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Abstract: We show that p -form fields can go through spontaneous growth due to various couplings in gravity theories,
forming a new example of spontaneous tensorization. Generalizing the spontaneous scalarization theory of Damour and
Esposito-Farèse where the original idea has been applied to different fields from vectors to spinors has received high levels
of interest in recent years. We first review this existing literature on spontaneous growth in gravity, and then apply the
known mechanisms to p -forms. We show that one can induce spontaneous growth in p -forms for each of the regularized
instability mechanisms, which was not the case for other types of fields. We obtain theories with the common property
that they lead to large deviations from general relativity in strong gravity as is usual in spontaneous tensorization. This
is especially interesting for gravitational wave observations, a direct probe of this regime.
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1. Introduction
Gravitational wave astronomy has been the main driver of research in classical gravitational physics in recent
years, and possible modifications of general relativity (GR) became a leading topic of interest [1–3]. One of
the ideas that has come to the forefront is spontaneous growth, where fields that are nonminimally coupled
to the metric grow spontaneously around compact objects, neutron stars (NSs) and black holes (BHs) [2, 3].
These fields form stable clouds, and lead to large deviations from GR. Theories with this feature have two
main advantages. First, they are relatively easy targets for gravitational wave telescopes due to their prominent
signatures in the strong-field regime, the most relevant cases for gravitational wave detections. Second, the
deviation from GR becomes tiny for weak fields; hence, they conform to the already existing tests in this
regime. In short, spontaneous growth theories are direct targets for gravitational wave astronomy: they will be
either confirmed or severely restricted by observations in the coming decades unlike many other gravity theories
which can stay indistinguishable from GR in the foreseeable future [3].

The first example of spontaneous growth was introduced in scalar-tensor theories by Damour and
Esposito-Farèse (DEF) [4]. In this theory, the nonminimal coupling of a scalar field to the metric in the
so-called Einstein frame leads to a tachyonic instability in the presence of NSs. An identically vanishing scalar
field is a solution of the theory, corresponding to GR, but it is not a stable solution. Arbitrarily small scalar
fields grow exponentially at first, but eventually the growth is suppressed by nonlinear interactions, and the
system settles to a nontrivial stable configuration of a NS immersed in a scalar cloud. Such a “tame” insta-
bility is called a “regularized instability” [5]. The scalar fields typically attain large values by the time they
∗Correspondence: framazanoglu@ku.edu.tr
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stop growing, and cause large order-of-unity deviations from GR. This phenomenon is dubbed “spontaneous
scalarization.”

It was recently discovered that the DEF theory was one of many theories of gravity that feature the
spontaneous growth and eventual stabilization of fields. First, the growth mechanism is not specific to scalars,
e.g., one can have a vector-tensor [6] or spinor-tensor [7] theory of spontaneous growth. Second, instabilities
other than tachyons, such as ghosts, can also trigger the initial exponential growth [5]. Third, the form of
the nonminimal coupling can be different from that of scalar-tensor theories, and one can observe spontaneous
growth in fields coupled to curvature terms as well as matter [8–11], or disformally coupled fields [12]. The
generic phenomenon is called “spontaneous tensorization”, and all the aforementioned theories have relatively
large observational signatures in terms of gravitational waves, making them especially relevant for contemporary
research.

In this study, we will investigate the spontaneous growth of p -form fields. At first, this may look like
simply generalizing spontaneous scalarization to other fields, the first form of extending the DEF theory that
we mentioned. However, we will see that one can have various theories of gravity with p -forms containing all
the different mechanisms we mentioned above: spontaneous growth through ghosts, nonmatter couplings and
disformal couplings. This is interesting, since it is not always possible to find more than one type of regularized
instability for a given field [7]. Vector fields can be considered 1 -forms, and they are encountered commonly as
the carrier of electromagnetic fields, both in classical and quantum theories [13]. Higher form fields have not
been observed in nature, but they are prominent in quantum gravity theories such as the Kalb-Ramond field in
string theory [14] and modifications of electromagnetism [15].

We will first give a literature summary of spontaneous scalarization and various ways of generalizing it
in Section 2. Readers familiar with the field may directly proceed to Section 3, where we present our novel
results on p -form fields and how they can spontaneously grow via different mechanisms. In Section 4, we will
summarize our results and give a perspective about their place in the general literature of alternative theories
of gravitation. We will use the geometric units G = c = 1 .

