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Abstract: In this study, the direct pair production of the pseudoscalar Higgs boson at a γγ collision is analyzed in
the context of the two Higgs doublet model (THDM), taking into account the complete one-loop contributions. In order
to illustrate the effect of the new physics, four benchmark point scenarios, which are consistent with theoretical and
current experimental constraints, are chosen in the type-I THDM with an exact alignment limit. The effect of individual
contributions from each type of one-loop diagram on the total cross-section is examined in detail. The dependence of
the cross-section on the center-of-mass energy is also presented at the various polarization configurations of the incoming
photons. Moreover, the regions m2

12 − tanβ and mA − tanβ in the parameter space of the THDM are scanned for some
fixed values of other parameters. The box-type diagrams make a much bigger contribution to the cross-section than the
others at high energies. The total cross-section can be enhanced by a factor of two thanks to opposite-polarized photons
as well as threshold effects.

Key words: Two Higgs doublet model, pseudoscalar Higgs boson, photon–photon collider, future electron–positron
colliders

1. Introduction
The properties of a resonance at about 125 GeV1 discovered at the Large Hadron Collider (LHC) [1, 2], consistent
so far with the Higgs boson of the Standard Model (SM), confirms its particle content [3]. However, there are
still mysteries here. The Higgs couplings are not universal, as the gauge couplings are, and their pattern is
not explained by the SM. This discovery has triggered the search for new scalars as predicted by beyond SM
(BSM) models with extended Higgs sectors. One of the simplest such extensions is the two Higgs doublet model
(THDM) [4], which includes one extra Higgs doublet compared to the SM. Versions of the THDM emerge
in various well-motivated scenarios for new BSM physics, with or without SUSY [5], where the extra Higgs
doublet is either a necessary component or an essential byproduct in addressing problems such as the gauge
hierarchy problem, the origin of dark matter, the strong CP problem, and the generation of baryon asymmetry.
Additionally, given the multiplicity of Higgs states in the THDM, its scalar potential is significantly more
involved than that of the SM. The THDM has a multitude of triple self-couplings, unlike the SM, which only
∗Correspondence: mehmetdemirci@ktu.edu.tr
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1The combined mass measurement (obtained from the data at
√
s = 7 and 8 TeV by the ATLAS&CMS experiments) is

mh = 125.09± 0.21(stat.)± 0.11(syst.) GeV.
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has one. The triple and quartic couplings of Higgs bosons are key to understanding the phenomenology of the
THDM, because they identify the form of the potential. To test the nature of Higgs bosons, the measurement
of such couplings will be particularly important. Measurements at the LHC are rather challenging, due to
requiring huge luminosity. In this context, future linear colliders would play an important role. Thanks to the
clean environment, these couplings can be precisely identified as model-independent by these colliders. One of
the most improved plans for a future linear collider is the International Linear Collider (ILC) [6, 7], which is
designed to give facilities for e−e+ along with other options such as e−e− , e−γ , and γγ . Furthermore, there
is an organization that brings ILC and Compact Linear Collider (CLIC) [8] projects together under one roof,
which is called the Linear Collider Collaboration (LCC) [9]. The primary tasks of the LCC will be to extend
and complement the results obtained at the LHC and to search for new BSM physics. The γγ -colliders are also
considered as the next option with about 100 fb−1 annual integrated luminosity. The machine is expected to
be upgradeable to the range of

√
s = 1000 GeV with a total annual integrated luminosity up to 300 fb−1 [10].

Besides the possibility of discovering relatives of the Higgs boson by studying the properties of the 125 GeV
Higgs boson, the ILC provides excellent opportunities to discover additional lighter Higgs bosons or, more
generally, any weakly interacting light scalar or pseudoscalar particle by their direct production [11].

