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Abstract: Magnetohydrodynamic turbulence driven by magnetorotational instability (MRI) has been widely accepted
as an efficient mechanism for transporting angular momentum radially outward in the discs. Previously, we have
shown the triggering effect of the magnetization currents and the gradients produced by these currents on MRI for
Keplerian discs. In this work, we examine the properties of the diamagnetic current modified MRI for the discs where
the epicyclic frequencies deviate from Keplerian behaviour. We show that the diamagnetic effect modifies the instability
both for an increasing and for a decreasing angular momentum with radius. The novel unstable region produced by
magnetization effects still exists even if dΩ2 /dR > 0, where Ω(R) is the angular velocity. Inclusion of the diamagnetic
effect increases the maximum dimensionless growth rate sm = 0.25 which was found from the classical MRI to sm =
0.59 for an outwardly increasing angular velocity profile with κ2 > 4Ω2 , where κ is the epicyclic frequency. Moreover,
the maximum dimensionless growth rate is obtained as sm = 8.58 for a an outwardly decreasing angular velocity profile
with 0 < κ2 < Ω2 . Decreasing the magnetic field strength which is already weak, leads to more rapid growth in any
differential rotation profile.
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1. Introduction
The global stability of axisymmetric flows in a vertical magnetic field was first studied by [1] and [2]. In these
investigations, it was shown that the flow becomes unstable in the presence of a vanishingly weak field. The
importance of these findings in the context of accretion disc dynamics was pointed out by [3], and since then, this
unstable behaviour, which is now called the magnetorotational instability (MRI), has been extensively studied
in many astrophysical environments. In the non-linear regime, MRI rapidly generates magnetohydrodynamic
(MHD) turbulence which has been widely accepted as an efficient process for the angular momentum transport
in accretion discs, e.g. [4 – 7].

[3] showed the destabilization of the flow by a weak magnetic field frozen into the disc fluid with a
Keplerian rotation. The authors found no instability for a disc with an outwardly increasing angular velocity
curve (where the epicyclic frequency is κ2 = 5Ω2) . Later, the effects of different rotation profiles on MRI
have been considered in several investigations. [8] examines the behaviour of the instability under very general
circumstances, and claim their results are also applicable to non-Keplerian ‘thick’ discs. Furthermore, [9]
who investigated the effects of Hall electromotive forces (HEMFs) on the MRI, show that the inclusion of the
∗Correspondence: suzan.dogan@ege.edu.tr
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HEMFs lead to instability in any rotation profile. The HEMFs destabilize the flows even those with outwardly
increasing angular velocity. When the Hall effect is ignored, the classical MRI requires dΩ2

/
dR < 0. However,

the inclusion of the Hall currents changes the instability criterion into dΩ2
/
dR ̸= 0. Because negative Y =

(kνH /Ω)2 parameter becomes possible with the inclusion of the Hall effect, and this allows X = (kνA /Ω)2

parameter to have positive values, even if dΩ2
/
dR > 0 . Here, νH is the Hall velocity, defined by ν2H =

Ω.Bc/2πene and νA is the Alfvén velocity, defined by ν2A = B2 /4πρ,k is the wavenumber, Ω is the local
angular velocity vector of the disc, B is the magnetic field, e is the magnitude of the electron charge, ne is
the electron number density, ρ is the mass density. For a disc with an outwardly increasing velocity profile,
e.g. κ2 = 5Ω2 , they find that the Y < 0 regions can be unstable. Thus, any differential rotation profile
has the potential to become unstable. On the other hand, [10] examines the properties of stable and unstable
modes for various rotation profiles. They investigate several cases where the angular momentum and angular
velocity of the disc fluid either increasing (κ2 > 4Ω2) or decreasing (κ2 < 0) in radial direction, and where
the angular momentum is constant (κ2 = 0). They conclude that the classical case with a radially decreasing
angular momentum produces a stable MRI mode and an unstable Rayleigh mode. Conversely, if the angular
momentum increases radially outward, an unstable MRI mode appears at small wavenumbers.

