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Abstract: Recently a new approach in constructing the conserved charges in cosmological Einstein gravity was given.
In this new formulation, instead of using the explicit form of the field equations, a covariantly conserved rank-four tensor
was used. In the resulting charge expression, instead of the first derivative of the metric perturbation, the linearized
Riemann tensor appears along with the derivative of the background Killing vector fields. Here we give a detailed analysis
of the first-order and the second-order perturbation theory in a gauge-invariant form in cosmological Einstein gravity.
The linearized Einstein tensor is gauge-invariant at the first order but it is not so at the second order, which complicates
the discussion. This method depends on the assumption that the first-order metric perturbation can be decomposed into
gauge-variant and gauge-invariant parts and the gauge-variant parts do not contribute to physical quantities.

Key words: Second-order perturbation theory, gauge-invariant perturbation theory, conserved charges, Taub charges,
constraint equations

1. Introduction
In general relativity finding the exact solution to the field equations is generally too hard and therefore one
needs to use perturbation theory by starting from the exact solution to the background field equations, which
has symmetries. This technique yields a lot of information about the physical problem at hand. In the absence
of a source, any generic gravity field equations in local coordinates read as follows:

Eµν(g(λ)) = 0, (1)

where λ parametrizes the solution set. We have the exact solution plus the perturbations defined as:

g(λ = 0) := ḡ, hµν :=
dgµν
dλ

∣∣∣
λ=0

, kµν :=
1

2

d2gµν
dλ2

∣∣∣
λ=0

, (2)

where ḡ is the background solution that we carry out the perturbations around, h denotes the first-order
expansion of the metric tensor, and k denotes the second-order expansion. When we consider the expansion of
the field equations (1) about the background spacetime metric ḡ , we obtain perturbations of the field equations
up to O(λ3) as:

Ēµν(ḡ) + λ(Eµν)
(1)(h) + λ2

(
(Eµν)

(2)(h, h) + (Eµν)
(1)(k)

)
= 0. (3)

∗Correspondence: emelaltas@kmu.edu.tr

This work is licensed under a Creative Commons Attribution 4.0 International License.
493

https://orcid.org/0000-0001-6938-9868


ALTAŞ/Turk J Phys

Here by assumption Ēµν(ḡ) = 0 and (Eµν)
(1)(h) denotes the first-order linearized field equations, while the

combination (Eµν)
(2)(h, h) + (Eµν)

(1)(k) shows the expansion of the field equations at the second order. Of
course, not all background solutions can be used to obtain an exact solution, since once ḡ solves the background
field equations, the solution to the first-order perturbation of the field equations, h , must satisfy the given
relation (2). Similarly, the second-order metric perturbation must satisfy the given definition with the second-
order field equations:

(Eµν)
(2)(h, h) + (Eµν)

(1)(k) = 0. (4)

It means that even if we find the linearized solutions, h , to the linear order expansion of the field equations
(Eµν)

(1)(h) = 0 , due to the the second-order expansion of the field equations there exists a constraint on
it. In order to understand this issue explicitly, let us consider ξ̄µ , which denotes the Killing vector field of
ḡ . Contraction of (4) with ξ̄µ and integration of the result over Σ , which denotes the hypersurface of the
spacetime manifold M , gives∫

Σ

dn−1x
√
γ̄ ξ̄µ (E

µν)(1)(k) = −
∫
Σ

dn−1x
√
γ̄ ξ̄µ (E

µν)(2)(h, h), (5)

where we have used the background inverse metric and the metric to raise and lower the indices, respectively,
and γ̄ denotes the metric of the hypersurface. Once we are given the field equations, we can express the
left-hand side of (5) as a pure divergence of an antisymmetric field Fµν :

√
γ̄ξ̄µ (E

µν)(1)(k) = ∂µ
(√

γ̄Fµν
)
. (6)

When the left-hand side of (5) is expressed in terms of the perturbation of the metric tensor, it is called the
Abbott–Deser–Tekin (ADT) current (or charges) [1, 2] and it is an extension of the Abbott–Deser–Misner
(ADM) [3] charges of flat spacetime. Substituting the last expression in (5), we conclude that the right-hand
side, which is known as the Taub charge [4], must also be expressed as a pure boundary. Then one ends up
with the equality of the Taub and ADT charges:

QADT :=

∫
∂Σ

dΣµ

√
σ̄ n̂ν ξ̄µ F

µν = −
∫
Σ

dn−1x
√
γ̄ ξ̄µ (E

µν)(2)(h, h) =: −QTaub, (7)

where ∂Σ denotes the boundary of the hypersurface Σ , σ̄ is the pull-back metric on it, and n̂ν is the outward
unit normal vector on ∂Σ . If the background spacetime has no boundary, one arrives at the integral constraint
on h as: ∫

Σ

dn−1x
√
γ̄ ξ̄µ (E

µν)(2)(h, h) = 0. (8)

When this integral constraint is satisfied, we say that ḡ is linearization stable and the perturbation h can be
used to obtain an exact solution, but if this is not the case the background solution has linearization instability
and we cannot improve it to get an exact solution. In other words, ḡ is an isolated solution. This issue was
studied for Einstein’s theory in [5–11], summarized in [12, 13], and it was extended to the generic gravity
theories recently in [14, 15] and to chiral gravity in [16]. For the cosmological Einstein theory it was shown
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that √
γ̄ ξ̄µ (E µν)(2)(h, h) cannot be expressed as a pure boundary [17]; it has an additional bulk part, which

becomes a constraint on the linear order expansion of the metric tensor. The constraint in Einstein’s theory
reads as:

1

Λ

∫
Σ

dn−1x
√
γ̄ ξ̄µ(Γ

β
νρ)

(1)∇̄ρξ̄σ(P νµ
βσ)

(1) = 0. (9)

Below, in Section 2, we consider the cosmological Einstein gravity and give the Abbott–Deser (AD)
formula of the conserved charges [1] for background Einstein spacetimes, and we summarize the new formulation
[18, 19] to construct the conserved charges. Then we give the linear order perturbation of the new formula and
its behavior under gauge transformations for (anti) de Sitter background spacetime. In Section 3, we summarize
the second-order expansion of the new formula and construct the gauge transformation of the result. In Section
4, we discuss the results in terms of second-order gauge-invariant perturbation theory of Nakamura [20–23],
which is a useful technique to construct the relevant quantities as gauge-variant and -invariant parts explicitly.
Since the computations are somewhat lengthy, we relegate them to the Appendices.