The main mechanism of production of pseudoscalar Higgs bosons at a γγ collider is γγ → A0 [12–
14]. However, in order to research the relevant quartic and triple couplings at future linear colliders, the pair
production mode needs to be studied. The γγ -colliders may supply a distinct method for pair production of the
pseudoscalar Higgs boson. Furthermore, the production of neutral particle pairs in photon–photon collisions
could be significantly sensitive to NP effects as such a process is naturally subdued. Consequently, an exhaustive
test can be provided for the construction of extended Higgs sectors. The triple Higgs couplings in the THDM
have been widely examined at electron–positron colliders [15, 16] and were found to supply an opportunity for
the measurement of those couplings. The pair production of pseudoscalar Higgs bosons at γγ colliders in the
Minimal Supersymmetric Standard Model has been extensively studied; however, there are few works on the
THDM. The cross-sections for the fusion processes γγ → SiSj (Si = h0,H0, A0 ) were computed in [17] and a
wide parameter region was shown where the cross-sections are larger by two orders of magnitude as compared
to those of the SM. In the context of the type-III THDM, the pair production of the neutral Higgs boson at
a γγ collider was also studied in [18]. Those authors pointed out that the relevant processes are significantly
dependent on the general form of the Higgs potential, which affects the triple-quartic couplings in the scalar
sector.

In the present work, the full set of one-loop contributions for the direct pair production of the pseudoscalar
Higgs in a γγ collision is investigated in the framework of the THDM, taking into account both theoretical
restrictions and experimental constraints from recent LHC data and other experimental results. Even though
the same process in the framework of the THDM has already been analyzed in the literature, it still has rich
physics results in terms of triple and quartic couplings and needs a detailed study in light of recent experimental
constraints on the model parameters. However, in this work, the effects of individual contributions from each
type of one-loop diagram on the total cross-section are analyzed in detail. Note that the results of the present
study are consistent with those obtained in previous works.

The remainder of the paper is arranged as follows. In Section 2, a brief review is given for the THDM.
Section 3 presents the experimental and theoretical constraints on the parameter space of the THDM and four
benchmark point scenarios, which are consistent with these constraints. In Section 4, the corresponding one-
loop Feynman diagrams are presented and analytical expressions for the production cross-section are briefly
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reviewed. The numerical evaluation method is then explained. In Section 5, numerical results are presented
and the model parameter dependencies of the cross-section are discussed in detail. Finally, in Section 6, the
concluding remarks of the study are given.

2. A brief review of the two Higgs doublet model

For completeness, we first give a brief summary of the CP-conserving THDM here, including only those details
relevant to this study. The interested reader can refer to [19] for a comprehensive review of these models.

The THDM is the most minimal extension of the SM containing extra Higgs doublet fields. In the THDM,
the most general scalar potential can be written as:

VTHDM = m2
1|Φ1|2 +m2

2|Φ2|2 −
[
m2

12(Φ
†
1Φ2) + h.c.

]
+

λ1

2
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2 +
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2
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+
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†
1Φ2) + λ7(Φ

†
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†
2Φ2) + h.c.

]
,

(2.1)

where Φ1,2 are two complex scalar Higgs doublets and λi (i=1,...,7) are dimensionless quartic coupling param-
eters. To respect some low-energy observables, the discrete Z2 symmetry proposed by the Paschos–Glashow–
Weinberg theorem [20] is imposed to avoid flavor-changing neutral currents. As a result, the Z2 symmetry
requires that λ6,7 and m2

12 must be zero. However, letting m2
12 be nonzero, this symmetry can be softly

broken. The charges under this symmetry are assigned to ensure that each type of fermion couples to either Φ1

or Φ2 . There are 4 types of THDMs, which are commonly called type-I, type-II, type-III, and type-IV THDMs,
depending on the Z2 assignment [4, 19]. The way in which each Higgs doublet (Φ1,2 ) couples to the fermions
in the allowed types that naturally conserve flavor is given in Table 1.

Table 1. Couplings of u -type and d -type quarks and charged leptons to Φ1,2 in types allowed by the Z2 symmetry.
The subscript i is a generation index.

Type ui di ℓi
I Φ2 Φ2 Φ2

II Φ2 Φ1 Φ1

III Φ2 Φ2 Φ1

IV Φ2 Φ1 Φ2

Types III and IV are also known as “lepton-specific” and “flipped”, respectively. In this study, the
numerical analysis is carried out in the framework of the type-I THDM, in which only the doublet Φ2 interacts
with both quarks and leptons, like in the SM.

