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Abstract: In the present contribution, the Hirota—Satsuma coupled KdV hierarchy on noncommutative phase-space
is investigated using the noncommutative extension of Lax pair generating technique. In particular, the explicit
representation of its associated Lax pair operators is constructed. It is shown that the obtained results for phase-space

noncommutativity case reduce back to the standard commutative case when 6 goes to %
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1. Introduction

The following system of equations

1
U —Ugpr + SUUE — OVU,
=12 , (1.1)
t

v
— Vppr — UV

is known as the Hirota—Satsuma coupled KdV system (HS-coupled KdV) proposed by Hirota and Satsuma [1],
which describes interactions of two long waves with different dispersion relations. In [2], Hirota and Satsuma
showed that the HS-coupled KdV system is the four-reduction of the KP hierarchy and its soliton solutions can
be derived from those of the KP equation. The Lax representation of this system has been constructed in [3] by
Dodd and Fordy. Different properties of the HS-coupled KdV system have been constructed such as Backlund

transformation [4], Darboux transformation [5-7], bilinear form [1, 8], and Painleve property [9, 10]

More recently, the noncommutative geometry (NCG) [11, 12] has attracted attention from many re-
searchers in physics [13-25]. On noncommutative (NC) spaces, the noncommutativity of the coordinates is

defined as follows
(2%, 27 ] = 0", (1.2)
where z°, 27 are noncommuting coordinates, and 6% are real constants called the NC parameters.

On the other hand, the multiplication of two arbitrary functions f(z,p) and g(z,p) on the two dimensional

NC phase-space has been shown to satisfy the star product law defined as follows: [20-25]

Flap)wgep) = 3 30 L) b0k )@ D) (1.3

s=01=0
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In this context, on NC spaces we define the Moyal bracket given by the following expression [20-25]:

_f*9-g9*f

{f(xvp)ag(xvp) }0 20

(1.4)

In the following section, we make a short review of the noncommutative Lax pair generating technique [26—
28] which is relevant for this work. This technique will be useful to derive the noncommutative extension of
the HS-coupled KdV hierarchy and obtain its associated Lax pair operators. A more detailed analysis in the

commutative case can be found in [29-32].
2. Noncommutative Hirota—Satsuma coupled KdV hierarchy
An NC partial differential equation which has the Lax representation can be reformulated as follows:
{L, T+ 0}, =0. (2.1)

This equation and the associated pair of operators (L,T') are called the NC Lax differential equation and the

Laz pair, respectively, with 0; = a%'

The main idea of the NC Lax pair generating technique is to find a T- operator satisfying (2.1) for a given L-

operator. For this we have to consider the following ansatz on the T- operator, namely
T=p"«L+T, (2.2)

where p™ are nothing but the momentum operators. With this last ansatz, the problem reduces to find the %—
operator.

Now, let us recall that the momentum Lax operator of the - deformed HS-coupled KdV hierarchy is
defined as [3]

L=p*+u+v)*(p*+u—u)
=p* + 2up? — 40v,p + 26%uyy + u* — v? (2.3)

The T'- operator can be written as follows:

T=p™3%L+T. (2.4)

Straightforward algebraic computations based on the NC Lax pair generating technique lead to the explicit

forms of the set of Moyal HS-coupled KdV hierarchy. The results are as follows:
e For n =0, the NC Lax differential equation (2.1) leads the 1st-order NC HS-coupled KdV equations.

The NC Lax pair is given by
L=(p* +u+v)x(p*+u—0v)

=p* + 2up?® — 40v,p + 20% Uy, + u? — 0? (2.5)

294



SAIDI and SEDRA /Turk J Phys

and
T=p3«L+T (2.6)

From the NC Lax differential equation (2.1), one finds

N . 1 . .
—{L, T}, = (—2uy — %)p2 + (40vzy + 02)p — 20%Uppe — 2utly + 200, — §9um — % + %7 (2.7)
with the following system of 1st-order NC HS-coupled KdV equations
U
—— = 2uy, 2.8
59 = U (2.8)
0
- = 2u,, 2.9
59 = 2V (2.9)
where 4 = % , Uy = g—g, Upy = % and so on.
Hence, the NC Lax pair for the 1st-order NC HS-coupled KdV equations is explicitly given by
L = p* + 2up? — 40v,p + 20%uyy + u? — 02
(2.10)
T=p

e For n =1, the NC Lax differential equation (2.1) represents the 3rd-order NC HS-coupled KdV equations.