2. Cosmological Einstein theory at first order

The linear order expansion of the cosmological Einstein tensor1 about a generic background is:

(Gµν)
(1) := (Rµν)

(1) − 1

2
ḡµν(R)(1) − 1

2
hµνR̄+ Λhµν . (10)

This background tensor can be written as two parts [2, 24]:

(Gµν)
(1)

= ∇̄α∇̄βK
µανβ +Xµν , (11)

with

Xµν ≡ 1

2

(
hµαR̄α

ν − R̄µανβhαβ

)
+

1

2
ḡµνhρσR̄ρσ + Λhµν − 1

2
hµνR̄, (12)

and

Kµανβ ≡ 1

2

(
ḡαν h̃µβ + ḡµβh̃αν − ḡαβh̃µν − ḡµν h̃αβ

)
. (13)

Here h̃µν ≡ hµν − 1
2 ḡ

µνh. Suppose that the background spacetime has one Killing vector field at least, say ξ̄ν .

Contraction of the background Killing vector ξ̄ν with (Gµν)
(1) yields:

ξ̄ν (Gµν)
(1)

= ∇̄α

(
ξ̄ν∇̄βK

µανβ −Kµβνα∇̄β ξ̄ν
)
+KµανβR̄ρ

βαν ξ̄ρ +Xµν ξ̄ν , (14)

where the last two terms vanish for a background Einstein spacetime and, therefore, the current can be written
as pure divergence:

ξ̄ν (Gµν)
(1)

= ∇̄µ∇̄α

(
ξ̄ν∇̄βK

µανβ −Kµβνα∇̄β ξ̄ν
)
:= ∇̄µF

µν . (15)

One natural question is to ask how this expression changes when one changes the coordinates on the background
spacetime. Let the vector field X be the generator of the small diffeomorphism. This equation does not change

1The details of the computations are given in Appendix A.
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since δX (Gµν)
(1)

= LX Ḡµν , which vanishes for the background Einstein spaces. Although the result is gauge-
invariant, the antisymmetric tensor Fµν as defined (15) is gauge-invariant only up to a boundary. The change
of Fµν under gauge transformations is complicated and was given in [19]. On the other hand, for (anti) de
Sitter background spacetime it is possible to express the current in a completely gauge-invariant way [18, 19],
starting from the second Bianchi identity on the Riemann tensor:

∇νRσβµρ +∇σRβνµρ +∇βRνσµρ = 0. (16)

Using the contracted Bianchi identity ∇µG µν = 0 and the metric compatibility ∇µgαβ = 0 , and carrying out
the gνρ multiplication, one can construct a divergence-free rank-four tensor (let us denote it as P νµ

βσ ), which
has additional properties. The P -tensor satisfies the symmetry properties of the Riemann tensor; it vanishes
for the background (anti) de Sitter space, P̄ νµ

βσ = 0 , and contraction of its indices yields the cosmological
Einstein tensor, P µ

σ := P νµ
νσ = (3− n)G µ

σ . Explicitly, the P -tensor reads as:

P νµ
βσ := Rνµ

βσ + δνσG
µ
β − δνβ G

µ
σ + δµβ G

ν
σ − δµσ G

ν
β +

(
R

2
− Λ (n+ 1)

n− 1

)(
δνσδ

µ
β − δνβδ

µ
σ

)
. (17)

This tensor was used to give a new formulation of conserved charges in [18], and also the construction was
improved for the extensions of the Einstein gravity in [19]. Let us summarize how one can construct the
conserved charges by using the P -tensor. Consider the following exact equation:

∇ν(P νµ
βσ∇βξσ)− P νµ

βσ∇ν∇βξσ = 0, (18)

which is valid for all smooth g without using the field equations. Consider the background spacetime to be the
n -dimensional (anti) de Sitter spacetime with the given relations:

R̄µανβ =
2

(n− 2) (n− 1)
Λ (ḡµν ḡαβ − ḡµβ ḡαν) , R̄µν =

2

n− 2
Λḡµν , R̄ =

2nΛ

n− 2
. (19)

First-order expansion of (18) about the background (anti) de Sitter spacetime gives:

∇̄ν

(
(P νµ

βσ)
(1)∇̄β ξ̄σ

)
− (P νµ

βσ)
(1)∇̄ν∇̄β ξ̄σ = 0, (20)

where at linear order expansion of the P -tensor about the (anti) de Sitter spacetime reads as:

(Pνµ
βσ)

(1) = (Rνµ
βσ)

(1) + 2(G µ
[β)

(1)δνσ] + 2(G ν
[σ)

(1)δµβ] + (R)(1)δµ[βδ
ν
σ]. (21)

Substituting the linearized P -tensor, assuming ξ̄µ to be Killing vector, and using the identity ∇̄ν∇̄βξσ =

R̄λνβσ ξ̄
λ , the linearized equation (20) becomes:

ξ̄ ν(G νµ)(1) = c∇̄ν

(
(P νµ

βσ)
(1)∇̄β ξ̄σ

)
, (22)

where we have defined c = (n−1)(n−2)
4Λ(n−3) . Since (G µν)(1) and (R)(1) vanish on the boundary, the conserved

charges of the cosmological Einstein theory can be written as:

Q =
c

2GΩn−2

∫
∂Σ̄

dn−2x
√
σ̄ n̄µσ̄ν (R

νµ
βσ)

(1) ∇̄β ξ̄σ, (23)
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where σ̄ν is the unit outward normal vector on the boundary of the hypersurface, ∂Σ̄ . For a general background

spacetime, under a variation the linear order expansion of the Riemann tensor transforms as δX (Rνµ
βσ)

(1)
=

LXR̄νµ
βσ , where the vector field X is the generator of the transformation. Since LXR̄νµ

βσ vanishes for
(anti) de Sitter background (for more details see [19]), it turns out that the conserved charges are given with a
gauge-invariant expression that involves the linearized Riemann tensor explicitly.

3. Cosmological Einstein gravity at second order

Here we summarize perturbations of the cosmological Einstein tensor at the second-order following [17]. Af-
ter using the linearized equation ∇̄ν(P νµ

βσ)
(1) = 0 , the second-order perturbation of equation (18) about

background (anti) de Sitter spacetime reduces to the divergence and nondivergence parts as:

ξ̄ν(Gµ
ν )

(2) = c

(
∇̄ν

(
∇̄β ξ̄σ(T νµ

βσ)
(2)
)
− 2(Γβ

νρ)
(1)∇̄ρξ̄σ(P νµ

βσ)
(1)

)
, (24)

where we have defined a second-order background tensor:

(T νµ
βσ)

(2) := (P νµ
βσ)

(2) +
h

2
(P νµ

βσ)
(1), (25)

and the constant c is defined below (22). Once we use the cosmological Einstein gravity field equations explicitly,
it is shown that the left-hand side of (24) cannot be written as a pure divergence term [17]. It turns out
that the nondivergence part can involve some divergence terms, but it cannot be completely expressed as a
boundary term. It is obvious that a compact hypersurface, Σ , which has no boundary, of the manifold M , the
nondivergence part of (24), becomes an integral constraint on the solutions to the linear order perturbation of
the equations. Note that if the spacetime M has a compact hypersurface with a boundary, then we obtain the
equality (7), which relates the solutions of the first-order linearized equations to the solutions of the second-
order equations. If solutions to the first- and the second-order perturbed equations, say h and k , respectively,
come from linearization of an exact solution g , then the integral constraint is automatically satisfied for a
spacetime manifold M , which has a compact hypersurface without a boundary. Similarly, if the spacetime M

has a compact hypersurface with a boundary, the equality of the conserved charges (7) will also be satisfied.
Otherwise, we say that ḡ is linearization-unstable and the perturbation theory about it does not make sense.

