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Abstract: In this study, an analytical model is presented based on the Nikiforov–Uvarov method for the Θ+ exotic
KN resonance as a kind of pentaquark. The radial Schrödinger equation for the central Yukawa and modified Yukawa
potentials was solved for Θ+ by use of the Nikiforov–Uvarov method. The energy eigenvalues and corresponding wave
functions of Θ+ were obtained in terms of potential coefficients and n , l quantum numbers. Finally, the potential
coefficients were determined according to the binding energy of Θ+ exotic KN resonance. The potentials and wave
functions of Θ+ exotic KN resonance for different sets of potential coefficients are also shown schematically.
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1. Introduction
Several experimental and theoretical reports have claimed the observation of Θ+ pentaquarks with mass of
1540 MeV and small width of 20 MeV [1–5]. Pentaquarks are exotic hadrons consisting of four quarks and one
antiquark and have been described by several models such as the quark model and bag models [1,2]. The exotic
pentaquarks have an antiquark whose flavor is different from any of its four flavors. The uudd s̄ pentaquark with
strangeness quantum number of S = +1 was predicted by the chiral quark soliton model [4] and many other
theoretical studies [4–10] before its experimental observation [11]. From the first day of observation, many
experimental activities have been performed to prove and characterize these exotic states [12–17]. Various
groups around the world have published reports on the existence of the pentaquark state. Five quarks bag
[5], diamond [6], triquark-diquark [7], diquark-diquark-antiquark [8,9], and hadronic molecule [10] are the most
famous structures proposed for the pentaquark. The chiral soliton model has predicted spin value of 1/2 and
positive parity for Θ+ pentaquarks, with a light mass of about 1540 MeV/c2 and width of ∼20 MeV [1]. The
hadronic molecule model is a kind of diquark-triquark model, which includes a baryon such as uud or udd and
a meson like ds̄ or us̄ [18]. The mass of Θ+ as presented in experiments ranged from 1520 to 1560 Mev

/
c2

[19].
In this work, we present an analytical method to obtain the binding energy of a diquark-triquark model

of the Θ+ pentaquark. In this regard, the radial Schrödinger equation was solved by Nikiforov–Uvarov (NU)
method applying Yukawa and modified Yukawa potentials [20] to describe diquark–triquark clusters interaction.
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2. Cluster–cluster interaction with the Yukawa potential and modified Yukawa potentials

In nonrelativistic quantum physics, the solution of the radial Schrödinger equation with a physical potential is
of crucial importance for the definition of a quantum system [21]. Various analytical methods such as super
symmetry [22] and the NU method [23] have been developed in this context. For a two-cluster system, the
Schrödinger equation for the central potential V(r) has the following form [24]:

−ℏ2

2µ

(
d2

dr2
+

2

r

d

dr

)
ψ (r) +

(
V (r) +

ℏ2l (l + 1)

2µr2

)
ψ (r) = Eψ (r) , (1)

where ψ (r) is the wave function, V (r) shows the potential energy between two clusters, E denotes the energy
eigenvalues, ℏ represents the Planck constant, and µ is the reduced mass. By introducing the reduced radial
wave function u (r) = rψ (r) , Eq. (1) is reduced to an equivalent one-dimensional problem, namely:

−ℏ2

2µ

d2u (r)

dr2
+

(
V (r) +

ℏ2l (l + 1)

2µr2

)
u (r) = Eu (r) , (2)

with the boundary condition of u (r)|r=0 = 0 . The core–cluster interaction may be constructed from a nucleon–
nucleon interaction [25]. The Yukawa potential [26] as a short-range nucleon–nucleon interaction may be used
as the interacting potential between two clusters, which has the following form:

V (r) = −V0
e−αr

r
, α, V0 > 0, (3)

where V0 is the depth of the potential well and σ is related to the range of the potential. Due to nuclear force
saturation at lower distances, one may add a repulsive term to the Yukawa potential [27]:

V (r) = −V0
e−αr

r
+ V1

e−αr

r2
, α, V0, V1 > 0, (4)

where V1 is a positive constant for the repulsive part of the interaction potential. In the next section, we
transform the equivalent radial Schrödinger equation of Eq. (2) for the potentials in Eqs. (3) and (4) into the
form of the NU differential equation, which will be solved analytically.