After electroweak symmetry breaking, each Φ acquires a vev vj such that v =
√
v21 + v22 ≈ 246 GeV and

Φj =

(
ϕ+
j

1√
2
(vj + ρj + iηj)

)
, (j = 1, 2), (2.2)

where ρj and ηj are real scalar fields. The two Higgs doublets initially have 8 degrees of freedom. Three of
them (Goldstone bosons G0 , G± ) are absorbed by the longitudinal components of the electroweak gauge bosons
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Z0 and W± . The remaining five are physical Higgs fields, a CP-odd A0 , two CP-even h0 and H0 , and two
charged scalars H+ and H− . The relevant mass eigenstates are determined by orthogonal transformations,
in which the parameters β and α govern the mixing between mass eigenstates in the CP-odd/charged and
CP-even sectors, respectively.

For any given value of tanβ , m2
1 and m2

2 are calculated by the minimization conditions of potential.
The parameters m2

1,2 and couplings λ1–λ5 may be expressed in terms of the physical masses mh,H,A,H± , along
with tanβ = v2/v1 , and sin(β − α) . The soft Z2 symmetry breaking parameter m2

12 can be written as

m2
12 =

1

2
λ5v

2 sinβ cosβ =
λ5

2
√
2GF

tanβ

1 + tan2 β
, (2.3)

where the second equality is valid at tree level. Setting λ6 and λ7 to zero to respect the discrete Z2 symmetry
and working in the “physical basis”, m2

12 , tanβ , mixing angle α , and four physical masses of the Higgs bosons
can be used to specify the model completely. Consequently, in the Higgs sector of the THDM, there are seven
independent parameters. From Eq. (2.1), the triple and quartic scalar couplings can be derived as a function
of the masses mh0 , mH0 , mA0 , mH± , and tanβ , α and m2

12 , as follows2:

λTHDM
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2
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2
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(2.10)

where the gauge coupling constant g = e/sinθW and mW is the mass of boson W . These triple Higgs
couplings are independent of the Yukawa types used because they follow from the scalar THDM potential. All

2The short-hand notations cx and sx are used for cos(x) and sin(x) , respectively. For example, cα+β = cos(α + β) for
x = α+ β .
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these couplings have a strong dependence on the mixing angles α and β , the physical Higgs masses, and the soft
breaking parameter m2

12 . In this study, in particular, triple Higgs couplings and couplings of the (pseudo)scalar
to gauge bosons are of interest. The (pseudo)scalar–gauge couplings,

λh0W±W∓ = gmW sβ−α, λH0W±W∓ = gmW cβ−α,

λh0G±W∓ =
g

2
sβ−α, λH0G±W∓ =

g

2
cβ−α,

(2.11)

are proportional to cβ−α or sβ−α , while λA0H±W∓ = e/2sW is independent of the THDM angles. Contrary to
the CP-even h0 and H0 , the pseudoscalar Higgs boson, due to its CP-odd nature, does not couple to pairs of
ZZ and W+W− . Therefore, Z-boson and W-boson loop diagrams do not contribute to production of A0 at
the one-loop level.

In the THDM, a decoupling limit appears when cβ−α = 0 and mH0,A0,H± ≫ mZ [21]. In this limit,
couplings of the Higgs boson h0 to SM particles look entirely like the SM Higgs couplings, which include the
coupling h0h0h0 . Furthermore, there is an alignment limit [22], where the Higgs boson h0 (H0 ) looks like the
SM Higgs boson if sβ−α → 1 (cβ−α → 1). In the alignment or decoupling limit with α = β − π

2 , some triple
couplings turn into the following forms:
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(2.12)

3. Parameter setting and constraints on the THDM
The parameter space of the THDM potential is decreased by the results of experimental studies as well as by
theoretical constraints. The THDM is subjected to several theoretical restrictions such as potential stability,
perturbativity, and unitarity. For ensuring vacuum stability of the THDM, VTHDM must be bounded from
below. In other words, VTHDM ≥ 0 must be maintained for all directions of Φ1 and Φ2 . This constraint puts
the following conditions on the parameters λi [23–25]:

λ1 > 0, λ2 > 0,

λ3 + 2
√
λ1λ2 > 0,

λ3 + λ4 − |λ5| > 2
√

λ1λ2.

(3.1)

There is also another set of constraints that imposes that perturbative unitarity must be satisfied for the
scattering of longitudinally polarized gauge bosons and Higgs bosons. This can be seen in [26–29]. Furthermore,
the scalar potential must be perturbative by imposing that all λi satisfy |λ1,2,3,4,5| ≤ 8π .