4. Gauge-invariant perturbation theory

The second-order gauge-invariant perturbation theory was studied in detail in [21–23] and the existence of the
two perturbation parameters was included in [20]. Gauge-invariant perturbation theory is a technique that
allows to compute the tensor fields in terms of gauge-variant and -invariant terms. Of course, one cannot use
this method on any arbitrary background spacetime since the main assumption of the theory is decomposing
the first-order perturbation of the metric tensor as:

hµν := h̃µν + L X ḡµν , (26)

where h̃µν denotes the gauge-invariant part, and the gauge-variant term L X ḡµν denotes the Lie differentiation
of the background metric with respect to vector field X , which is the generator of the gauge transformation.
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In the following discussion, we denote the gauge-variant quantities with a tilde and the background quantities
with a bar. If such a decomposition exists, one can express the linear order perturbation of any tensor field T
as:

(T )(1) = (T̃ )(1) + L X T̄ . (27)

Expansion of the metric tensor at the second order can be expressed as:

kµν :=
1

2
k̃µν + L Xhµν +

1

2

(
L Y − L 2

X

)
ḡµν , (28)

where Y , just like X , generates the gauge transformations. Using (26) and (28), the second-order perturbation
of any generic tensor field T can be written as:

(T )(2) = (T̃ )(2) + L X(T )
(1) +

1

2

(
L X − L Y

2
)
T . (29)

Note that since the metric tensor involves irreducible gauge-invariant terms at the linear and the second orders,
the gauge-invariant part of any generic tensor has the same form. Of course, the irreducible gauge-invariant
part of the tensor field only includes h̃µν and k̃µν . Details of the computations are given in Appendix C. Here
we discuss the conserved charges, which are constructed by using the P -tensor, in terms of the gauge-invariant
perturbation theory. Let us consider the first-order linearized equation (22), which we can use to construct the
conserved charges. Using the gauge-invariant perturbation theory, the left-hand side of (22) is gauge-invariant:

ξ̄ ν(G νµ)(1) = ξ̄ ν

(
( G̃ νµ

)(1) + L X Ḡµν
)
= ξ̄ ν( G̃

νµ
)(1), (30)

since we consider the (anti) de Sitter background spacetime, for which we have Ḡµν = 0 . The right-hand side
of (22) can be expressed as:

∇̄ν

(
(P νµ

βσ)
(1)∇̄β ξ̄σ

)
= ∇̄ν

((
(P̃

νµ

βσ)
(1) + L X P̄ νµ

βσ

)
∇̄β ξ̄σ

)
. (31)

This reduces to

∇̄ν

(
(P νµ

βσ)
(1)∇̄β ξ̄σ

)
= ∇̄ν

(
(P̃

νµ

βσ)
(1)∇̄β ξ̄σ

)
(32)

by using the vanishing of the P -tensor for the (anti) de Sitter background spacetime, P̄ νµ
βσ = 0 . Thus,

similar to the usual perturbation theory, the current is gauge-invariant. At the second order, the left-hand side
of the equation (24) is gauge-invariant, since we have

(Gµ
ν )

(2) = (G̃µ
ν )

(2) + LX(Gµ
ν )

(1) +
1

2

(
L Y − L 2

X

)
Ḡµ
ν , (33)

which becomes
(Gµ

ν )
(2) = (G̃µ

ν )
(2), (34)

where we used (Gµ
ν )

(1) = 0 = Ḡµ
ν in (anti) de Sitter background spacetime. Now let us construct the right-hand

side of (24). For the second order expansion of the P -tensor, we get:

(P νµ
βσ)

(2) = (P̃
νµ

βσ)
(2) + L X(P νµ

βσ)
(1) +

1

2

(
L Y − L 2

X

)
P̄ νµ

βσ, (35)
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where the last term vanishes at the (anti) de Sitter background spacetime and so we obtain

(P νµ
βσ)

(2) = (P̃
νµ

βσ)
(2) + L X(P̃

νµ

βσ)
(1). (36)

Inserting the results in (24) we can write:

ξ̄ν(G̃µ
ν )

(2) = c∇̄ν

(
∇̄β ξ̄σ(P̃

νµ

βσ)
(2) + ∇̄β ξ̄σL X(P̃

νµ

βσ)
(1) +

h

2
∇̄β ξ̄σ(P̃

νµ

βσ)
(1)

)
− 2c(Γβ

νρ)
(1)∇̄ρξ̄σ(P̃

νµ

βσ)
(1), (37)

where the first terms on the right-hand and the left-hand side are in a gauge-invariant form. Then let us
concentrate on the gauge-variant terms. The second term reads:

∇̄ν

(
∇̄β ξ̄σ L X(P̃

νµ

βσ)
(1)
)
= (∇̄ν∇̄β ξ̄σ)L X(P̃

νµ

βσ)
(1) + ∇̄β ξ̄σ∇̄ν L X(P̃

νµ

βσ)
(1), (38)

where the first term vanishes after using the identity ∇̄ν∇̄β ξ̄σ = R̄λν
βσ ξ̄λ , and then we obtain:

∇̄ν

(
∇̄β ξ̄σ L X(P̃

νµ

βσ)
(1)
)
= ∇̄β ξ̄σ∇̄ν L X(P̃

νµ

βσ)
(1). (39)

Using identity (74) in Appendix B, we get

∇̄β ξ̄σ∇̄νL X(P̃
νµ

βσ)
(1) = ∇̄β ξ̄σ

(
L X∇̄ν(P̃

νµ

βσ)
(1) − δX(Γν

νλ)
(1)(P̃

λµ

βσ)
(1)

+ 2δX(Γλ
νβ)

(1)(P̃
νµ

λσ)
(1)

)
. (40)

Thus, one has

∇̄β ξ̄σ∇̄ν L X( P̃
νµ

βσ)
(1) = ∇̄β ξ̄σ

(
−δX(Γν

νλ)
(1)(P̃

λµ

βσ)
(1) + 2δX(Γλ

νβ)
(1)(P̃

νµ

λσ)
(1)
)
, (41)

where we have used the first-order linearization of ∇νP νµ
βσ = 0 about the (anti) de Sitter background metric.

