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Abstract: We are motivated to investigate the dynamics of scalar field dark energy proposals and focus on the recon-
struction of a scalar field problem in a D-dimensional framework. With this purpose, we implement a correspondence
between the tachyonic scalar field formulation and the additional dimensional cosmological scenario. Such connections

help us to redefine the extra dimensional dynamics of the selected scalar field prescription.

Key words: Dark energy, scalar field, D-dimensional cosmology

1. Introduction
The current stage of our universe has been investigated by many astrophysical observations [1-6]. Subsequently,
it was proven that an enigmatic content, which is usually dubbed “dark energy”, is responsible for the current
exotic nature of the universe. It is significant to note here that many ideas have been introduced to identify dark
energy theoretically, but its dynamical nature still remains unclear [7-9]. The cosmological constant [10], scalar
field definitions [9,11-14], unified energy density proposals [15-18], modified gravity theories [19-25], and even
making use of additional dimensions [26-30] are possible theoretical ideas given in the literature to interpret
the dynamical evolution of dark energy. Li et al. [31] and Cai et al. [32] prepared very useful briefs about
the dark side of the universe, including interesting surveys of some theoretical models. The time-independent
cosmological constant model, which was introduced by Einstein with the equation-of-state (EoS) w = —1, is the
primordial idea of the mysterious dark energy [7,8,33,34]. For a perspective including a minimally coupled scalar
field, it was shown [35-37] that the effective EoS parameter cannot take values that are crossing the phantom
line (w = —1). Additionally, making use of a general scalar field Lagrangian density L(¢, 0,¢), Vikman [38]
concluded that there is no possible transition from the sector w < —1 to the other side w > —1 (or vice versa).
Consequently, it is understood that the dark energy model is described via a nonlinear Lagrangian density in
order to investigate the phantom transition via the shadow of minimal conjectures of nonkinetic interactions
among the dark energy and all other constituents. Scalar field proposals including a nonlinear kinetic term
[39-43] or a nonlinear higher derivative term [38], braneworld ideas [44,45], string theories [46], and modified
gravity have also been introduced to discuss phantom crossing.

While focusing on the dynamical evolution of a scalar field model, an interesting idea, which is called
the reverse engineering technique and also known as the reconstruction of the self-interacting potential, can be
applied in the absence of a useful theoretical proposal [47-50]. Checking the given speedy expansion history,

it can be seen that a potential reproducing the present evolution of our universe can be reconstructed. Ellis
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and Madsen [51] and Starobinsky [52] prepared noteworthy papers in this direction. Subsequently, Huterer
and Turner [53,54] investigated the reconstruction mechanism by making use of the cosmological distance
observation. Moreover, Rubano and Barrow [55] calculated an expression for a scalar field. In addition to all
that is mentioned here, it is interesting to study the dynamics of a scalar field model in the framework of a
D-dimensional theory. In light of the above works, we reestablish the dynamics of the tachyonic field from the
D-dimensional cosmological perspective.

The outline of the present study is as follows: in the next section, we introduce some preliminary results
briefly in order to give theoretical materials and the method of our investigation. Subsequently, in the third
section, we obtain new expressions for the tachyonic scalar field function and its self-interacting potential. Then,
in the fourth section of the work, we discuss our calculations graphically. Finally, in the last section, we give

the closing remarks.

2. Preliminaries: materials and methods

In this section of our investigation, we introduce preliminary expressions and results given in the literature
in order to outline the theoretical materials that we will use in further parts of the work. We shall start
by writing an extra dimensional, homogeneous, and isotropic spacetime model represented by the following
Friedmann-Robertson-Walker (FRW) type line-element [56]:

ds* = dt* — a*(t) dr + rida? (1)
1—kr? "
where
da? = dyi +sin® yadys + ... +sin? yy sin® yo . . .sin y, 1 dy>_, (2)

and D =n+2, k= (-1,0,1), and a(¢t) describe the total number of spacetime dimensions, the curvature
parameter, and the scale factor, respectively.
Einstein’s general theory of relativity, which is defined by an action including a time-varying gravitational

constant and a time-varying cosmological “constant”, is identified by the following field equation:

Ry B + A(t)] Gas = 8TG(1) [(p+ P) atts — Pgas) (3)

where p and P respectively stand for the energy density and pressure of the fluid while w, is the higher-
dimensional velocity vector. Also, Rag, gag, and R represent the Ricci tensor, metric tensor, and curvature
scalar, respectively. We assume here that the fluid is dominated by dark energy and we ignore dark matter
contributions in order to compare the scenario with the tachyonic scalar field dark energy representation. After
making use of the line-element (1) in the field equation (3), one can get the following independent field equations
[56]:

w [HQ + :2} — A = 87Gp, (4)
n (H - H2) - w {HQ + fg] — A= —87GP, (5)
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where H = % shows the cosmic Hubble parameter and it estimates the expansion rate of the universe. Thus,
considering the above results or the conservation relation 7,,3.,3 = 0 leads to the following continuity relation
[56]:
G A
) HH P)=—p—- —— 6
prn+DH(p+P)=—pz—x. (6)

One can observe from the above equation that the higher-dimensional energy density is not conserved due
to the time-varying behaviors of G and A. It is known that the equivalence principle requires the following

conservation relation:
p+(n+1)H (p+ P)=0. (7)

Subsequently, we should have [56]:
A = —87Gp, (8)

which plays a significant role while investigating cosmological models.

We are now in a position to mention the method that we will proceed with in the next section of the
work. In the first step, we introduce the energy density and pressure relations of the tachyonic scalar field dark
energy representation in order to check the main features of the proposal. Considering those energy density
and pressure relations, one can obtain new expressions for the tachyonic model. After introducing the required
cosmological parameters, we equate them with higher-dimensional ones in order to find exact descriptions for

the tachyonic scalar field function and its self-interacting potential.

3. Main calculations
First of all, we want to mention the EoS parameter, i.e. w = P/p, which is important while performing

cosmological interpretations. Considering equations (4) and (5), we find that

n(n2+1) [H2 i] — A
An (H + H?2) + 202 (2 4 4]

w =

9)

Now we focus on the tachyonic scalar field dark energy representation, which is given as one of the possible

theoretical dark energy descriptions. The tachyonic condensate model is described by an effective scalar field
with a Lagrangian density of the form [9] L = —V (¢ W Here, the tachyonic potential V(y) has
a positive maximum at the origin (i.e. V (¢) =V at ¢ = 0) and has a vanishing minimum where the potential
vanishes (i.e. V (¢) =0 at ¢ — 00) [57]. Considering this definition with Einstein’s general theory of relativity,

the following energy density and pressure expressions of the tachyonic model are calculated [9]:

Vip)
pT = ﬁa (10)

pr=—V(e)V1-¢ (11)

This interesting representation of dark energy is described by a very significant EoS parameter, which takes
values between —1 and 0 [49,58]. From this point of view, the tachyonic scalar field dark energy representation

can be taken into account as a source of the dark energy as well as one of the possible theoretical models helping
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us to understand the inflation phase at a high energy level [59,60]. Thus, the tachyonic EoS parameter is written

as below:

w="L — 2 1. (12)
pT

We can now implement a correspondence between the higher dimensional scenario and the tachyonic scalar field
dark energy model. Correspondence between these formulations can be defined by taking pr = p, pr = p and

wr = w. Therefore, the set of these considerations leads to the following expressions:

P’ =l+wr=1+uw, (13)

V(p)=prv1—¢*=p/-w. (14)

It can be seen here that the kinetic term (? and the tachyonic self-interacting potential V() may exist if
—1 < w < 0. This result indicates that the phantom line cannot be crossed with a speedy expansion. Using

relations (4), (5), and (9) in the above expressions, it can be calculated that

. /t - nntd) (2 4 k] — A it (15)
0 . 2 n(n—1) 2 k ’
to A-n (B + B2) + 25 (12 4 4]
Vi) = {n(n+1) {H2+k] A} A-2tD (g2 4 k] . 16)
8rG 2 a? An (HJer) 4 nln=1) [H2+a%}

2

4. Viable cases including graphical analyses

In the previous section, we computed two significant expressions for the D-dimensional form of the tachyonic
scalar field dark energy representation. As we mentioned in the first section of this work, in the literature,
there are various scalar field formulations, but obtaining exact expressions for the corresponding scalar field
functions and their self-interacting potentials is very difficult. In addition to this, there is no definite reason for
selecting one of those models in order to explain the recent astrophysical dataset successfully. That is why our
conclusions may be useful for further investigations. Here, we focus on the tachyonic proposal only, but one
can also redefine some other scalar field proposals (quintessence, dilaton, k-essence or the DBI-essence. etc.)
by making use of our method and the preliminary calculations we give in this work.

We can consider some viable cases of the D-dimensional framework in order to find more specific results.

