
ij to diminish but LElb

ij did not completely vanish under zero field (Figure 2).
According to Figure 3a, a similar behavior was also observed under applied field Bz = 0.5 . The applied field
caused a decrement of LElb

ij values but they were only increased for strengths D ≥ 1 at very low temperatures.
Moreover, nonmonotonic behavior was not observed yet under the zero field and Bz = 0.5 . On the other
hand, LEub

ij (Figure 3b) lost unity, except for D = 0 , at very low temperatures as soon as the temperature
reached approximately 0.05 . At higher temperatures above 0.05 , thermal agitations could not break the unity.
However, it should be noticed that increasing the temperature causes an increment in LE up to kT = 0.05

introducing a ladder-like attitude. LEub
ij values tend to decrease by increasing the strength of dipolar energy
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Figure 2. LElb
ij values of D = 0, 0.25, 0.5, 0.75, 1, 2, and 4 under zero-field (Bz = 0) .

Figure 3. (a)LElb
ij (b) LEub

ij values of D = 0, 0.25, 0.5, 0.75, 1, 2, and 4 under Bz = 0.5 .

up to D = 2 and increased by strengthening the dipolar interaction at very low temperatures. In short, a
nonmonotonic behavior related to D is observed under Bz = 0.5 for kT → 0.

Figure 4 shows kT = 0.5 denoting a critical point for D = 0.75 where LElb
ij vanishes and the

entanglement gradually appeared at higher temperatures. It is also referred to as a nonmonotonic behavior
of LEub

ij related to the temperature, namely, revival phenomena under Bz = 2 (Figure 4b). Furthermore, LElb
ij

remained constant up to kT≈ 0.2 and exhibited a sharp decrement (SD) distinctly. Besides, LElb
ij (Figure

4a) illustrated a nonmonotonic behavior for D = 0.5 strength at kT= 1.5 indicating revival phenomena
again. However, immediately after SD, LElb

ij increased up to kT ≈ 0.35 and started to decrease with
increasing temperature until kT = 1.5 is reached. In other words, D = 0.5 implicitly nominated two different
critical points revealing revival phenomena under Bz = 2 . Moreover, LElb

ij showed two different behaviors
for ≤ D ≤ 0.75 and 0.75 ≤ D ≤ 4 , respectively, while the former ramp included an increasing trend in
contrast to the latter ramp. In other words, D = 0.75 can be regarded as a critical point introducing a
nonmonotonic attitude of LElb

ij related to D. According to Figure 4b, LEub
ij values increase via ascending D
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strengths monotonically for temperatures higher than kT≥ 0.2 even though they show a sharp rising, having
distinct values at aforementioned temperature under Bz = 2 .

Figure 4. (a) LElb
ij (b) LEub

ij values of D = 0, 0.25, 0.5, 0.75, 1, 2, and 4 under Bz = 2 .

LElb
ij values of corresponding D strengths, except when D = 4 , are decreased monotonically depending

on the increasing temperature and never vanished at present temperature scale (Figure 5a). Besides, LElb
ij is

getting low via increasing D strengths. In fact, LElb
ij of D = 4 experienced a sudden drop at kT≈ 0.25 and

extinction of entanglement occurred at kT= 3 . It was concluded that LEub
ij values are increasingly proportional

to both temperature and D strengths as illustrated in Figure 5b. One should remember that thermal agitations
induce a strict resistance against two-site terms and the effect of external field but only if they disclose intrinsic
phenomenological features such as odd-even effect and revival phenomena at critical points.

Figure 5. (a) LElb
ij (b) LEub

ij values of D = 0, 0.25, 0.5, 0.75, 1, 2, and 4 under Bz = 5 .

Distant entanglement can enable a long ranged quantum information transfer, especially in spin chains
under zero field. Hence, we focused on long-ranged bipartite entanglement among the nearest n = 15 neigh-
boring spin pairs at very low (kT= 0.05) and low (kT= 0.5) temperatures under zero-field (Bz = 0) . Figure 6
displays LElb

i,i+n values for various D strengths under abovementioned physical conditions. According to Figure
6a, one can deduce that increasing D strength implicitly influences the lower bound and it remains unchanged
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up to n = 15th nearest neighbor for D = 2 and D = 4 as well as at kT= 0.05 . However, increasing the
temperature causes an exponential attitude which results in the extinction of entanglement after n = 10th

neighbors for D = 1 , n = 7th for D = 0 except when D = 4 , and D = 2 at kT= 0.5 (Figure 6b). We
have also emphasized that entanglement never vanishes for D = 4 although increasing temperature starts to
agitate the spin chain. Relatively higher temperatures, such as kT= 3.5 , extremely shortened the distance of
entangled spin pairs (short-ranged communication) because the exchange and dipole–dipole interactions loosed
theirs domination on the system.

Figure 6. LElb
i,i+n values of n = 15 nearest neighboring spins at temperature (a) kT = 0.05 (b) kT = 0.5 .

Illuminating an inclusive picture, Figure 7 led us to evaluate LElb
i,i+n depending on kT and distant

neighboring pairs of spins simultaneously. Red regions verify the aforementioned sudden drop for specified
D strengths under Bz = 2 as can be seen in the figure. Note that D = 0.5 and D = 0.75 strengths are
inducing distinctive behaviors solely for the first nearest neighbors unless no influence takes effect along distant
neighboring spin pairs. Existence of rival regions should be verified for the strengths of D = 1 , D = 2 ,
and D = 4 even when performing a cursory scan. LElb

i,i+2 (n = 2) and LElb
i,i+4 (n = 4) demonstrate a

nonmonotonic behavior indicating rival regions at certain temperatures as kT≈ 0.2 (dark blue nearby yellowish)
and likewise a rod shaped region for n ≥ 5 (Figure 7a). According to Figure 7b, D = 2 induced a similar
behavior for n = 4 , n = 6 , and very slight one for n = 9 distant spins at temperature kT≈ 0.2 where LElb

i,i+n

tends to vanish. However, rival regions are also formed as surrounding kT = 1 (n = 4) and have a rod-like
shape for n ≥ 6 . Moreover, strong dipole–dipole interaction (D = 4) possesses similar regions for odd numbered
neighbors starting from n = 3 at various temperatures of kT even if LElb

i,i+n values explicitly drop off involving
first and second nearest neighbors at the present temperature scale (Figure 7c).

4. Conclusion
Entanglement measurements, especially bipartite entanglement, on many body systems can be successfully
performed by QMC methods to reveal these “spooky” correlations between the nearest neighbors and distant
pairs of particles since they possess a huge ability to be a resource for quantum information process. In this
study, bounds of LE are determined to investigate the effect of dipole–dipole interaction on the evolution
of entanglement in 1D Heisenberg spin-1/2 chain at temperature scale kT∈ (0, 4] . The critical values are
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Figure 7. LElb
ij of n = 10 nearest neighboring spins under Bz = 2 with strengths (a) D = 1 (b) D = 2 (c) D = 4 .

calculated and they indicate a nonmonotonic behavior which originated from the collaboration of kT , Bz , and,
most particularly, strength of dipole–dipole interaction D. Revival phenomena are observed, but not limited
to the nearest neighbors, along distant pairs of spins. Moreover, it is verified that a strong D enhances long-
ranged entanglement at low temperatures under zero field, unless high temperatures reduce the distance. In
the case of kT → 0 , a nonmonotonic behavior related to D is observed under Bz = 0.5 . We emphasize that
undominated systems tend to generate a nonmonotonic behavior even though relatively strong interactions
provide a substantial regulation.
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