Substituting the results in (37) and using the decomposition of the first-order expansion of the metric tensor
(26), we arrive at:

ξ̄ν(G̃µ
ν )

(2) = c∇̄ν

(
∇̄β ξ̄σ(P̃

νµ

βσ)
(2) +

z

2
∇̄β ξ̄σ(P̃

νµ

βσ)
(1) + ∇̄ρX

ρ∇̄β ξ̄σ(P̃
νµ

βσ)
(1)
)

− c∇̄β ξ̄σδX(Γν
νλ)

(1)(P̃
λµ

βσ)
(1) + 2c(P̃

νµ

λσ)
(1)∇̄β ξ̄σ

(
δX(Γλ

νβ)
(1) − (Γλ

νβ)
(1)
)
, (42)

where the last two terms together form a gauge-invariant combination from the decomposition of the Christoffel
connection:

(Γλ
νβ)

(1) − δX(Γλ
νβ)

(1) = (Γ̃λ
νβ)

(1). (43)

Also, after a straightforward calculation one has:

∇̄ν

(
∇̄ρX

ρ∇̄β ξ̄σ(P̃
νµ

βσ)
(1)
)
− ∇̄β ξ̄σδX(Γν

νλ)
(1)(P̃

λµ

βσ)
(1) = 0, (44)
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which proves the vanishing of the gauge-variant terms. Collecting the pieces together, one arrives at:

ξ̄ν(G̃µ
ν )

(2) = c∇̄ν

(
∇̄β ξ̄σ(P̃

νµ

βσ)
(2) +

h̃

2
∇̄β ξ̄σ(P̃

νµ

βσ)
(1)

)
− 2c∇̄β ξ̄σ(P̃

νµ

λσ)
(1)(Γ̃λ

νβ)
(1), (45)

where the result involves divergence and nondivergence terms; h̃ refers to the gauge-variant trace of the linear
order perturbation of the metric. The second-order cosmological Einstein tensor is gauge-invariant in this
formulation, and so are the conserved charges, which differs from the usual perturbation theory. For the compact
hypersurfaces without a boundary, vanishing of the last term becomes an integral constraint on solutions of the
first-order linearized equations.

5. Results and conclusions
The general covariance principle introduces a large gauge degree of freedom since in general relativity there is
no preferred coordinate system. In perturbation theory, computing gauge-invariant results plays an important
role since the gauge-variant results can include some unphysical parts, which depend on our choice of the
coordinate system. On the other hand, the second-order gauge-invariant perturbation theory allows to compute
the gauge-invariant parts of the relevant expressions. In this technique one can construct the relevant quantities
as gauge-variant and -gauge-invariant parts, so there is no further need to discuss the gauge invariance since
the quantities involve all information that we need.

In cosmological Einstein theory, construction of the gauge-invariant conserved charges is generally done
by using the explicit form of the field equations. The current does not have to be a gauge-invariant quantity.
Of course, finding a gauge-invariant current is more valuable since one only has the physical terms in this case.
At the first order, starting with the second Bianchi identity, one can compute a gauge-invariant current where
the Riemann tensor is involved explicitly. At the second order neither the cosmological Einstein tensor nor
the conserved charges are gauge-invariant, where the gauge-variant expressions can be expressed as boundary
terms.

In gauge-invariant perturbation theory, at the first order one has gauge-invariant current and conserved
charges as expected. At the second order, one has a gauge-invariant cosmological Einstein tensor. Thus, the
conserved charges and the current are all gauge-invariant in this theory.
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Appendix A: Second-order perturbation theory
Here we give the explicit expressions of the perturbation theory about the background spacetime ḡ up

to the third-order terms by considering the following metric tensor decomposition:

gab := ḡab + λhab + λ2kab, (46)

where λ is a small parameter, and hab and kab are the linear and the second-order metric tensor expansions,
respectively. Using gabg

bc = δca , we can compute the expansion of the inverse metric as:

gab = ḡab − λhab + λ2
(
ha
ch

cb − kab
)
. (47)

Let us consider a generic tensor T . It can be perturbed about the background spacetime ḡ as follows:

T = T̄ + λ (T )
(1)

+ λ2 (T )
(2)

. (48)

The Christoffel symbol Γ c
ab ,

Γ c
ab =

1

2
gcd
(
∂agbd + ∂bgad − ∂dgab

)
, (49)

is not a tensor quantity but it can be decomposed in the same way:

Γ c
ab = Γ̄c

ab + λ(Γ c
ab)

(1) + λ2(Γ c
ab)

(2). (50)

Inserting the given decompositions of the metric tensor and its inverse, we arrive at the linear order perturbation
of the Christoffel symbol as:

(Γ c
ab)

(1) =
1

2

(
∇̄ah

c
b + ∇̄bh

c
a − ∇̄chab

)
, (51)

and the second-order perturbation as:

(Γ c
ab)

(2) = Kc
ab − hc

d(Γ
d
ab)

(1), (52)

where we have defined

Kc
ab =

1

2

(
∇̄ak

c
b + ∇̄bk

c
a − ∇̄ckab

)
. (53)

We can write the linear order perturbation of the Riemann tensor as:

(Ra
bcd)

(1) = ∇̄c(Γ
a
db)

(1) − ∇̄d(Γ
a
cb)

(1), (54)

and the second-order expansion of it as:

(Ra
bcd)

(2) = ∇̄c(Γ
a
bd)

(2) − ∇̄d(Γ
a
bc)

(2) + (Γe
bd)

(1)(Γa
ce)

(1) − (Γe
cb)

(1)(Γa
de)

(1), (55)

which reduces to

(Ra
bcd)

(2) = 2∇̄[cK
a
d]b − ∇̄c

(
ha
e(Γ

e
bd)

(1)
)
+ ∇̄d

(
ha
e(Γ

a
bc)

(1)
)
+ (Γe

bd)
(1)(Γa

ce)
(1) − (Γe

cb)
(1)(Γa

de)
(1), (56)

after using the second-order Christoffel connection given in (52). The first- and the second-order Ricci tensors
are obtained from the contraction, Rab := Rc

acb , and we get the linear order perturbation of the Ricci tensor:

(Rab)
(1) = ∇̄c(Γ

c
ab)

(1) − ∇̄a(Γ
c
cb)

(1), (57)

1
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and the second-order Ricci tensor:

(Rab)
(2) = 2∇̄[cK

c
a]b − ∇̄c

(
hc
e(Γ

e
ab)

(1)
)
+ ∇̄a

(
hc
e(Γ

e
cb)

(1)
)
+ (Γe

ab)
(1)(Γc

ce)
(1) − (Γe

ac)
(1)(Γc

be)
(1). (58)