Besides the above theoretical constraints, the THDM has current constraints resulting from direct
observations at the LHC and indirect experimental limits from B physics observables. In the type-I THDM,
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pseudoscalar Higgs mass regions such as 310 < mA < 410 GeV for mH = 150 GeV, 335 < mA < 400 GeV for
mH = 200 GeV, and 350 < mA < 400 GeV for mH = 250 GeV at tanβ = 10 have been excluded by the LHC
experiment [30]. Moreover, the limit mA > 350 is put on the pseudoscalar Higgs mass for tanβ < 5 [31] and
the mass range 170 < mH < 360 GeV is excluded for tanβ < 1.5 in the type-I model [32].

In type-II and type-IV THDM, the data from the measurement of the branching ratio b → sγ put
constraints on the charged Higgs mass mH± > 580 GeV [33, 34] for tanβ ≥ 1 . However, for the other types of
THDM, this bound is much lower [35]. In type-I and type-III THDM, as long as tanβ ≥ 2 , the charged Higgs
bosons can be as light as 100 GeV [35, 36] while being compatible with LHC and LEP bounds as well as with
all B physics restrictions [37–42]. Moreover, there is no exclusion around sin(β − α) = 1 for mA,H0,H± = 500

GeV in the type-I THDM according to a review of LEP, LHC, and Tevatron results [43].
In this study, 4 benchmark point (BP) scenarios are chosen as shown in Table 2. These are consistent

with experimental and theoretical constraints. The BPs are constructed on the type-I THDM with an alignment
limit sβ−α → 1 , and hence the CP-even Higgs h0 is a SM-like Higgs. Its mass is fixed as mh = 125.18 GeV [44].
The value of tanβ is set to 10 for all benchmark scenarios, which results in a remarkable enhancement in the
assumed scalar Higgs boson decay channel.

Table 2. Selected BPs using Higgs data for type-I THDM with alignment limit. All BPs are still allowed by searches
for additional Higgs bosons at the LHC.

BPs mh0 (GeV) mA0 (GeV) mH0 (GeV) mH± (GeV) m2
12 (GeV2) tanβ sin(β − α)

BP1

125.18

150 150 150 2000

10 1BP2 200 150 250 2000
BP3 250 150 250 2000
BP4 250 250 300 6000

The potential stability, perturbativity, and unitarity of each BP have been checked with the help of 2HDMC
1.7.0 [45, 46]. The considered benchmark scenarios are also consistent with the bounds derived from different
studies on extra Higgs bosons at the LHC, provided that h0 ought to provide the properties of the observed
Higgs boson. The constraints are checked by HiggsBounds 4.3.1 [47] and HiggsSignals 1.4.0 [48] with the
results of 86 analyses.

Table 3. The dominant branching ratios (BRs) of CP-odd Higgs A0 for selected BPs, where BRs values of less than
10−4 are not shown.

BP1 BP2 BP3 BP4
BR(A0 → gg) 3.06×10−1 1.67×10−1 0.09×10−2 5.93×10−1

BR(A0 → bb̄) 6.03×10−1 1.78×10−1 0.05×10−2 3.49×10−1

BR(A0 → cc̄) 2.78×10−2 0.81×10−2 < 10−4 1.61×10−2

BR(A0 → τ+τ−) 6.15×10−2 1.92×10−2 < 10−4 3.94×10−2

BR(A0 → Z0H0) − 6.28×10−1 9.98×10−1 −

The dominant branching ratios of A0 , which are computed by using 2HDMC 1.7.0, are listed for selected
BPs in Table 3. The most dominant ratios are shaded in blue: A0 → bb̄ for BP1, A0 → Z0H0 for BP2 and
BP3, and A0 → gg for BP4.
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4. Analytical expressions for the production cross-section

The pseudoscalar-Higgs boson A0 pair production via photon–photon collision is denoted by

γ(p1)γ(p2) → A0(k1)A
0(k2), (4.1)

where after each particle, as usual, its 4-momentum is written in parentheses. This subprocess has no amplitude
at tree level, and it has one-loop level amplitude in the lowest order. A full set of one-loop level Feynman
diagrams3 contributing to process 4.1 in the THDM is generated by FeynArts [50, 51]. They are shown in
Figures 1–3. The process also has another set of Feynman diagrams that are not given in the figures where
particles in loops are flowing in the opposite direction. The square bracket [G,W ] means that the loop contains
all possible combinations of particles G and W .