3. Application of the NU method

The equivalent radial Schrödinger equation of Eq. (2) can be converted into a hypergeometric type second-
order differential equation by suitable variable transformation. The NU method can be used to solve the
hypergeometric differential equation with an appropriate coordinate transformation s = s(r) [23]:

ψ
′′
(s) +

τ̄ (s)

σ (s)
ψ

′
(s) +

σ̄ (s)

σ (s)
2ψ (s) = 0 , (5)

where σ (s) and σ̄ (s) are polynomials of at most second order, and τ̄ (s) is a first-order polynomial. Eq. (5)
can be solved by separation of variables as:

ψ (s) = ϕ (s) y (s) . (6)
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By inserting Eq. (6) into Eq. (5), the hypergeometric differential equation will be:

σ (s) y
′′
(s) + τ (s) y

′
(s) + λy (s) = 0, (7)

ϕ
′
(s)

ϕ (s)
=
π (s)

σ (s)
, (8)

in which the function of π (s) , the parameter of λ , and the function of τ (s) have the following form:

π (s) =
σ

′
(s)− τ̄ (s)

2
±

√
(
σ′ (s)− τ̄ (s)

2
)
2

− σ̄ (s) + kσ (s) (9)

λ = k + π
′
(s) (10)

λ = λn = −nτ
′
(s)− n (n+ 1)

2
, n = 0, 1, 2, . . . , (11)

τ (s) = 2π (s) + τ̄ (s) , (12)

where τ ′
(s) has negative value and k can be found such that the square root in Eq. (9) must be the square of

a polynomial that is at most a first-degree polynomial. y (s) can be obtained using the Rodrigues relation as:

yn(s) =
Bn

ρ [s]

dn

dsn
[σ (s)

n
ρ(s)], (13)

where Bn is a normalization constant and the function ρ (s) is obtained by:

(σ (s) ρ (s))′ = τ (s) ρ (s) . (14)

4. Solutions of the Schrödinger equation for the Yukawa and modified Yukawa potential
In this section, we employ the NU method for the equivalent radial Schrödinger equation with Yukawa and
modified Yukawa potentials to obtain the eigenenergies and eigenfunctions of the pentaquark in the diquark-
triquark cluster scheme. The exact solution of Eq. (2) with Yukawa and modified Yukawa potentials in Eqs.
(3) and (4) is difficult; therefore, it is necessary to introduce a new variable and make some approximations.
The approximate expansions of 1/r and 1/r 2 using a Pekeris approximation scheme [28] are given as:

1

r
=

α

(1− e−αr)
,

1

r2
=

α2

(1− e−αr)
2 . (15)

The behavior of 1/r and 1/r 2 and their approximations are plotted in Figure 1 for σ = 0.05. It can be seen
that for small σ , the Pekris approximation is valid.

By introducing a new variable, s = e−αr , and using the Pekris approximation, the equivalent Schrödinger
in Eq. (2) can be transformed to the hypergeometric differential equation in Eq. (5) with the following
expressions:

τ̄ (s) = 1− s, σ (s) = s (1− s) , σ̄ (s) = As2 +Bs+ C. (16)
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Figure 1. (a) 1/r and its approximation; (b) 1/r2 and its approximation.