The NC Lax pair is given by
L=(p* +u+v)*(p*+u—0)
=p* + 2up?® — 40v,p + 207Uy, + u® — v? (2.11)
and

T=p'v«L+T (2.12)
Then, we can take the jN“— operator as the following form

T=Ap+B, (2.13)

where A and B are polynomials of u, us, Ugs...etc. The NC Lax differential equation (2.1) takes the form

o
20
+ 80utyy + 80uvy, + 80ugzv, + Uy)p — 20% U5, — 602 uus, + 802Uty

—{L, :IN‘}H = 2, p* — (80Upy + 400,40 )p° + (6vV, — 2uuy — — )p? — (863 usy + 126304,

1 . .
+ 22020, 00 — 100%Ugtyy + 202005, — dugu® + duvv, — ieum — g—g + % (2.14)

The left-hand side of Eq. (2.14) is explicitly given by
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—{L, T}, = —4A,p* — AB,p* + (2Au, — dudy — 40% Ayuy)p® + (40 A0, — 40 Avy, — 40 By,

—4uB,)p + 202 Atype + 202Uy Ayy + 2Auu, — 2Avv, + 40 Byu, (2.15)
Identifying Eqgs. (2.14) and (2.15) leads to the following constrains equations:
A=—-u ; B=20u,+0v, (2.16)
Hence, Eq. (2.13) becomes
~ 1
T = —5Up + 20u, + Ov, (2.17)

Furthermore, one obtains the following system of 3rd-order NC HS-coupled KdV equations:

~55 = 20Uy + Sutly — 60U, (2.18)
v 2
—55 = —40*V40, — UV, (2.19)

This coincides with the standard HS-coupled KdV equations given in Eq. (1.1) once the limit § — % and

the scaling transformation —% % — % are performed. Consequently, the NC Lax pair associated to the 6-

deformed 3rd-order HS-coupled KdV equations is explicitly given by

L = p* + 2up® — 40v,p + 20%uy, + u? — 02

(2.20)

3
T=p+ SUP 30v,

Let us note that the same analysis used for n = 0 and n = 1 is actually extended to build the 5th-order,

Tth-order and the 9th-order NC HS-coupled KdV equations and their associated Lax pair operators.

e Now, for n =2, the NC Lax differential equation given in Eq. (2.1) yields the 5th-order NC HS-coupled
KdV equations.

The NC Lax pair is given by
L=(p* +u+v)x(p*+u—0v)
=p? + 2up® — 40v,p + 20% Uy, + u* — v? (2.21)
and
T=pxL+T (2.22)

From Eq. (2.1), the T- operator is explicitly given by

~ 1 7 1 5
T = §up3 —0(2uy +v,)p* + (40%0,0 + 307 Upy + guz — sz)p— iﬂuvx — 20Uty — 203Uy + 2000, — 503040, (2.23)
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After calculation, we find the following system of 5th-order NC HS-coupled KdV equations:

Y 15 5

—% = 20%us, — 10020000 + 502Utz + 100%Ustipy — 1002000, + quuQ — buvv, — §u$v2 (2.24)
v 4 2 2 2 5 9 D4

—5g = —80% 5, — 100 U0 — 100°U Ve — 5OV ULy — vau — ivzv (2.25)

Hence, the NC Lax pair for the 5th-order NC HS-coupled KdV equations is explicitly given by
L = p* + 2up® — 40v,p + 20%uyy + u? — 02

(2.26)

. 1 .
T=7p"+ gup‘3 — 50u,p* + (56% Uy, + §5U2 - sz)p — 5030400 — gﬂuvz.

o Similarly, for n = 3, the NC Lax differential equation given in Eq. (2.1) becomes the 7th-order NC
HS-coupled KdV equations.