Any one-loop amplitude is composed of a sum over the following integrals with up to n propagators
carrying loop momentum:

Tn
µ1...µs

=
µ4−d

iπd/2 rΓ

∫
ddq

qµ1
· · · qµs[

q2 −m2
1

] [
(q + k1)2 −m2

2

]
· · ·
[
(q + kn−1)2 −m2

n

] , (4.2)

where rΓ = Γ2(1−ε)Γ(1+ε)/Γ(1−2ε) , d = 4−2ε , and s is the number of q s in the numerator, which specifies
the Lorentz tensor structure of all integrals (s = 0 indicates a scalar integral, s = 1 a vector integral, etc.). The
denominator emerges from the propagators of the particles in the loop. The parameter µ is a renormalization
scale, which keeps the integral’s mass dimension the same in all d -dimensions. In the case that the integrals
involve infrared and ultraviolet divergences, dimensional regularization [52] is used, analytically continuing the
loop momentum integral to d dimensions. According to the Passarino-Veltman reduced method [53], the integral
with a tensor structure can be reduced to linear combinations of Lorentz covariant tensors constructed from a
linearly independent set of the momentum and the metric tensor gµν . Consequently, any amplitude at one-loop
level can be written as a linear sum of one-loop integrals such as bubble, box, triangle, and tadpole.

According to the loop-correction type, the diagrams of γγ → A0A0 at one-loop level can be classified
into three groups, which are called triangle-type, box-type, and quartic-type diagrams. Figure 1 shows all
box-type diagrams, which have the loops of charged-leptons and quarks, bosons of G± , W± , and H± . These
are t - and u -channel diagrams. Figure 2 shows all triangle-type diagrams, which consist of triangle vertices
(t1−4 ) attached to the final state via intermediate Higgs bosons h0 or H0 . Finally, Figure 3 shows all quartic
coupling-type diagrams. They include bubbles (q1−3 ) attached to the final state via intermediate Higgs bosons
h0 or H0 , bubbles loop (q4−6 ) and triangle loop (q7 , q14 ) of bosons G± , H± , and W± directly attached to
the final state. The diagrams t1−4 and q1−3 are s-channel diagrams. The resonant effects appear only in the
triangle diagrams (t1−4 ) and in the bubbles type (q1−3 ) due to the intermediate neutral Higgs bosons.

Note that the Feynman diagrams of the processes γγ → H0H0 and γγ → H0A0 are almost the same
as those of the γγ → A0A0 considered in this study. Therefore, any result to be obtained for the process
γγ → A0A0 can be also applied to these processes, depending on the parameters of the model.

Table 4 shows the triple/quartic Higgs couplings and couplings of the (pseudo)scalar to the W-boson,
which are included in each type of diagram. Feynman diagrams are dominated by triple couplings λH+G−A0 and
λH+W−A0 , which are independent of the THDM angles. Owing to the CP nature of A0 , the box-type diagrams

3Note that Feynman diagrams have been plotted by using JaxoDraw [49].
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Figure 1. Box-type diagrams for γγ → A0A0 . Here, the label fm represents fermions of e, µ, τ, u, d, c, s, t , and b .

Figure 2. Triangle-type diagrams for γγ → A0A0 . Here, the label fm refers to fermions of e, µ, τ, u, d, c, s, t , and b .

are rather sensitive to the coupling λH+G−A0 , which has neither a tanβ nor a m2
12 dependence. Triple couplings

λ[h0,H0]A0A0 , λH+H−[h0,H0] , and λG+G−[h0,H0] only appear in s-channel diagrams and they are amplified by
resonance effects due to neutral Higgs bosons. Diagrams q4 , q7 and q8 in Figure 3 are sensitive to quartic
couplings λH+H−A0A0 and λG+G−A0A0 , which are proportional to mixing angles and the mass parameter m2

12 .