These expressions can be used to determine two functions of π (s) , τ (s) , and constant k . Applying the
expressions π′(s) , τ ′ (s) , k , and σ

′′
(s) in Eqs. (10) and (11), the following eigenvalue relation is obtained as

a function of quantum number n :

2 (B + 2C) =
(
1 +

√
1− 4A− 4B − 4C

)(
1 + 2

√
−C

)
+

2n(3 +
√
1− 4A− 4B − 4C + 2

√
−C + n). (17)

In order to determine the wave functions in the NU method, we must first obtain the two functions of ϕ (s) and
ρ (s) from Eqs. (8) and (14):

ϕ (s) = (1− s)
1
2 (1+

√
1−4A−4B−4C)

s
√
−C , (18)

ρ (s) = (1− s)
√
1−4A−4B−4C

s2
√
−C . (19)

Substituting Eq. (19) into the Rodrigues relation given in Eq. (13), we obtain yn(s) . By multiplying ϕ (s) in
yn(s) , the wave function can be written as:

ψ (s) = Bn (1− s)
1
2 (1+

√
1−4A−4B−4C)−

√
1−4A−4B−4C

s−
√
−C

dn

dsn
((1− s)

√
1−4A−4B−4C

s2
√
−C((1− s)s)

n
). (20)

5. Diquark-triquark cluster scheme of the Θ+ pentaquark

The Θ+ pentaquark structure is a complicated five-body system of uudds̄ . In the chiral soliton model and the
hadronic molecule model, Θ+ is considered as a system consisting of two clusters, one baryon with three quarks
and one meson with a quark and one antiquark [29–32]. In a chiral soliton model, the two clusters, a ud diquark
and a uds̄ triquark, are in a relative P-wave with Jp = 1/2

+ state [8]. In [8] the authors roughly estimated
mdiq = 720MeV , mtriq = 1260MeV , and µdi−tri = 458MeV where µdi−tri denotes the reduced mass for the
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relative motion of the diquark-triquark system. In this model, the binding energy of the two clusters is roughly
(mtriq +mdiq −mpentaq) = 440MeV .

One may assume that Θ+ consists of five quarks in an S-wave and therefore has negative parity, Jp = 1/2
−

(a baryon (uud) and a meson (ds̄)) [33]. The mass of the ds̄ meson with spin of zero is md = 497.72MeV , and
the mass of the proton is muud = 938.28MeV . This configuration is not bound and the repulsive terms of the
interaction force may then overcome the attractive terms and the S-wave pentaquark rearranged into the usual
KN system. Other configuration of S-wave pentaquark may be the ds̄ meson with spin of one and mass of 892
MeV. Hence, the reduced mass of Θ+ is µdi−tri = 457.277MeV and the binding energy will be 290.28MeV .

In what follows, we assume that any cluster behaved like a particle and ignored the internal structure of
each cluster. Moreover, the interactions operated only between the two clusters. The two clusters consisted of
ds̄ diquark with spin one and mass of 892 MeV and uud triquark with spin of 1/2 and mass of 938.28MeV in
a relative S-wave.

6. Results
By introducing the exponential variable of s = e−αr and using Pekris approximation, the equivalent Schrödinger
equation of Eq. (2) was transformed to the hypergeometric differential equation of Eq. (5) with the three
constants of A, B, and C and Yukawa potential:

A =
2(En − V0α)µ

ℏ2α2
B =

2(−2En + V0α)µ

ℏ2α2
C = −l(1 + l) +

2Enµ

ℏ2α2
. (21)

By inserting the expressions of Eq. (21) into Eq. (17) and solving it for the eigenenergy of En we obtain:

En=
1

16ℏ2 (l − n)
2
(1 + l + n)

2
µ
(−ℏ4(4l3(1 + 4n(3 + n)) + l4(2 + 8n(3 + n))− 2ln(−1 + 3

√
(1 + 2l)

2

+ n(4 + 7

√
(1 + 2l)

2
+ n(10 + 2

√
(1 + 2l)

2
+ 3n))) + n2(5− 3

√
(1 + 2l)

2
+ n(20− 4

√
(1 + 2l)

2

+ n(31 + 5

√
(1 + 2l)

2
+ 2n(7 +

√
(1 + 2l)

2
+ n))))− 2l2(−1 + n(−13 + 3

√
(1 + 2l)

2
+ n(7

√
(1 + 2l)

2

+ n(10 + 2

√
(1 + 2l)

2
+ 3n)))))α2 + 4h2(8l3 + 4l4 − l2(−5 +

√
(1 + 2l)