Below, we introduce three representations including specific expressions of some cosmological quantities:
o Case I: Making use of various assumptions, some theoretical cosmologists proposed [61,62] that A ~ a%

[56]. Subsequently, Chen and Wu [60] assumed that A (¢) = % where (; = nk {”T“ - %] . Here, 7 denotes

2
an auxiliary parameter. Considering this case, Singh et al. [56] found that a (t) = {(TLLQ)V@} T and

o4
G(t)=C(+ % {W} T Where (2 and (5 are integration constants. Also, (4 = poa(()nﬂ)’y,

where the suffix 0 indicates the current values of that parameter.
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o Case II: Focusing on the spirit of quantum cosmology, Chen and Wu [60] assumed that A(t) ~ %ﬁ?z
with 7 = ¢ = 1, where L,; shows the Planck length. Later, in a subsequent paper, Carvalho et al.
[63] generalized this case and introduced that A (t) = I + 725 where 71 and 7 are two adjustable
dimensionless parameters. Moreover, Singh et al. [56] discussed this case in a different problem and

(nt+1)y—2
calculated a (¢) and G (t). They found that a (t) = v/Bnt and G (t) = Go + { T },where

B, = 2my+nk[2—(n+1)9]

= nt1)y—2nay—2n and Gy indicates a constant.

o Case IIT: Sistero [64] suggested a cosmological scenario including varying cosmological parameters. Sub-
sequently, Singh et al. [56], by making use of Sistero’s work, assumed that G (t) = (5a°(t), where € > 0
and (5 represents the proportionality constant. Consequently, considering the flat case (k = 0), Singh et

al. [56] computed the cosmic scale factor a(t) and the time-varying gravitational parameter G(t). Thus,

2
(e
] and

they found that a (t) = Dyt 7= and A (t) = (s D5t 7= where D, = [Mﬁ]*l
_ [16n¢iC
En =\ wtary— -

In further calculations, we also need the expression of the Hubble parameter. According to the specific case

given above, one can reach the results given in Table 1.

Table 1. Specific expressions of the cosmic Hubble parameter.

Specific case Case I | Case Il | Case III
Hubble parameter H (t) | +21)7t 1 [(nHQW

Now we want to turn back to the EoS parameter given in equation (9). Considering specific cases with

Table 1, we can find more specific expressions for the EoS parameter given in Table 2.

Table 2. Specific expressions of the cosmic EoS parameter.

Specific case | EoS parameter w

—
2 4 9 ISy
Case I 14+ " D222 +k{("+1)"/C2t} " ”_
o 4
hnlp =) 2\ Ty 4 _2n(non)
[ : +[Cl]{(n]+l)%2t} ! WJr(n-¢—1)272t2’
n?[14+ -2
3 — B
Case 11 1+ (E )+ 20D E 1]
B 12 2 Ba
2n 2
Case 111 -1+ . [t
£
TmFil)~—¢ . n(n—-1) 2
G D5t T+ [y

For the second case, it is seen that the EoS parameter is not evaluated in time. Moreover, the EoS
parameter depends on the number of dimensions in all three specific cases. One can plot the corresponding EoS
parameters for different numbers of spacetime dimensions and determine the type of dark energy (phantom or
quintessence types) by focusing on their values.

Moreover, one can also discuss the higher dimensional form of the tachyonic scalar field dark energy

prescription by making use of equations (15) and (16) together with the relations given in Table 1 and the
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expressions given in specific cases I, IT, and III. The recent astronomical dataset introduced by the SNe-Ia [1],
WMAP [2], SDSS [3], X-ray [4], and Planck [6,7] collaborations strongly indicated a spatially flat geometry of
the universe at large scales. From this point of view, we assume that & = 0 in further analysis. Thus, we reach

the following results:

w:\/1+n_3+in+1)7t, (17)
2n
WHZPNH+U7_QW+VH¢U%4Hnm+Uv—%n+wf+&mn+wv—ﬂt (%)

B—(n+1)vy]—2n
3=(n+1D1]-(n-1),

Yrrr = [ 31 {1, Uil + ‘1’§Qt(”“2”’1+2}7 (19)

Vi ! {2”72752} vV—=1+7), (20)

T8y [(n+1)

ni—2 [(n 1)y — [n(n+1)772(n+7)]} (n+1)7y— 2]_[ : y(n+1)

[(n+1)y—2]"* n(n+1)y—2(n+v)]
e ) EFEN 0+ Dy~ 2+ sty =
167y + % |:[n(n+1)712(n+7)]:| =2t
2n(n+1) _ ﬁ ﬁ«kQ_ 2n(n+1)
_ e e | errhert g 22
Vi = RO T Q=T T2 _ 2nB—(nt Dy +(n=1)]’ (22)
™ [(n+1)y—117
2n
=1 2
wr + n— 1’ ( 3)
n
=-1 24
wrT + 1 (24)
4 2
wrrr = -1+ i " 5 2 ) (25)
{520+ 1)y = 1} T [0+ 1)y — 12T 420 (0 1)
where
(n+1)y-1
N Sy 26
2(n+ 1)~y (26)
Q_[(n+1)7—1]3+m dy T o
N dn(n+1)~ n ’
4 @FRT
o={Dw+n-uf"" . (28)