The first-order linearization of the scalar curvature becomes:

(R)(1) = ḡab(Rab)
(1) − R̄abh

ab, (59)

and Ricci scalar at the second order is:

(R)(2) = R̄ab

(
ha
ch

bc − kab
)
− (Rab)

(1)hab + ḡab(Rab)
(2). (60)

The cosmological Einstein tensor,

Gab = Rab −
1

2
gabR+ Λgab, (61)

at first order yields

(Gab)
(1) = (Rab)

(1) − 1

2
ḡab(R)(1) − 1

2
R̄hab + Λhab, (62)

and at the second order becomes

(Gab)
(2) = (Rab)

(2) − 1

2

(
ḡab(R)(2) + hab(R)(1) + kabR̄+ 2Λkab

)
. (63)

Appendix B: Identities on Lie and covariant derivatives
The Lie derivative plays an important role in the second-order gauge-invariant perturbation theory and

also in the usual gauge transformations generated by a vector field. Here we derive some useful identities
heavily used in the computations. Since covariant and Lie derivatives do not commute, one needs to introduce
the expressions in a compact way that appears when we change the order of these differentiations. In order to
obtain the desired expressions, let us start with the Lie derivative of a rank-two tensor T :

L XTab = Xf ∇̄fTab + Tfb∇̄aX
f + Tfa∇̄bX

f . (64)

The covariant derivative of this expression yields:

∇̄cL XTab = ∇̄cX
f ∇̄fTab +Xf ∇̄c∇̄fTab + Tfb∇̄c∇̄aX

f + ∇̄aX
f ∇̄cTfb

+∇̄c∇̄bX
fTfa + ∇̄bX

f ∇̄cTfa. (65)

When we compute the derivatives changing the order we get:

L X∇̄cTab = Xf ∇̄f ∇̄cTab +
(
∇̄cX

f
)
∇̄fTab +

(
∇̄aX

f
)
∇̄cTfb +

(
∇̄bX

f
)
∇̄cTaf , (66)

and subtraction of the results yields:

∇̄cL XTab − L X∇̄cTab = Xf
[
∇̄c, ∇̄f

]
Tab +

(
∇̄c∇̄aX

f
)
Tfb +

(
∇̄c∇̄bX

f
)
Taf . (67)

Using [
∇̄c, ∇̄f

]
Tab = Rcfa

eTeb +Rcfb
eTae, (68)

2
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one can rewrite (67) as:

∇̄cL XTab = L X∇̄cTab +
(
∇̄c∇̄aX

e +Rcfa
eXf

)
Teb +

(
Rcfb

eXf + ∇̄c∇̄bX
e
)
Tae. (69)

We can relate the last expression with the gauge transformation of the first-order perturbation of the Christoffel
connection as follows. Recall that under the gauge transformations generated by the vector field X , perturbation
of the metric at the linear order transforms as δXhab = ∇̄aXb + ∇̄bXa = L X ḡab , and then the gauge
transformation of the first-order expansion of the Christoffel symbol becomes:

δX(Γc
ab)

(1) =
1

2

(
∇̄aδXhc

b + ∇̄bδXhc
a − ∇̄cδXhab

)
, (70)

which can be rewritten as:
δX(Γc

ab)
(1) = ∇̄a∇̄bX

c + R̄c
bdaX

d. (71)

Using the last expression, (69) can be expressed as:

∇̄cL XTab = L X∇̄cTab + δX(Γe
ca)

(1)Teb + δX(Γe
cb)

(1)Tae. (72)

Similar computation for a (1, 1) tensor ends up with:

∇̄cL XT a
b = L X∇̄cT

a
b + T a

eδX(Γe
cb)

(1) − T e
bδX(Γa

ce)
(1). (73)

We can extend the computation for a general (m,n) tensor as

∇̄cL XT a1a2...am
b1b2...bn = L X∇̄cT

a1a2...am
b1b2...bn (74)

+ δX(Γd
cb1)

(1)T a1a2...am
db2...bn + δX(Γd

cb2)
(1)T a1a2...am

b1d...bn + ...+ δX(Γd
cbn)

(1)T a1a2...am
b1b2...d

− δX(Γa1

cd)
(1)T da2...am

b1b2...bn − δX(Γa2

cd)
(1)T a1d...am

b1b2...bn − ...− δX(Γam

cd )(1)T a1a2...d
b1b2...bn ,

which simplifies the computations.
Appendix C: Second-order gauge-invariant perturbation theory
Here we summarize the results of the second-order gauge-invariant perturbation theory following [22].

The gauge transformation of a physical quantity T reads as:

T (p) = T̄ (p̄) + δT (p), (75)

where T (p) denotes the physical quantity on spacetime M at point p , T̄ (p̄) denotes the same quantity on
the background spacetime M0 at point p̄ , and δT (p) denotes the deviation of T (p) from its background value
T̄ (p̄) . We show the metric on M with g and the metric on the background spacetime M0 with ḡ . Let X and
Y denote two different gauge choices and let ξ1 and ξ2 denote the generators of the gauge transformations.
One can compute the following difference:

(T )
(1)
Y − (T )

(1)
X = L ξ 1

T , (76)

where (T )
(1)
Y is the first-order expansion of the physical quantity T (p) in the gauge Y and (T )

(1)
X denotes the

same quantity in the gauge X . At the second order, expansion of the physical quantity T (p) reads as:

(T )
(2)
Y − (T )

(2)
X = L ξ1(T )

(1)
X +

(
L ξ2 + L 2

ξ1

)
T , (77)

3
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which shows the difference of the perturbations under the change of the coordinate system. The generators ξ1

and ξ2 can be expressed as follows:
ξ1 := Y −X (78)

and
ξ2 := [Y,X] . (79)

Note that ξ1 and ξ2 may be different. Following Nakamura [22], we assume that the first-order metric
perturbation can be expressed as gauge-variant and -invariant parts:

hab := h̃ab + ∇̄aXb + ∇̄bXa = h̃ab + L X ḡab, (80)

where h̃ab is the gauge-invariant term and the L X ḡab denotes the gauge-variant part. From the gauge
transformation given in (76), we can write

δY h̃ab − δX h̃ab = 0, (81)

which shows the gauge invariance of h̃ab . If we accept this decomposition, the second-order expansion of the
metric tensor can be expressed as:

2kab := k̃ab + 2L Xhab +
(
L Y − L 2

X

)
ḡab, (82)

where k̃ab is the gauge-invariant part and the additional terms are all gauge-variant. Using the given decom-
positions of the expansion of the metric at the first- and the second-order metric, the linear order expansion of
a generic tensor field reads as:

(T )(1) = (T̃ )(1) + L XT , (83)

which means that the gauge-variant part of the tensor field is equivalent to the Lie derivative of this tensor field
evaluated at the background spacetime. For the second-order perturbations, we obtain a similar expression as
follows:

(T )(2) = (T̃ )(2) + L X(T )
(1) +

1

2

(
L X − L Y

2
)
T . (84)

Here (T̃ )(2) is the gauge-variant part of the second-order tensor (T )(2) and the remaining terms are gauge-
variant. Using (80), the linear order perturbation of the Christoffel symbol (51) can be written as:

(Γc
ab)

(1) =
1

2

(
∇̄a(h̃

c
b + ∇̄bX

c + ∇̄cXb) + ∇̄b(h̃
c
a + ∇̄aX

c + ∇̄cXa)

−∇̄c(h̃ab + ∇̄aXb + ∇̄bXa)

)
. (85)

For simplicity, let us define a new gauge-invariant background tensor:

(Γ̃c
ab)

(1) =
1

2

(
∇̄ah̃

c
b + ∇̄bh̃

c
a − ∇̄ch̃ab

)
. (86)

4
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Then we have

(Γc
ab)

(1) = (Γ̃c
ab)

(1) +
1

2

(
2∇̄a∇̄bX

c +
[
∇̄a, ∇̄c

]
Xb +

[
∇̄b, ∇̄a

]
Xc +

[
∇̄b, ∇̄c

]
Xa

)
, (87)

which reduces to
(Γc

ab)
(1) = (Γ̃c

ab)
(1) + ∇̄a∇̄bX

c + R̄c
bdaX

d, (88)

where we used the identity
[
∇̄a, ∇̄b

]
Xc = R̄ab

cdXd , and also the first Bianchi identity R̄abcd+R̄bcad+R̄cabd = 0 .
Furthermore, from (71) we get:

(Γab
c)(1) = (Γ̃ab

c)(1) + δX(Γab
c)(1), (89)

which relates the first-order perturbation of the Christoffel connection with the usual gauge transformation of
it. Similarly, the linear order expansion of the Riemann tensor (54) can be expressed as:

(Ra
bcd)

(1) = 2∇̄[c(Γ̃
a
d]b)

(1) +
[
∇̄c, ∇̄d

]
∇̄bX

a + R̄a
bed∇̄cX

e − R̄a
bec∇̄dX

e +Xe(∇̄cR̄
a
bed − ∇̄dR̄

a
bec), (90)

and it reduces to:

(Ra
bcd)

(1) = 2∇̄[c(Γ̃
a
d]b)

(1) +Xe∇̄eR̄
a
bcd + R̄a

bed∇̄cX
e + R̄a

bce∇̄dX
e + R̄a

ecd∇̄bX
e − R̄e

bcd∇̄eX
a, (91)

after using the second Bianchi identity ∇̄aR̄bcde + ∇̄bR̄cade + ∇̄cR̄abde = 0 . Note that the gauge-variant part is
obviously given as the Lie differentiation of the Riemann tensor evaluated at the background spacetime. Then
the final expression becomes:

(Ra
bcd)

(1) = 2∇̄[c(Γ̃
a
d]b)

(1) + L XR̄a
bcd, (92)

which is consistent with the aim of the gauge-invariant perturbation theory. The first-order linearized Ricci
tensor can be found from the contraction of the first and the third indices, (Rab)

(1) := (Rc
acb)

(1) , so we have

(Rab)
(1) = 2∇̄[c(Γ̃

c
a]b)

(1) + L XR̄ab. (93)

Since the first-order perturbation of the Christoffel symbol is a background tensor, one can raise and lower the
indices with the background inverse metric and the metric, respectively. For an example, we use (Γacd)

(1) :=

ḡbd(Γ
b
ac)

(1) , where the up index is lowered as the last down index. The first-order linearized scalar curvature,
by using (59) and the previous results, becomes:

(R)(1) = 2∇̄[b(Γ̃a]
ab)(1) + ḡabL XR̄ab − R̄ab(h̃

ab − L X ḡab). (94)

Equivalently, it can be written as:

(R)(1) = 2∇̄[b(Γ̃a]
ab)(1) − R̄abh̃

ab + L X(R̄). (95)

Inserting the corresponding expressions in the linear order perturbation of the cosmological Einstein tensor (62),
we get:

(Gab)
(1) = 2∇̄[c(Γ̃a]b

c)(1) + ḡab∇̄[c(Γ̃d]
cd)(1) +

1

2
ḡabR̄cdh̃

cd + h̃ab

(
Λ− 1

2
R̄

)
+ L X Ḡab, (96)

5
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where only the last term is gauge-variant and it vanishes if ḡ is a background solution. If this is the case,
(Gab)

(1) becomes gauge-invariant.
Now we compute the decompositions of the second-order tensors in terms of gauge-variant and -invariant

parts. We can compute (53) by using (82) as:

Kc
ab =

1

4
(∇̄ak̃

c
b + ∇̄bk̃

c
a − ∇̄ck̃ab) (97)

+
1

4
gcd
(
∇̄aL X

(
hbd + h̃bd

)
+ ∇̄bL X

(
had + h̃ad

)
− ∇̄dL X

(
hab + h̃ab

))
+
1

4
gcd
(
∇̄aL Y gbd + ∇̄bL Y gad − ∇̄dL Y gab

)
.

After defining a new gauge-invariant second-order background tensor,

K̃c
ab =

1

2

(
∇̄ak̃

c
b + ∇̄bk̃

c
a − ∇̄ck̃ab

)
, (98)

we obtain

2Kc
ab = K̃c

ab +
1

2
gcdL X

(
∇̄a

(
hbd + h̃bd

)
+ ∇̄b

(
had + h̃ad

)
− ∇̄d

(
hab + h̃ab

))
+
(
hc
e + h̃c

e

)
δX (Γe

ab)
(1)

+ δY (Γc
ab)

(1)
. (99)

Note that we have used the identity (72) given in Appendix B to get the last expression. After a straightforward
calculation, the result reduces to

2Kc
ab = K̃c

ab + L X

(
(Γc

ab)
(1)

+
(
Γ̃c
ab

)(1))
− L Xgcd

(
(Γabd)

(1)
+
(
Γ̃abd

)(1))
+
(
hc
e + h̃c

e

)
δX (Γe

ab)
(1)

+ δY (Γe
ab)

(1)
. (100)

We can construct the following tensor:

4̄∇[cK
a
d]b = 2̄∇[cK̃

a
d]b + ∇̄c

(
L X

(
(Γa

bd)
(1) + (Γ̃a

bd)
(1)
))

− ∇̄c

(
L Xgea

(
(Γbde)

(1) + (Γ̃bde)
(1)
))

+ ∇̄c

((
ha
e + h̃a

e

)
δX (Γe

bd)
(1)
)
+ ∇̄cδY (Γe

bd)
(1)