[11] and [12] extended the analysis of [9] including the magnetization effects. Magnetization is the quantity
of magnetic moment (µ = mv2⊥

/
2B , where m is the mass of the particle, v⊥ is its velocity prependicular to

the magnetic field) per unit volume, and it is inversely proportional to the magnetic field strength. Thus, the
diamagnetic effects are expected to become important in flows where the field strength is low. A weak field is
needed for MRI, and the diamagnetic effect makes the field even weaker. This weakening effect yields a novel
unstable mode, and moreover, the maximum value of the growth rate becomes higher than the Oort A-value
[11 – 12].

In the presence of diamagnetism, magnetization currents give rise to a gradient both in the magnetic field
and in the perpendicular component of the velocity. [11] performed their analysis by neglecting the gradient
in perpendicular velocity. In [12], we included both of these gradients in our analysis, and found that the
instability has become more powerful. Diamagnetism has a destabilizing effect in addition to whistlers. Both
investigations restricted their analysis to Keplerian discs. When the disc is Keplerian, the epicyclic and the
orbital frequencies are nearly equal, i.e. κ2 ≈ Ω2 . However, the epicyclic frequency of the fluid element may
deviate from the Keplerian behaviour through several effects. There are several circumstances where κ2 differ
from Ω2 , especially in the inner regions of discs around Kerr black holes [13] or discs in binary systems, i.e.
the inner (outer) parts of circumbinary (circumprimary) discs due to the tidal torques, e.g. [14 – 15]. Discs
with significant internal pressure also have non-Keplerian angular momentum distributions [13]. The local
angular velocity is also expected to differ significantly from its Keplerian value in the boundary layer around
an accreting star, the region of the disc in which the angular velocity has an outwardly increasing profile (dΩ /
dR > 0), e.g. [16]. Furthermore, any magnetic field threading the disc can lead to a deviation of rotation from
Keplerian. Particularly, in the presence of magnetization currents, gradients in the magnetic field strengh and
the perpendicular component of the velocity may change the rotation profile locally (see Section 2). Thus, we
aim to apply our analysis to different laws of differential rotation.

Bearing the destabilizing role of the diamagnetic effects in mind, we extend our stability analysis [12]
where we included the magnetization effects on MRI to different rotation profiles. The paper is structured as
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follows: In Section 2, we summarize the mathematical formalism of diamagnetic currents, describe the governing
MHD equations with their assumptions, and derive the dispersion relation. In Section 3, we provide the growth
rates of the instability. Finally, in Section 4, we present our conclusions.

2. Preliminaries
2.1. Diamagnetism
We investigate the linear stability of a disc at a fiducial radius where both Hall currents and the magnetization
currents are present. The diamagnetic effect emerges when particles gyrating in an external magnetic field
produce their own dipole magnetic field. If we assume that the charged particles gyrating around the field
lines create a net current at the boundary of a closed circuit, this current, in turn, will produce an additional
magnetic field the direction of which is the same as the external magnetic field outside the circuit, and the
opposite within the circuit. Thus, the net magnetic field inside this region will become weaker than that
outside. The decrease (increase) in the magnetic field strength within (outside) the circuit will produce a
gradient in the radial direction.

If the local currents are persistent enough to create a magnetic field gradient in the disc, electrons and
ions experience a magnetic pressure. The magnetic pressure force pushes the frozen-in particles into the region
within the current, and dragging of the frozen-in particles bend the magnetic field lines. Particles in a magnetic
field with a gradient and curvature acquire a drift velocity and set in a cycloid orbit. In their cycloid trajectory,
particles encounter weak and strong magnetic fields. If the magnetic moment

(
µ = mv2⊥

/
2B
)

is conserved, the
perpendicular velocity of the particles also vary depending on the magnetic field strength. Particle’s velocity
at the top of the cycloid trajectory where the Larmor radius is smaller will be higher than the velocity at the
bottom. This brings about a gradient both to the radial and to the azimuthal components of the velocity.