The one-loop amplitude of the process γγ → A0A0 could be computed by summing all unrenormalized
reducible and irreducible contributions. Consequently, finite and gauge invariant results can be obtained.
Therefore, renormalization is not required for ultraviolet divergence. The corresponding matrix element4 is
calculated as a sum over all contributions:

M = Mbox +Mquartic +Mbubble +Mtriangle, (4.3)

where a relative sign (−1)δij is written between one diagram and its counterpart emerging by interchanging

4In this study, an expression of the matrix element is not explicitly presented because it is too lengthy to include here.
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Figure 3. Quartic interaction diagrams for γγ → A0A0 .

Table 4. Triple/quartic Higgs couplings and couplings of the (pseudo)scalar to the W-boson, which are included in each
type of diagram.

Couplings Box-type Triangle-type Bubble-type Quartic-type

SS
S

λ[h0,H0]A0A0 ✓(t1,2,3,4) ✓(q1,2,3)
λH+H−[h0,H0] ✓(t2) ✓(q3)
λG+G−[h0,H0] ✓(t4) ✓(q3)
λH+G−A0 ✓(b2,4,6,8,10,11,12) ✓(q9,10,11,12,13)

W
SS

W
W

S λH+W−A0 ✓(b3,4,7,8,11,12) ✓(q9,10,11,12,14)
λW+W−[h0,H0] ✓(t4) ✓(q3)
λG+W−[h0,H0] ✓(t4)

SS
SS

W
W

SS λH+H−A0A0 ✓(q4) ✓(q7)
λG+G−A0A0 ✓(q4) ✓(q8)
λW+W−A0A0 ✓(q4) ✓(q8)

the final states. The total cross-section of γγ → A0A0 is given by

σ̂(ŝγγ , γγ → A0A0) =
1

32πŝ2γγ

∫ t̂+

t̂−
dt̂
∑

|M|2, (4.4)

where

t̂± = (m2
A − ŝγγ/2)±

(√
(ŝγγ − 2m2

A)
2 − 4m4

A

)
/2. (4.5)
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The γγ collision can be performed at the facility of the next generation of TeV-class linear colliders such
as the CLIC and the ILC. Then γγ → A0A0 is produced as a subprocess of e−e+ collision at the linear colliders.
The total cross-section of e+e− → γγ → A0A0 could be obtained by folding σ̂(γγ → A0A0) with the photon
luminosity

dLγγ

dz
= 2z

∫ xmax

z2/xmax

dx

x
Fγ/e(x)Fγ/e

(
z2

x

)
, (4.6)

as follows:

σ(s, e+e− → γγ → A0A0) =

∫ xmax

(2mA0 )/
√
s

dz
dLγγ

dz
σ̂(γγ → A0A0; ŝγγ = z2s), (4.7)

where Fγ/e(x) is the photon structure function. The photon spectrum is qualitatively better for larger values

of the x -fraction of the longitudinal momentum of the e− -beam. However, for x > 2(1 +
√
2) ≈ 4.8 , the high-

energy photons could disappear through the pair production of e−e+ in its collision with a following laser-γ .
The energy spectrum of the photon supplied as a Compton backscattered photon off the electron beam [54] is
used for the photon structure function of this study.

The numerical evaluation for both γγ → A0A0 and e+e− → γγ → A0A0 is carried out by the help
of Mathematica packages as follows: the relevant amplitudes are generated by FeynArts [50], the analytical
expressions of the squared matrix elements are provided by FormCalc [55], and the necessary one-loop scalar
integrals are evaluated by LoopTools [56]. Note that ultraviolet divergences for the general one loop-integral 4.2
are dimensionally regularized by LoopTools. UV-divergent loop integrals include the combination 1/ε − γE +

log 4π , for which LoopTools puts the actual divergence into the ε−1 component of the result and substitutes
the finite part by ∆ . LoopTools provides ways to numerically check for the cancellation of divergences. The
integration over the phase space of 2 → 2 is numerically evaluated by using the CUBA library. For the
photon structure function, Compton backscattered photons, which are interfaced by the CompAZ code [57], are
used. Using the tools described above, we have previously carried out several works and found significant
results [58, 59].