2
+ 2n(−1 +

√
(1 + 2l)

2
+ n))

− l(−1 +

√
(1 + 2l)

2
+ 2n(−1 +

√
(1 + 2l)

2
+ n)) + 2n(1−

√
(1 + 2l)

2
+ n(3− 2

√
(1 + 2l)

2

+ n(4 + n))))V0αµ+ 4(−1− 2l(1 + l) +

√
(1 + 2l)

2 − 2n(1−
√
(1 + 2l)

2
+ n))V 2

0 µ
2). (22)

Eq. (22) for l = 0 will take a simple form:

En=− (ℏ2(1 + 4n+ n2)α− 2V0µ)
2

8ℏ2(1 + n)
2
µ

, (23)

and the radial wave function for n = 0 and l = 0 is:

ψ (r) =
Bn(e

−rα)
1+

√
2
√

− E0µ

α2ℏ2 (−1 + erα)

r
. (24)
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The normalization factor Bn in Eq. (24) can be obtained by the normalization condition of the radial wave
function: ∫ ∞

0

ψ∗ (r)ψ (r) r2dr = 1. (25)

The calculated binding energy of the Θ+ pentaquark and coefficients of Yukawa potential in the diquark-
triquark model are listed in Table 1. The graph of potentials for different values of α and V0 are also shown in
Figure 2. The horizontal red line shows the binding energy of the Θ+ pentaquark. The radial wave functions
of the Θ+ pentaquark for different values of α and V0 for n = 0 and l = 0 are illustrated in Figure 3. As
shown in Figure 3, different sets of α and V0 give the same radial wave function for the ground state of the
Θ+ pentaquark.

Table 1. The calculated binding energy and coefficients of Yukawa potential in the diquark-triquark model of the Θ+

pentaquark.

α
(
fm−1

)
V0(MeV fm) E0(MeV ) E0= −B (MeV )

0.05 457.4 −290.22

-290.28MeV
0.10 470.2 −290.25

0.15 483.0 −290.29

0.20 495.8 −290.33

0.25 508.5 −290.23

0.05 fm
1
, v0 457.4 MeV fm

0.10 fm
1
, v0 470.2 MeV fm

0.15 fm
1
, v0 483.0 MeV fm

0.20 fm
1
, v0 495.8 MeV fm

0.25 fm
1
, v0 508.5 MeV fm

n 0, l 0

0 2 4 6 8 10
1200

1000

800

600
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0
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Figure 2. The Yukawa potential of the Θ+ pentaquark
for different values of α and V0 . The horizontal red line
shows the binding energy of the Θ+ pentaquark.

Figure 3. The radial wave function of the Θ+ pentaquark
for different values of α and V0 for n = 0 and l = 0 for
Yukawa potential in the diquark-triquark cluster model.

For the case of modified Yukawa potential, which involves the repulsive term for short distances, the
three constants of A, B, and C are defined as:

A =
2(En − V0α)µ

ℏ2α2
B = −2(2En + α(−V0 + V1α))µ

ℏ2α2
C = −l(1 + l) +

2Enµ

ℏ2α2
. (26)

By inserting the expressions of Eq. (26) into Eq. (17) and solving it for the eigenenergy of En for l = 0, we
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obtain:

En=− 1

16µ(ℏ2n(1 + n)− 2V1µ)
2 (16V1(V0 − V1α)

2
µ3 + 4ℏ2µ2(8n2V0V1α+ V 2

0 (1−
√

1 +
8V1µ

ℏ2

+ 2n(1 + n−
√

1 +
8V1µ

ℏ2
)) + V 2

1 α
2(1 +

√
1 +

8V1µ

ℏ2
+ 2n(3− n+

√
1 +

8V1µ

ℏ2
)))