The local counterfield produced by the charged particles can be obtained by integrating the magnetic
moment for all the charged particles in a unit volume [17]

M =

∫
4π

∞∫
0

N (E, θ)µ (E, θ) dEdθ (1)

where N(E, θ)dEdΩ is the number density of charged particles having velocity within dΩ around pitch angle
θand energy within dE aroundE.Using the definition of the magnetic moment, the magnetization is found as
[17 – 18]

M = − 2B

3B2
Wk (2)

where Wk = nmv2⊥
/
2 is the kinetic energy density. We assume that the global magnetic field value in the

absence of any magnetization effects is H . Thus, in the presence of magnetization, the net magnetic field in the
close neighborhood of the magnetization current is

B = H+ 4πM = H− 8π

3

B

B2
Wk = H− 1

3

Wk

WB
B = H−εB (3)

where WB = B2 /8π is the magnetic field energy density, ε = Wk / 3W B is the ‘magnetization parameter’.
The total current density is

J = Jext + Jmag =
c

4π
∇×H+ c∇×M =

c

4π
∇×H−c∇× 2Wk

3B2
B (4)
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The vector operations give the total current density in terms of magnetic field gradient and the resulting
perpendicular velocity gradient as

J =
c

4π
[(1− ε)]∇×B+2ε

∇B

B
×B−2ε

∇v⊥
v⊥

×B (5)

[11]. As mentioned before, [11] ignored the gradient in perpendicular velocity by dropping the term containing
∇v⊥ in Eq. (5). Then, [12] included the ∇v⊥ term in their investigation for Keplerian discs, i.e. κ = Ω . Here,
we shall follow the same analysis, but generalize their investigation for the discs/disc regions where the epicyclic
frequency deviate from Keplerian behaviour. Therefore, we shall consider the cases with κ ̸= Ω . Other than
that, the basic equations will remain the same.

2.2. MHD Equations and the Dispersion Relation
The fundamental dynamical equations are mass conversation,

∂ρ

∂t
+∇ · (ρν) = 0, (6)

the equation of motion,

ρ
∂ν

∂t
+ (ρν · ∇) ν = −∇P+

1

c
J×B, (7)

and the induction equation,
∂B

∂t
= ∇×

[
ν ×B−η

4π

c
J−J×B

ene

]
. (8)

Here ν is the fluid velocity, η is the microscopic resistivity, and ne is the electron number density. In Eqns. (7)
and (8), the current density is given by

J =
c

4π
∇×B. (9)

We investigate the local stability of a disc threaded by a vertical magnetic field with a gradient in the radial
direction, i.e. B = B(R)ẑ . Thus, we can write the gradient of the magnetic field as ∇B = (dB/dR) R̂ The disc
fluid’s bulk velocity is in the azimuthal direction and, magnetic pressure and the magnetic tension force restrict
the disc fluid’s motion in the radial direction. Therefore, we assume that the gradient of the perpendicular
velocity is in the radial direction, i.e. ∇v⊥ = (dv⊥/dR) R̂ .

We shall use the Boussinesq approximation, and thus assume that ∇ · ν = 0 . We should note that the
velocity field of the disc fluid is nearly but not exactly incompressible [8]. We shall work in standard cylindrical
coordinates (R , ϕ , z) with the origin at the disc center. To keep the coefficients of the dispersion relation real,
we assume that the perturbations are proportional to exp(ikz+ωt) where k is the wavenumber perpendicular
to the disc and ω is the wave frequency. Therefore, if any of the solutions has a positive real part, i.e. R [ω ]
> 0, we expect to see an exponential growth in perturbations with time. Under these assumptions, we obtain
the linearized radial, azimuthal, and vertical components of Eqn. (7) as follows:

ωδνR − 2Ωδνϕ − (1− ε)
ik

4πρ
BδBR +

1

4πρ

[
(1 + 3ε)∇B − 4εB

∇Ω

Ω

]
δBz = 0 (10)
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ωδνϕ +
κ2

2Ω
δνR − (1− ε)

ik

4πρ
BδBϕ = 0 (11)

ik
δP

ρ
− 1

4πρ

[
(1 + ε)∇B − 2εB

∇Ω

Ω

]
δBR = 0 (12)

where the epicyclic frequency is defined as κ2 = 4Ω2 + d Ω2/d ln R . Similarly, we find the linearized
components of Eqn. (8) as follows:

ikBδνR −
[
ω + (1− ε) k

2
η
]
δBR − (1− ε)

c

4πene
k2BδBϕ = 0 (13)

[
c

4πene

(
(1− ε) k

2
B + (1 + ε)∇2B − 2ε

(
B
∇2Ω

Ω
+∇B

∇Ω

Ω
−B

(
∇Ω

Ω

)2
))

+
dΩ

d lnR

]
δBR

−

[
ω + (1− ε) k

2
η − 2εη

(
∇2B

B
−
(
∇B

B

)2

− ∇2Ω

Ω
−
(
∇Ω

Ω

)2
)]

δBϕ

+ikBδνϕ +
c

4πene
2ε

(
ik∇B − ikB

∇Ω

Ω

)
δBz = 0 (14)

∇BδνR + 2εηikB
∇Ω

Ω
δνϕ −

[
ω + (1− ε) k

2
η + 2εη

(
ik

∇B

B
− ∇2B

B
+

(
∇B

B

)2

− ∇2Ω

Ω
+

(
∇Ω

Ω

)2
)]

δBz

− c

4πene

[
(1 + ε) ik∇B − 2εikB

∇Ω

Ω

]
δBϕ = 0 (15)

In the limit of zero resistivity, eqns. (10 - 15) yield a quartic dispersion relation

s4 + s
2

 κ̃2 + 2X (1− ε) + Y
4 (1− ε)

[
Y (1− ε) + d ln Ω2

d lnR

]
+
(
d lnB
d lnR

)2
M−2

A [(1 + 3ε)− χY ε (1 + ε)]

+ 3
4
d lnB
d lnR

(
d ln Ω2

d lnR

)
MC

M−2
A χY ε (1 + 3ε) + 1

8

(
d ln Ω2

d lnR

)2
MC

M−2
A χY ε (8− 9ε)


+

(
d lnB

d lnR

)2

M−2
A

{
(1− ε)

[
X (1 + 3ε) + 4χXε+

Y 2

2
(1− ε)

]
+ (1 + ε)χκ̃2

[
Y ε− X

4
(1 + 3ε)

]}

+
d lnB

d lnR

(
d lnΩ2

d lnR

)
MC

M−2
A

{
χ

2
κ̃2 (X − Y ) ε (1 + ε)− 2 (3χ− 2) ε (1− ε)− χ

8
X

(
d lnΩ2

d lnR

)
MC

ε (7 + 5ε)

+
Y 2

4
ε2 (1− ε)

2
+

χ

2
X

d lnB

d lnR
(1 + 3ε) (1 + ε) +M−2

A χY

[
1

4

d lnB

d lnR

(
d lnΩ2

d lnR

)
MC

ε2 (1 + 3ε)− 2ε (1− ε)

−1

8

(
d lnΩ2

d lnR

)2

MC

ε2 (11 + 3ε)− 1

2

(
d lnB

d lnR

)2

ε (1 + 3ε)

]}
−
(
d lnΩ2

d lnR

)2

MC

M−2
A

{χ
8
Y κ̃2ε (1 + 3ε) +

χ

2
Xε

[
(1− ε)− κ̃2ε+

(
d lnΩ2

d lnR

)
MC

ε

]
+

χ

4
M−2

A ε2

[(
d lnΩ2

d lnR

)2

MC

ε2 + 2 (1− ε)

]
− Y 2

8
ε2 (1− ε)

}

+

[
d lnΩ2

d lnR
(1− ε) + Y (1− ε)

2
+X (1− ε)