− ∇̄d

(
L X

(
(Γa

bc)
(1) + (Γ̃a

bc)
(1)
))

+ ∇̄d

(
L Xgea

(
(Γbce)

(1) + (Γ̃bce)
(1)
))

− ∇̄d

((
ha
e + h̃a

e

)
δX (Γe

bc)
(1)
)
− ∇̄dδY (Γa

bc)
(1)

, (101)

6



ALTAŞ/Turk J Phys

to compute the Riemann tensor (56) at the second order. Using (74), it can be written as:

4̄∇[cK
a
d]b = 2̄∇[cK̃

a
d]b + L X

(
∇̄c

(
(Γa

bd)
(1) + (Γ̃a

bd)
(1)
)
− ∇̄d

(
(Γa

bc)
(1) + (Γ̃a

bc)
(1)
))

+ (ha
e + h̃a

e)
(
∇̄cδX(Γe

bd)
(1) − ∇̄dδX(Γe

bc)
(1)
)
+ ∇̄cδY (Γ

a
bd)

(1) − ∇̄dδY (Γ
a
bc)

(1)

+
(
(Γa

ed)
(1) + (Γ̃a

ed)
(1) − ∇̄d

(
ha
e + h̃a

e

))
δX(Γe

cb)
(1)

−
(
(Γa

ec)
(1) + (Γ̃a

ec)
(1) − ∇̄c

(
ha
e + h̃a

e

))
δX(Γe

db)
(1)

−
(
(Γe

bd)
(1) + (Γ̃e

bd)
(1)
)(

δX(Γa
ce)

(1) − ∇̄c

(
∇̄aXe + ∇̄eX

a
))

+
(
(Γe

bc)
(1) + (Γ̃e

bc)
(1)
)(

δX(Γa
de)

(1) − ∇̄d

(
∇̄aXe + ∇̄eX

a
))

− L Xgea
(
∇̄c

(
(Γbde)

(1) + (Γ̃bde)
(1)
)
− ∇̄d

(
(Γbce)

(1) + (Γ̃bce)
(1)
))

. (102)

Since the last equation is complicated, we use the results given below to get a compact form. We have:

∇̄cδY (Γa
bd)

(1) − ∇̄dδY (Γa
bc)

(1)
= L Y R̄

a
bcd, (103)

and from (92),

∇̄cδX (Γe
bd)

(1) − ∇̄dδX (Γe
bc)

(1)
= L XR̄e

bcd = (Re
bcd)

(1) − 2∇̄[c(Γ̃
e
d]b)

(1), (104)

and

L X

(
∇̄c

(
(Γa

bd)
(1) + (Γ̃a

bd)
(1)
)
− ∇̄d

(
(Γa

bc)
(1) + (Γ̃a

bc)
(1)
))

= L X(2(Ra
bcd)

(1) − L XR̄a
bcd), (105)

and also

L Xgea
(
∇̄c

(
(Γbde)

(1) + (Γ̃bde)
(1)
)
− ∇̄d

(
(Γbce)

(1) + (Γ̃bce)
(1)
))

= −(∇̄aXe + ∇̄eX
a)
(
2(Re

bcd)
(1) − L XR̄e

bcd

)
, (106)

and
(Γa

ed)
(1) + (Γ̃a

ed)
(1) − ∇̄d(h

a
e + h̃a

e) = −
(
(Γd

a
e)

(1) + (Γ̃d
a
e)

(1)
)
. (107)

Similarly, we have

(Γa
ec)

(1) + (Γ̃a
ec)

(1) − ∇̄c(h
a
e + h̃a

e) = −
(
(Γc

a
e)

(1) + (Γ̃c
a
e)

(1)
)

(108)

and
δX(Γa

ce)
(1) − ∇̄c(∇̄aXe + ∇̄eX

a) = −δX (Γc
a
e)

(1)
, (109)

and also
δX(Γa

de)
(1) − ∇̄d(∇̄aXe + ∇̄eX

a) = −δX (Γd
a
e)

(1)
. (110)
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Inserting the above results we obtain:

4̄∇[cK
a
d]b = 2̄∇[cK̃

a
d]b + 2L X(Ra

bcd)
(1) − L 2

XR̄a
bcd (111)

+ (ha
e + h̃a

e)L XR̄e
bcd + L Y R̄

a
bcd + (∇̄aXe + ∇̄eX

a)
(
2(Re

bcd)
(1) − L XR̄e

bcd

)
−
(
(Γd

a
e)

(1) + (Γ̃d
a
e)

(1)
)
δX(Γe

cb)
(1) +

(
(Γc

a
e)

(1) + (Γ̃c
a
e)

(1)
)
δX(Γe

db)
(1)

+
(
(Γa

bd)
(1) + (Γ̃e

bd)
(1)
)
δX(Γc

a
e)

(1) −
(
(Γe

bc)
(1) + (Γ̃e

bc)
(1)
)
δX(Γd

a
e)

(1),

which can be rewritten as:

4̄∇[cKd]b
a = 2̄∇[cK̃d]b

a − 4h̃a
e∇̄[c(Γ̃d]b

e)(1) + 2(Γ̃d
a
e)

(1)(Γ̃cb
e)(1) − 2(Γ̃c

a
e)

(1)(Γ̃db
e)(1)

+2L X(Ra
bcd)

(1) +
(
L Y − L 2

X

)
R̄a

bcd + 2ha
e(R

e
bcd)

(1)

+2(Γc
a
e)

(1)(Γdb
e)(1) − 2(Γd

a
e)

(1)(Γcb
e)(1). (112)

Using the last expression we can construct the Riemann tensor (56) at the second order as gauge-invariant and
-variant quantities:

(Ra
bcd)

(2) = ∇̄[cK̃
a
d]b − 2h̃a

e∇̄[c(Γ̃
e
d]b)

(1) + (Γ̃d
a
e)

(1)(Γ̃e
cb)

(1) − (Γ̃c
a
e)

(1)(Γ̃e
db)

(1)

+ L X(Ra
bcd)

(1) +
1

2

(
L Y − L 2

X

)
R̄a

bcd, (113)

where the second line shows the gauge-variant terms and this result is consistent with the aim of the gauge-
invariant perturbation theory. Contraction of the indices yields the decomposition of the second-order Ricci
tensor:

(Rab)
(2) = ∇̄[cK̃

c
a]b − 2h̃c

e∇̄[c(Γ̃
e
a]b)

(1) + (Γ̃a
c
e)

(1)(Γ̃e
cb)

(1) − (Γ̃c
c
e)

(1)(Γ̃e
ab)

(1)

+ L X(Rab)
(1) +

1

2

(
L Y − L 2

X

)
R̄ab. (114)