The NC Lax pair is given by
L=(p" +u+v)*x(p*+u—0)
=p* + 2up?® — 40v,p + 20%uyy + u? — 02 (2.27)
and

T=p+«L+T. (2.28)
The %_ operator is explicitly given by

~ 3 19 27 3 )
T = §up5 — 30(vy + 2uy)p* + (?qum +120%0,, + §u2 — 11)2)17‘3 + (60vv, — 803 Ugry — 166%0,0,

21 9 5 23 13
— ?quz — GHqu)p2 + (4941}455 + 504u4z + 5921)?5 — 8020V, + ?QQUUII — §92ui

35 21 21
Eu?’ — gmﬂ)p + T0%v5, — 20%usy + 20300000 + 603UV, + ZﬁvaQ — 203Uty
3 3 21 2, T3
— 60°Uug gy + 210°UgVpy — §91)mu + 50 UV - (2.29)

Finally, we get the following system of Tth-order NC HS-coupled KdV equations:

Y 21 21
f% = 2196uh7 + 149411115:,3 + 794uu5m + 210y usy — 1460% 0,045 + 350 Uy tipps — qum’uQ — Zv’umqu
79 2 4 35 o 2 2 2 2
- 59 UggaV° — D60 VyyVUpre + 19 UggaU” + 140°0Uz0, — 210% UV V4, + 350° UtL UL,
21 o 35 , o 35
+ 70?00y — 792uxvfc + ?vxv‘s + ZHZUi + gumu3 (2.30)

3 21
—;—9 = 166%07, + 280*uvs, + 560 uyvay + T0 0 sy + 420400 U ns + TO0 UgpVans + ?szmqu

7 7
+ 2102 UV + iﬂzuvmum — Zé)%zui + 14021)0?; + 350% 00,055 + T0% 040,02

7 21
- fvxug + —uvaQ.

< 0 (2.31)

297



SAIDI and SEDRA /Turk J Phys

Consequently, the NC Lax pair for the 7th-order NC HS-coupled KdV equations is explicitly given by

L= p4 + 2up2 —40v,.p + 20% U,y + u® — v?
) 21
T=p + zup5 — TOvp* + (§92um + §u2 - ZUQ)pP’ — (28030400 + —Ouv,)p?
2 2 8 4 2
21 7 35 35 21 35
+ (?041141 — 50203, + §92ui + ?quum — 146%vv,, — g’UXUQ + Eu?’)p
7 21 21
+ ie%um + 2103 Uy vy + 70%0s, + Zﬁvwvz — gﬁvﬂf

(2.32)

o For n = 4, the NC Lax differential equation given in Eq. (2.1) is the 9th-order NC HS-coupled KdV

equations.

The NC Lax pair is given by

L=(p* +u+v)x(p*+u—0v)

=p* + 2up® — 40v,p + 20%u,, + u? — v?
and
T=p°xL+T.
The 9th-order NC HS-coupled KdV equations are explicitly given by

]

20

135 45 45
2039, + 45921)1)3’: — 1—602umu2 + Zuvmv?’ — gvvzug + 90%uur, — 180%0,v6,

105 63
+ ?GQumxu?’ + 840%u s, + 1260%U0 00 g, + Zﬁ4u5wu2 — 102650, U5

+ 4i3 04umzui - 3004%“@3 + 3660%u,ug, — 294u5mv2 + %Gﬁzuim

— 1500%0, 40040 — 93(94u3011320,ch + 300%vv7, + 4;92vw$Iv3 + %u$v4

+ %umlﬁ — 1150211@3,@13 — %quusz - 1%)1592%%1112 + 37;594uumuxm

— 1200*wppVppe + %92%1)”1)2 — 450 uv, vy + ?94uuzu4w — 840 Uy Uy Vg

315
+ 330%uvvs, — 30 vvgua, + 702u$uwxu2 + 1050* 00400 Ugs + 450* 0055 Uz pe
45 75 75
— 1056* 0, Vg gy + 990 VUL VL, — ?92uxumv2 — ?92uuzv2 — 2 0%vv,u’

x 4 xT

315
— 300% Uty vV — 150Ut vV, + ?GQuui

298

(2.33)