In the above results, we assume ¢% = %, =¥, =0, G =G=U=(=1,e=1,and 7 =ny = 1 for the

sake of simplicity. Note that 9, ¢9%;, and ¢9;; represent the present values of the scalar field function for the
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corresponding viable cases and oF; is the Gauss hypergeometric function of the second kind, which is written
as

AqBg 4
Codl 7

2FU{A, B;Ciy} =) (29)

where the Pochhammer symbol M, (generalizing coefficients Ag4, Bg, and Cy) is givenby My = M(M+1)...(M + d-
1) with My =1.
Now we can discuss the above results graphically. In Figures 1-6, we plot evolutions of the tachyonic

scalar field function and its self-interacting potential for cases I, II, and III, respectively.
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Figure 2. Evolution of the tachyonic self-interacting potential for case I. Here, we assumed v = —1.9.

5. Discussion and perspectives

In the present work, we have mainly focused on the dynamics of scalar field dark energy models in a D-
dimensional framework. As we mentioned in the first section, both the scalar field and the extra dimensional
idea are two possible theoretical candidates proposed to explain the nature of cosmic dark energy. Fundamental
theories such as the string/M theory give various scalar field definitions, but they cannot yield exact expressions
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Figure 4. Evolution of the tachyonic self-interacting potential for case II. Here, we assumed v = —1.9.
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Figure 5. Evolution of the tachyonic scalar field function for case III. Here, we assumed v = 1.9.
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Figure 6. Evolution of the tachyonic self-interacting potential for case III. Here, we assumed ~ = 1.9.

for the scalar field function ¢ and the corresponding self-interacting potential V' (). From this point of view,
we have applied the reverse engineering method by making use of a scalar field definition (tachyonic description)
and a D-dimensional cosmological scenario. Thus, we have achieved exact relations for the tachyonic scalar
field proposal. It is significant to emphasize here that our results can also be used to reconstruct other scalar

field formulations such as quintessence, dilaton, k-essence, etc.

o The quintessence field is described by the following relations [65,66]:

QSQ éz ¢2 —9V
— 2 v, Po=2 V@), we=2"2". 30
Making use of the above relations together with equations (4), (5), and (9), we obtain:
0" = (1+wq) po = (1 +w)p, (31)
1
V=3 (1-wg)pe=(1-wp (32)

Thus, using the same process that we performed for the tachyonic model, the above results can be easily written

in exact forms.
o The dilaton field is defined by the following expressions [67,68]:

he*y —1

T 3hevy — 1 (33)

pp =3he*' x> —x, Pp=he*x*—x, wp

where 2y = 92 and h and \ are positive constants. Now one can implement the correspondence between the

dilaton type scalar field model and D-dimensional cosmological scenario. It can be written that:

wp—1 w-1

hve? = - . 34
X T Bep -1 Bw-1 (34)
Thus, one obtains the following expression:
Aw 2 w—1
XTIV 3w 1 (35)

425



SALTI et al./Turk J Phys

o The k-essence (kinetic quintessence) scalar field dark energy model is a generalization of canonical scalar

field models such as quintessence. The model is given by the following definitions [69,70]:

Q-1
o = f(0)(3Q% —Q), Px=f()(Q*-Q), wg= 1 (36)
After equating the EoS parameter of the k-essence with equation (9), it can be found that:
___PK P
where
-1 -1
WK - w (38)

3w —1 3w-1

As we wrote above, one can discuss some other scalar field models by focusing on our theoretical conclusions. We
have shown that with this method, one can express a scalar field function and its self-interacting potential. With
the help of these results, we can discuss further cosmological issues such as the thermodynamic features and their
cosmological indications for the scalar field dark energy proposals. As a matter of fact, such correspondences
have very important roles while investigating how different dark energy ideas are mutually related to each other.
The scalar field proposals have very interesting features for discussing phantom crossing while the reengineered
self-interacting potential has noteworthy physical results for modern theoretical physics.

Moreover, Vulcanov [71] also discussed the reverse engineered tachyonic scalar field model. Here, we
have extended that investigation to a more general cosmological scenario including extra dimensions and time-
dependent cosmological and gravitational “constants”.
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