2

](
κ̃2Y

4
+X

)
= 0. (16)
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Here s = ω/Ω is the dimensionless growth rate, κ̃ = κ/Ω is the dimensionless epicyclic frequency, X
= (kνA /Ω)2 where ν2A = B2/4πρ is the Alfvén velocity, Y = (kνH /Ω)2 where ν2H = Ω.Bc/2πene is the
Hall velocity. We define the magnetic field gradient and the velocity gradient produced by the magnetization
currents in dimensionless form as G = d ln B / d ln R and T = (d ln Ω2 / d ln R)MC . Unlike our previous
investigation [12], we use the subscript MC to emphasize the additional velocity gradient terms which come
from the magnetization currents. If R (s) > 0, the perturbations show an exponential growth with time, and
the disc becomes unstable. If R (s) < 0, then the perturbations show an exponential decay with time, and no
instability occurs.

3. Growth Rates
Following [12], we solve the dispersion relation given by Eq. (16) for three cases: (i) Case 1: ε ̸= 0,∇B = 0

and ∇v⊥ = 0 ; (ii) Case 2: ε ̸= 0, ∇B ̸= 0 and ∇v⊥ = 0 ; (iii) Case 3: ε ̸= 0, ∇B ̸= 0 and ∇v⊥ ̸= 0 .
We investigate the dependence of the growth rates on epicyclic frequencies in each case. In accretion discs, the
angular velocity distribution is given by Ω(R) ∼ R−q where the shear parameter q can be expressed as

q =
d lnΩ

d lnR
. (17)

The epicyclic frequency can be written as a function of the shear parameter by κ2 = 4Ω2 + d Ω2 /d ln R ≡
2Ω2 (2 − q) . For Keplerian rotation q = 3/2, and thus κ2 = Ω2 . The local stability of a disc with a Keplerian
rotation profile has been investigated in [12]. Here, we present calculations for κ2 = 0.5Ω2, κ2 = Ω2 and
κ2 = 5Ω2 to compare the numerical growth rates of the instability of non-Keplerian cases with those for the
Keplerian case. This allows us to see the behaviour of the new unstable regions produced by magnetization
effects in various rotation laws. κ2 = 0.5Ω2 corresponds to the orbits where q > 3/2, and κ2 = 5Ω2 corresponds
to an outwardly increasing angular velocity profile.

Case 1: ε ̸= 0, ∇B = 0 and ∇v⊥ = 0 . First, we ignore the magnetic field and the perpendicular
velocity gradients produced by the magnetization current. We note that the dispersion relation for this case is
reduced to Eq. (62) of [9] when the magnetization vanishes (ε = 0) . Previously, [11] and [12] who extended
the analysis of [9] including the magnetization effect, showed that the unstable regions widen with increasing
magnetization, i.e. ε value. Here, we keep the magnetization constant (ε = 0.5) , and change the rotation law.

The growth rate of the classical MRI is proportional to q [19]. The epicyclic frequency provides a
measure of stabilization as the epicyclic motions generated by Coriolis forces effectively stabilize both linear
and nonlinear perturbations. The stabilization of the flow can be achieved by increasing the epicyclic frequency
through decreasing the value of q from 2 [20]. If q value approaches 2, then κ2 approaches 0. As a result, the
dynamical stabilization weakens. We apparently see this effect in Figure 1. We present our solutions for the
epicyclic frequencies κ2 = 0.5Ω2, κ2 = Ω2 and κ2 = 5Ω2 . Figure 1 shows the graphical solutions in the XY
plane. The mounds represent the regions of instability. The maximum growth rate which is found as sm = 0.88
is highest when κ2 = 0.5Ω2 . The solution for κ2 = Ω2 with a maximum growth rate sm = 0.75 corresponds
to the Keplerian rotation, and thus to the solution in [12] (see Figure 3b therein). Bottom panel of Figure
1 corresponds to a disc with an outwardly increasing velocity profile, i.e. dΩ2

/
dR > 0 . We see the region of

instability becomes much narrower and only the regions where Y < 0 are unstable in this case. Y < 0 describes
the configuration where Ω and B are oriented in the opposite direction, i.e. Ω · B < 0.
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Figure 1. Growth rates for Case 1 where ∇B = 0 and ∇v⊥ = 0 for κ2 = 0.5Ω2 (top left), κ2 = Ω2 (top right) and
κ2 = 5Ω2 (bottom). The mounds correspond to the regions of instability and the height of these mounds are proportional
to the dimensionless growth rate. We use the same scaling for the s-axis to allow for direct comparison of the growth
rates for each solution. Growth rate for the ideal MHD case (Y = 0) is represented with the yellow line in each plot.