5. Numerical results and discussion
The numerical predictions for the direct pair production of the pseudoscalar Higgs boson at a γγ collision are
presented in detail, taking into account a full set of one-loop level Feynman diagrams. During our calculations,
the cancellation of divergences appearing in the loop contributions has been numerically checked. The finite
results have been obtained without the need for the renormalization procedure. The integrated cross-section
σ̂(γγ → A0A0) is analyzed as a function of the center-of-mass energy

√
ŝγγ , focusing on the individual

contributions from each type of diagram and on the polarization configurations of the incoming photons for
representative BPs given in Table 2. The dependencies of σ̂(γγ → A0A0) on the plane of m2

12 − tanβ and
mA − tanβ are also investigated. Furthermore, σ(e+e− → γγ → A0A0) is numerically evaluated as a function
of

√
s (for BPs given in Table 2) and mA for several Higgs mass hierarchies.

In Figure 4, the contribution of each type of diagram to σ̂(γγ → A0A0) is shown as a function
of

√
ŝγγ for each benchmark point. The labels “box”, “tri”, “bub”, “qua”, and “all” represent the box-

type contribution (b1→12 ), triangle-type contribution (t1→4 ), bubble-type contribution (q1→6 ), quartic-type
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Figure 4. The individual contributions from each type of diagram to total cross-section of process γγ → A0A0 as a
function of center-of-mass energy for each benchmark point. The inset figures show the contributions of the triangle-type,
bubble-type, and their interference in the center-of-mass energy range of 300–900 GeV.

contribution (q7→14 ), and all diagrams’ contributions, respectively. Additionally, “bub+tri” corresponds to
the contribution resulting from interference of the bubble type with triangle-type diagrams. For each of the
BPs, the integrated cross-section σ̂(γγ → A0A0) is enhanced by the threshold effect when

√
ŝγγ is close to 2

times the mass of charged Higgs H± , because the production process γγ → H+H− is open at this threshold
energy. Note that contributions from bubble-type and triangle-type diagrams, which are also called s-channel
contributions, are suppressed at the high energies owing to the s-channel propagator. However, the resonant
effects can also be seen in these diagrams because of the intermediate neutral Higgs bosons. Particularly, at low
center-of-mass energies, σ̂(γγ → A0A0) is dominated by triangle-type diagrams since the couplings h0A0A0

and h0H+H− are large.
At high center-of-mass energy, where the triangle-type contributions are suppressed, σ̂(γγ → A0A0) is

dominated by the box-type contributions. However, the bubble-type and triangle-type contributions are almost
equal, and their interference (bub+tri) makes a much smaller contribution compared to each of them (by one
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to two orders of magnitude) for all BPs because they nearly destroy each other. This means that they exert
a destructive interference. Additionally, the box-type contribution is larger than the interference contribution
of (bub+tri). Though the quartic-type interactions provide a positive contribution to the total cross-section,
the sum of the diagrams of quartic type, bubble type, and triangle type (bub+tri+qua) still makes a smaller
contribution than the box-type diagrams.

The size of σ̂(γγ → A0A0) is at a visible level of 10−1 fb for selected BPs. Furthermore, it is sorted
according to BPs as σ̂ (BP1)> σ̂ (BP2)> σ̂ (BP3)> σ̂ (BP4). The basic size of σ̂(γγ → A0A0) differs by 1–2
orders of magnitude depending on the triple and quartic couplings of the pseudoscalar Higgs boson produced.

In Figure 5, the integrated cross-section of process γγ → A0A0 is given for various polarization configura-
tions of the incoming photons, which are both right-handed RR polarized and opposite polarization RL . Note
that cross-sections are equal in the case of the following polarizations: σ̂(RR) = σ̂(LL) and σ̂(RL) = σ̂(LR) .

The unpolarized cross-section reaches up to 0.14 fb in BP1 at
√
ŝγγ = 750 GeV, 0.11 fb in BP2 at

√
ŝγγ = 1150 GeV, 0.096 fb in BP3 at

√
ŝγγ = 1200 GeV, and 0.07 fb in BP4 at

√
ŝγγ = 1350 GeV, and then
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Figure 5. The total cross-section of process γγ → A0A0 as a function of center-of-mass energy for each benchmark point.
The threshold effects are shown with arrows. UU, RR, and RL indicate situations of two photons with unpolarization,
right polarization, and opposite polarization, respectively.
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it falls for all cases. For high center-of-mass energies where the threshold effects disappear, when the initial
photons have LR or RL polarizations, the total cross-section is amplified by a factor of two as compared to
the unpolarized case (UU ). The threshold effect is observed in the case of two photons with left-handed (LL)

or right-handed (RR) polarization but not in the case of opposite polarization (LR) or (RL) .
It is well known that the triple and quartic couplings of the pseudoscalar Higgs boson to other particles

depend on the soft breaking parameter m2
12 , mA , and tanβ . These parameter dependencies of the cross-section

can provide important information about these couplings. From these dependencies, one can reveal a region of
the parameter space where the increment of the cross-section is high enough to be detectable at future linear
colliders. In respect to this, the integrated cross-section of γγ → A0A0 is scanned over the regions of m2

12−tanβ

and mA − tanβ at
√
ŝ = 1 TeV, as shown in Figures 6a and 6b.