(2.34)

(2.35)



SAIDI and SEDRA /Turk J Phys

—% = 320809, + —921“111111” + 1050 Uty Vaw + 240040000 Vz00 + 12004 U Uy Vs

33 45 45
+ 1800*wuyvay + ?94UU4$’0$ + 12600 U g + ?quvmxzﬂ + gﬂzuzvva

2

45 45 15
+ — 0% uyvgu® + ZGQUMUQJU - §92umku2 + 1950* Ut pVppe + 12960* 00,045

4
45 45 6
— 6—4va + 1—6%1} + 1146050, u55 + 48005455040 + 21605u,v6, 4+ 15050, u6,

+ 720%uw7, + —941)1 - T 180%v5, 02 + —94vmxu + 3180%0, 40 tiay + 246604 vxmv

45
+ 35704% -+ 4200%u,,v5, — —02 ?OQUuIvi + 3092uv2 + 1—6ku202

+ 450 v5,u? + Ze%mu?’ (2.36)

Finally, the NC Lax pair for the 9th-order NC HS-coupled KdV equations is explicitly given by

L = p* + 2up® — 40v,p + 20%uyy + u? — 02

T=p"+ gup7 — 90v,p% + (42(92um + G—SSUQ - ZUQ)pS — (—5911% + 7503 vmz)p +(—

105
16

105 315 45 45
+ —92 24 —92uum + 630%uy, — §UU — 150202 — ?szvm)ps + (Zﬁvmvg

105 135 315
— 516%vs,, — —vawum + 4503 U0, — 6003 Uv,0, — ?vaUQ)pQ + (5= 0%uu?

16
1 4 1 4 1
+ ?72 44 32 — %021”)2 — 300%uvvy, — ZE)QQ’U,E’UUI — 1592%”1)2 + %92umu2 (2.37)
189 189 51 135 651
+ 794%}1@” + TG4UU430 — 420* 0 Vg — > 0%y, — 3—2u2v2 + ?941@

1 4 . 4
+ 1896u6r — ﬁ@‘l 2 22D — 1563w, v, + gﬁguuzvm + 4563000, + —591&1,3112

8
45 105 3 33
- §9 Uy 2 4 —95umvmm - 595va4m + —95uU5w + 750Uy 045 + 600° Vs ptUpms
15 45 45
— §03vmx u? + Zﬂgvmxv vau +1507v7, + ?9302

3. Conclusion

In commutative case, it is well known that the existence of Lax pair operators (L,T) for nonlinear differential
equations is a strong indication of integrability, that is, the existence of a complete set of conservation laws,
of multisoliton solutions and so on. In this context, many efforts have been devoted to extend the Lax pair
operators for several (1 + 1) and (2 + 1)-dimensional integrable systems on noncommutative spaces [24-28].

The noncommutative extension of Lax pair generating technique is one of the most powerful methods to do so.

In this paper, we have presented a systematic study of HS-coupled KdV hierarchy on noncommutative
phase-space by using the noncommutative Lax pair generating technique. We have obtained a set of higher-order

noncommutative HS-coupled KdV equations which are also integrable equations. This integrability is due to
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the existence of a noncommutative Lax pair operators (L,T) which is explicitly derived. Also, we have shown

that the obtained results reduce to the commutative case once the limit 6 — % and the scaling transformation

1

T 20 ot

3]

[4]

[5]

= = = =
i A2 A

[18]

300

9 9

— 5; are considered.
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