In Figure 1, we also show where the ideal MHD case (where Y = 0) is located in order to compare
with the non-ideal case. The yellow line shows the growth rate found in the ideal MHD limit. The role of the
Hall effect on the development of MRI was first examined by [21]. [21] found that the inclusion of the Hall
currents modify the growth rates of the instability depending on the initial field being parallel (Ω· B > 0)
or antiparallel (Ω· B < 0) to the disc rotation axis. Furthermore, [9] showed that no instability occurs in an
outwardly increasing velocity profile without the Hall effect. This result is recovered in the bottom panel of
Figure 1, as it should. The maximum growth rate values for κ2 = 0.5Ω2 and κ2 = Ω2 remains unchanged from
the ideal limit (see also [9, 21]).

We also note that our top right and bottom panels of Figure 1 are reduced to Figures 5 and 6 of [9] when
ε = 0 . We present the solutions with and without magnetization in Figure 2 with color maps in order to enable
direct comparison between the wavelength ranges of the unstable mode. When compared with results of [9],
we see that the region of instability in the XY parameter space becomes slightly wider with the inclusion of
magnetization. Our solutions, however, have the same maximum growth rate as found in [9] with sm = 0.75
for κ2 = Ω2 and sm = 0.25 for κ2 = 5Ω2 .

Thus, the inclusion of magnetization only, does not change the behaviour of the region where the
instability occurs depending on epicyclic frequency. We shall see this behaviour is qualitatively different when
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Figure 2. Color maps showing the comparison of the growth rates obtained when the magnetization is ignored, i.e.
ε = 0 (left panel) and included, i.e. ε = 0.5 (right panel) for κ2 = 0.5Ω2 (top), κ2 = Ω2 (middle) and κ2 = 5Ω2 (bottom).
The left panel corresponds to the results of [9]. When the magnetization is included, the ridges become slightly wider.
The maximum growth rates, however, remains unchanged.
the magnetic field gradient is included.

Case 2: ε ̸= 0, ∇B ̸= 0 and ∇v⊥ = 0 . Here, we consider the case where the charged particles create a
magnetization current which is persistent enough to create a gradient in the magnetic field. Previously, it has
already been shown that the inclusion of the magnetic field gradient (both radial and azimuthal) produces an
another unstable region in the XY plane for the Keplerian case [11 – 12, 22]. We call the ridge found from the
classical MRI analyses with HEMFs as the unstable region – I (UR-I) and the second unstable region produced
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Figure 3. Growth rates for Case 2 where ∇B ̸= 0 and ∇v⊥ = 0 for κ2 = 0.5Ω2 (top left), κ2 = Ω2 and κ2 = 5Ω2

(bottom). Left panel shows the three-dimensional plot of the growth rates and the right panel shows the corresponding
colormaps which show the growth rates in the XY plane. The UR-I almost vanishes when dΩ2/dR > 0 . But the UR-II
which is produced when the magnetic field gradient is included still exists. Growth rate for the ideal MHD case (Y = 0)
is represented with the yellow line in each plot in the left panel.

when the magnetic field gradient is included as the unstable region – II (UR-II). Figure 3 shows the solutions
for Case 2 both in three-dimensional plots and in color maps. In Figure 3, we see that the UR-I again becomes
narrower with the increase in the epicyclic frequency. Furthermore, this unstable region nearly vanishes when
κ2 = 5Ω2 . The maximum growth rate for UR-I is sm = 1.68 for κ2 = 0.5Ω2 , and sm = 0.69 for κ2 = 5Ω2 . On
the other hand, UR-II becomes wider and spreads over a larger space in the XY plane than UR-I does when
κ2 = 5Ω2 . The maximum growth rate for UR-II is sm = 1.01 for κ2 = 0.5Ω2 , and sm = 0.6 for κ2 = 5Ω2 .
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With the inclusion of the magnetic field gradient, the wavenumber range where the instability occurs, shifts to
the Y > 0 region in the outwardly increasing velocity profile. Figure 3 shows that the departure from the ideal
limit is remarkable when the Hall term and the magnetization are both introduced.