The second-order Ricci scalar (60) becomes:

(R)(2) = ∇̄[cK̃a]
ac − 2h̃c

e∇̄[c(Γ̃a]
ae)(1) + 2(Γ̃[c

ae)(1)(Γ̃a]
c
e)

(1) + gabL X(Rab)
(1)

+
1

2
gab(L Y − L 2

X)R̄ab − (h̃ab − L Xgab)
(
2∇̄[cΓ̃

c
a]b + L XR̄ab

)
(115)

+(h̃ac − L Xgac)
(
h̃cb + L Xgcb

)
R̄b

a −
1

2

(
k̃ab + 2L Xhab + (L Y − L 2

X)gab

)
R̄ab,

which reduces to

(R)(2) = ∇̄[cK̃a]
ac − 2h̃c

e∇̄[cΓ̃a]
ae + 2Γ̃[c

aeΓ̃a]
c
e − 2h̃ab∇̄[cΓ̃

c
a]b −

1

2
k̃abR̄

ab + h̃ach̃bcR̄
b
c

+gabL X(Rab)
(1) +

1

2
gab
(
L Y − L 2

X

)
R̄ab − R̄abL Xhab −

1

2
R̄ab

(
L Y − L 2

X

)
gab (116)

−h̃abL XR̄ab + (Rab)
(1)L Xgab + h̃acR̄b

aL Xgcb − h̃cbR̄
b
aL Xgac − R̄b

aL XgacL Xgcb.

8
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Let us concentrate on the gauge-variant terms; we can write:

gabL X(Rab)
(1) + (Rab)

(1)L Xgab − R̄abL Xhab = L X(R)(1) + habL XR̄ab, (117)

and

1

2
gab(L Y − L 2

X)R̄ab − h̃abL XR̄ab −
1

2
R̄ab(L Y − L 2

X)gab

=
1

2
(L Y − L 2

X)R̄− habL XR̄ab − 2habR̄d
aL X ḡdb − R̄a

dL X ḡcaL Xgdc, (118)

and also

h̃acR̄b
aL Xgcb − h̃cbR̄

b
aL Xgac − R̄b

aL XgacL Xgcb = −h̃cbR̄
b
aL Xgac + hacR̄b

aL Xgcb. (119)

Finally, the second-order scalar curvature yields:

(R)(2) = ∇̄[cK̃a]
ac − 2h̃c

e∇̄[cΓ̃a]
ae + Γ̃[c

aeΓ̃a]
c
e − 2h̃ab∇̄[cΓ̃

c
a]b −

1

2
R̄ab

(
k̃ab − h̃c

ah̃bc

)
+ L X(R)(1) +

1

2
(L Y − L 2

X)R̄. (120)

Now we can compute cosmological Einstein tensor (63) at the second order as gauge-variant and -invariant
quantities. From the previous results we get:

(Gab)
(2) = ∇̄[cK̃

c
a]b − 2h̃e

c∇̄[cΓ̃
e
a]b + 2Γ̃e

b[cΓ̃a]
c
e + L X(Rab)

(1) +
1

2
(L Y − L 2

X)R̄ab

− 1

2
ḡab

(
∇̄[cK̃d]

dc − 2h̃c
e∇̄[cΓ̃d]

de + R̄cd
(
h̃e

dh̃ce −
1

2
k̃cd
)

+ 2Γ̃d
[c

eΓ̃d]
c
e − 2h̃cd∇̄[eΓ̃

e
c]d + L X(R)(1) +

1

2
(L Y − L 2

X)R̄

)

− 1

2

(
h̃ab + L X ḡab

)(
2∇̄[cΓ̃d]

dc − R̄dch̃
dc + L XR̄

)
+
(
k̃ab + 2L Xhab + (L Y − L 2

X)gab

) (Λ
2
− R̄

4

)
, (121)

which reduces to

(Gab)
(2) = ∇̄[cK̃

c
a]b − 2h̃e

c∇̄[cΓ̃
e
a]b + 2Γ̃e

b[cΓ̃a]
c
e + k̃ab

(Λ
2
− R̄

4

)
− 1

2
h̃ab

(
2∇̄[cΓ̃d]

dc − R̄dch̃
dc
)

− 1

2
ḡab

(
∇̄[cK̃d]

dc − 2h̃c
e∇̄[cΓ̃d]

de + R̄cd
(
h̃e

dh̃ce −
1

2
k̃cd
)
+ 2Γ̃d

[c
eΓ̃d]

c
e − 2h̃cd∇̄[eΓ̃

e
c]d

)

+ L X(Rab)
(1) − 1

2
(R)(1)L X ḡab +

(
Λ− R̄

2

)
L Xhab −

1

2
h̃abL XR̄− 1

2
ḡabL X(R)(1)

− 1

4
ḡab(L Y − L 2

X)R̄+
1

2
(L Y − L 2

X)Rab +
(Λ
2
− R̄

4

)
(L Y − L 2

X)gab, (122)
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where the first two lines denote the gauge-invariant part. Let us consider the gauge-variant terms. We can
collect the third line as:

L X(Rab)
(1) − 1

2
(R)(1)L X ḡab +

(
Λ− R̄

2

)
L Xhab −

1

2
h̃abL XR̄− 1

2
ḡabL X(R)(1)

= L X(Gab)
(1) +

1

2
L X ḡabL XR̄ (123)

and the terms on the last line yield:

− 1

4
ḡab
(
L Y − L 2

X

)
R̄+

1

2
(L Y − L 2

X)Rab +
(Λ
2
− R̄

4

)
(L Y − L 2

X)gab

=
1

2

(
L Y − L 2

X

)
Ḡab −

1

2
L XR̄L X ḡab. (124)

Finally, we obtain the second-order cosmological Einstein tensor:

(Gab)
(2) = ∇̄[cK̃

c
a]b − 2h̃e

c∇̄[cΓ̃
e
a]b + 2Γ̃e

b[cΓ̃a]
c
e + k̃ab

(Λ
2
− R̄

4

)
− 1

2
h̃ab

(
2∇̄[cΓ̃d]

dc − R̄dch̃
dc
)

− 1

2
ḡab

(
∇̄[cK̃d]

dc − 2h̃c
e∇̄[cΓ̃d]

de + R̄cd

(
h̃e

dh̃ce −
1

2
k̃cd

)
+ 2Γ̃d

[c
eΓ̃d]

c
e − 2h̃cd∇̄[eΓ̃

e
c]d

)

+ L X(Gab)
(1) +

1

2

(
L Y − L 2

X

)
Ḡab, (125)

where the gauge-variant terms vanish when ḡ is the solution to the background equations, and h is the solution
to the first-order perturbation of the equations. In this case we arrive at a pure gauge-invariant second-order
cosmological Einstein tensor.
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