Figure 6. The total cross-section of process γγ → A0A0 as a 2D function of parameters (a) m2
12 − tanβ and (b)

mA − tanβ for
√
ŝ = 1 TeV. The color heat map corresponds to the total cross-section in the scan region. The white

region represents parameter space in which production of A0A0 is kinematically unavailable as well as not allowed by
theoretical constraints.

The scan parameters are varied as follows: 0 ≤ m2
12 ≤ 104 GeV2 in steps of 100 GeV, 100 ≤ mA ≤ 500

GeV in steps of 10 GeV, and 2 ≤ tanβ ≤ 40 in steps of 0.5. However, most of parameter region is reduced by
theoretical constraints as well as due to being kinematically inaccessible. The cross-section is enhanced at the
border of the allowed and not-allowed regions. The size of σ(γγ → A0A0) is at a visible level of 10−1 to 101

fb for the considered parameter regions.
Finally, Figure 7 shows the dependence of σ(e+e− → γγ → A0A0) on the center-of-mass energy for each

BP and pseudoscalar Higgs mass for several Higgs mass hierarchies. σ(e−e+ → γγ → A0A0) is evaluated by
convoluting σ(γγ → A0A0) with the photon luminosity spectrum-based Compton backscattered photons. It can
be easily seen that the total cross-section in the BP1 scenario is larger than the others. The total cross-section
is enhanced by the threshold effect when 0.83

√
s ∼ 2mH± , because the production process γγ → H+H− is

kinematically open at this energy. The size of σ(e−e+ → γγ → A0A0) is at a visible level of 10−2 to 10−3

fb, depending on BPs. For selected BPs, the pseudoscalar Higgs boson pair production is more likely to be
observed in the γγ collider than in the e−e+ collider. Total cross-section decreases with increasing pseudoscalar
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Figure 7. The total cross-section of process e−e+ → γγ → A0A0 as a function of (a) center-of-mass energy for each
benchmark point and (b) pseudoscalar Higgs mass for different Higgs mass hierarchies.

Higgs mass up to a certain threshold, and then it increases due to the resonant effects. In particular, the total
cross-section reaches a value of 2.22 fb for mA0 = 100 GeV in the case of mH± = mH0 = mA0 .

6. Conclusion
In this study, the process γγ → A0A0 , nonexistent at tree level and first appearing at one-loop level, has
been studied with special emphasis put on individual contributions from each type of diagram at a γγ collider
as well as an electron–positron collider. Numerical evaluation has been carried out in the framework of the
THDM, taking into account both theoretical restrictions and experimental constraints from recent LHC data
and other experimental results. The energy-dependent structure of the cross-section is revealed by resonance
effects owing to the intermediate neutral Higgs boson as well as by the threshold effect when

√
sγγ ∼ 2mH± .

For all cases, the box-type diagrams make dominant contributions at high energies. Owing to the CP nature of
A0 , the box-type diagrams are rather sensitive to the coupling λH±G∓A0 , which has neither a tanβ nor a m2

12

dependence. Hence, the process γγ → A0A0 can allow detection of the coupling λH±G∓A0 . However, triple
couplings λ[h0,H0]A0A0 , λH+H−[h0,H0] , and λG+G−[h0,H0] only appear in s-channel diagrams and they can be
amplified by resonance effects due to neutral Higgs bosons. The polarization configurations of the initial photons
have the potential to amplify the total cross-sections. Consequently, the cross-section of the pair production of
the pseudoscalar Higgs boson at a photon–photon collision could be considerably amplified in the THDM and
therefore the expected number of events at a γγ collider can allow us to determine or exclude the parameter
space of the THDM potential.
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