Figure 4. Growth rates for Case 3 where we assume ∇B ̸= 0 and ∇v⊥ ̸= 0 for κ2 = 0.5Ω2 (top), κ2 = Ω2 (middle)
and κ2 = 5Ω2 (bottom). Left panel shows the three-dimensional plot of the growth rates and the right panel shows the
corresponding colormaps which show the growth rates in the XY plane for Case 3. T and κ2 values are related to each
other by definition of epicyclic frequency. The UR-I vanishes in an outwardly increasing velocity profile. The UR-II still
exists in a narrow region with a maximum growth rate sm = 0.59.

Case 3: ε ̸= 0, ∇B ̸= 0 and ∇v⊥ ̸= 0 . The graphical solutions for this case are shown in Figure 4. As
expected, the growth rates are higher and the unstable wavenumber range is larger for κ2 = 0.5Ω2 than those
for the Keplerian case. The maximum growth rate is sm = 8.58 for κ2 = 0.5Ω2 , and sm = 6.65 for κ2 = Ω2 .
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The growth rates become much lower when dΩ2
/
dR > 0 . We see that the UR-I vanishes in this case. However,

the UR-II produced by the diamagnetic effect still exists. The maximum growth rate of this new unstable region
is sm = 0.59. In the classical HEMF MRI where the diamagnetic effects are ignored, this value has been found
as 0.25 [9]. As a result, whatever the epicyclic frequency value is, decreasing the magnetic field strength which
is already weak, leads to more rapid growth of instability.

4. Conclusion
The effects of diamagnetism on MRI have previously been investigated by [11] and [12] for Keplerian discs. In
this paper, we generalized these analyses for discs/regions of the discs where the rotation profile is non-Keplerian.
Our results show that the magnetic field and the velocity gradients produced by the magnetization currents play
an important role in triggering the MRI both for an increasing and for a decreasing angular momentum with
radius. The second unstable region produced by magnetization effects still exists even if dΩ2

/
dR > 0 . Moreover,

the UR-II becomes more dominant than UR-I in XY parameter space. Whatever the epicyclic frequency value
is, the second unstable region always appears in Y > 0 region. Inclusion of the diamagnetic effects increases
the maximum dimensionless growth rate from sm = 0.25 which has been found from the classical HEMF MRI
analysis to sm = 0.59 for an outwardly increasing velocity profile. This result shows the importance of the
diamagnetic effect on instability. Regions in which the angular velocity increases outwards are normally stable
in the standart MRI. Inclusion of the Hall effect allows instability to occur in these regions, and diamagnetism
makes the instability more powerful. The behaviour discussed in this paper is relevant to astrophysical discs in a
variety of systems where the epicyclic frequency deviates from Keplerian profile. There are several circumstances
where q > 3/2 and thus κ2 → 0, especially in the inner regions of accretion discs around black holes due to the
relativistic effects, and in the outer (inner) regions of the circumprimary (circumbinary) discs in binary systems
due to tidal torques. The regime in which the angular velocity increases outwards might be relevant to the
boundary layer between a star and a disc (see also [23]). The velocity distribution might also change locally if
the velocity gradient produced by the magnetization current is persistent. Thus, the diamagnetic effect itself
may lead to a deviation from the Keplerian rotation.

In conclusion, diamagnetism has a strong destabilizing role in any rotation profile. Decreasing the
magnetic field strength which is already weak, leads to more rapid growth of instability both for 0 < κ2 < Ω2

and for κ2 > 4Ω2 .
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