− 4ℏ4nαµ(2V0(1−
√

1 +
8V1µ

ℏ2
+ n(3 + n(4 + n)− 2

√
1 +

8V1µ

ℏ2
)) + V1α(1 +

√
1 +

8V1µ

ℏ2

+ n(6 + n2 + 3

√
1 +

8V1µ

ℏ2
+ 2n(5 +

√
1 +

8V1µ

ℏ2
)))) + h6n2α2(5− 3

√
1 +

8V1µ

ℏ2

+ n(−4(−5 +

√
1 +

8V1µ

ℏ2
) + n(31 + 5

√
1 +

8V1µ

ℏ2
+ 2n(7 + n+

√
1 +

8V1µ

ℏ2
)))), (27)

and the radial wave function for n = 0 and l = 0 is:

ψ (r) =
Bn(e

−rα)
√
2
√

− E0µ

α2ℏ2 (1− e−rα)
1
2+

1
2

√
1+

8V1µ

ℏ2

r
. (28)

The calculated binding energy of the Θ+ pentaquark as well as coefficients of modified Yukawa potential in the
diquark-triquark model are presented in Table 2. The graph of potentials for different values of α , V0 , and V1

are shown in Figure 4. The horizontal red line shows the binding energy of the Θ+ pentaquark. The radial
wave functions of the Θ+ pentaquark for different values of α , V0 , and V1 for n = 0 and l = 0 are provided in
Figure 5.

Table 2. The calculated binding energy and coefficients of modified Yukawa potential in diquark-triquark cluster model
of the Θ+ pentaquark.

α
(
fm−1

)
V0(MeV fm) V1(MeV fm2) E0(MeV ) E0= −B (MeV )

0.10 300 17.7 −290.37

–290.28MeV

0.10 350 34.4 −290.60

0.10 400 54.8 −290.70

0.10 450 78.8 −290.53

0.10 500 106.5 −290.50

0.15 350 32.6 −290.68

0.20 400 49.5 −290.73

0.25 450 67.8 −290.72

0.30 500 87.0 −290.65

7. Conclusion
In this study, a cluster model was considered for the Θ+ pentaquark by dividing the system into two clusters: a
uud triquark and a ds̄ diquark, which are in a relative S-wave. Considering the Yukawa potential and modified
Yukawa potential as the interaction potential between clusters and solving the radial Schrödinger equation by
the NU method, the values of potential coefficients were determined, which predicted the binding energy of
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Figure 4. The modified Yukawa potential of the Θ+ pentaquark for different values of α , V0 , and V1 . The horizontal
red line shows the binding energy of the Θ+ pentaquark.

n 0, l 0

0.10 fm 1 , v 0 300 MeV fm, v 1 17.7 MeV fm
2

0.15 fm 1 , v 0 350 MeV fm, v 1 32.6 MeV fm
2

0.20 fm 1 , v 0 400 MeV fm, v 1 49.5 MeV fm
2

0.25 fm 1 , v 0 450 MeV fm, v 1 67.8 MeV fm
2

0.30 fm 1 , v 0 500 MeV fm, v 1 87.0 MeV fm
2

0 2 4 6 8 10

0

1

2

3

4

r fm

r

n 0, l 0

0.1 fm 1 , v 0 300 MeV fm, v 1 17.7 MeV fm
2

0.1 fm 1 , v 0 350 MeV fm, v 1 34.4 MeV fm
2

0.1 fm 1 , v 0 400 MeV fm, v 1 54.8 MeV fm
2

0.1 fm 1 , v 0 450 MeV fm, v 1 78.9 MeV fm
2

0.1 fm 1 , v 0 500 MeV fm, v 1 106.5 MeV fm
2

0 2 4 6 8 10

0

1

2

3

4

r fm

r

Figure 5. The radial wave function of the Θ+ pentaquark for different values of α , V0 , and V1 for n = 0 and l = 0
for modified Yukawa potential in the diquark-triquark cluster model.

the Θ+ pentaquark. As shown in Figures 3 and 5, the radial wave functions of the Θ+ pentaquark vanished
at about 2 fm for both cases of Yukawa and modified Yukawa potentials, but in the case of modified Yukawa
potential, it vanished near the origin while for the Yukawa potential it increased at the origin.
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