2. Spontaneous scalarization and its generalizations

The quintessential spontaneous growth theory is that of DEF [4], based on scalar-tensor theories given by the
action

1

16π

∫
d4x

√
−g

[
R−

Tϕ︷ ︸︸ ︷
2gµν∇µϕ∇νϕ −

Vϕ︷ ︸︸ ︷
2m2

ϕϕ
2

]
+ Sm [fm, g̃µν ] (1)

where

g̃µν = A2(ϕ)gµν (2)

for some conformal scaling function A , and fm collectively represents matter degrees of freedom. This is the
so-called “Einstein frame” where the metic we use has the exact Hilbert form in the action, and the matter
coupling is nonminimal. We will use this exclusively in this study as opposed to the “Jordan frame” where
g̃µν is used as the metric variable; hence, the matter coupling to this metric is minimal, but the metric action
has a scalar dependence. We will sometimes use quantities associated with g̃µν , such as the stress energy
tensor arising from deviation with respect to it, T̃µν , which will carry a tilde to distinguish them from their
counterparts associated with gµν .
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As explained in the introduction, ϕ = 0 is a solution of this theory, and is exactly GR; however, such
solutions are unstable in the presence of NSs. The stable solutions are scalarized stars where the scalar field
amplitude is high near the star, leading to large deviations from GR, but the amplitude decays away from the
star; hence, the theory satisfies the known bounds from weak-field tests of gravity. The former property makes
this theory relevant for gravitational wave science, and the latter ensures that it is not pushed to an unnatural
part of the parameter space like other scalar-tensor theories [16]. The mass term mϕ was not present in the
original formulation, but has become necessary after binary star observations severely restricted the massless
version [17].

How are these desirable properties achieved by a simple scalar-tensor theory, and what places it apart
from other versions such as that of Brans-Dicke [18]? A more detailed explanation can be found in [17]; here

we will summarize the basics. The DEF theory makes the choice A(ϕ) = eβϕ
2/2 , i.e. a quadratic leading term

in the conformal scaling rather than the linear one in the Brans-Dicke theory. The effect of this can be easily
seen in the equation of motion (EOM) for the scalar field.

2gϕ =

(
−8πA4 d (lnA(ϕ))

d(ϕ2)
T̃ +m2

ϕ

)
ϕ

≈ (−4πβT̃ +m2
ϕ) ϕ ≡ m2

eff ϕ. (3)

We look at the linearized theory in the second line, which shows that our choice of A leads to a coupling that
behaves like an effective mass-square term for small perturbations. In fact, this is true for any conformal
coupling with the Taylor expansion A(ϕ) = 1 + βϕ2/2 + . . . . If matter is not heavily relativistic, then
T̃ = −ρ̃ + 3p̃ ≈ −ρ̃ < 0 ; hence, negative values of β with large absolute value mean m2

eff < 0 , a degree
of freedom with imaginary effective mass. Low wave-number modes of such a field has imaginary frequencies;
hence, their time evolution is exponential. This is called a tachyon, and is the cause for the instability of the
ϕ = 0 solution. On the other hand, we want this growth to end, an ever-growing field is unphysical. This
is achieved by the specific form of A : as ϕ grows, A is suppressed exponentially, which also suppresses the
negative part of the effective mass square in Eq. 3. This means that the instability automatically shuts off as
it reaches high enough values. Lastly, even though it may look like any matter distribution can go through
spontaneous growth, a closer examination shows that wavelengths of the scalar field comparable to the size of
the matter region inititate the instability, and for the natural choice of |β| ∼ 1 only the most compact matter
distributions, NSs, scalarize [17].

The first idea to generalize the DEF theory simply recognizes that the tachyons and their suppression at
high field values are not specific to scalars. For the simplest choice, replace the scalar with a vector [6]

1

16π

∫
d4x

√
−g

[
R− FµνFµν − 2m2

XXµXµ

]
+ Sm

[
fm, A2

X(x)gµν
]
, x = gµνXµXν , (4)

where Fµν = ∇µXν−∇νXµ is the field strength tensor. Recall that all the desirable properties of the DEF case
are due to the specific form of the conformal scaling A . In analogy, if we choose a quadratic leading dependence
on Xµ such as AX = eβXXµX

µ/2 , the vector EOM becomes

∇ρF
ρµ = (−4πA4

XβX T̃ +m2
X) Xµ . (5)
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The linearized EOM again has a negative mass-square for NSs, leading to solutions where the star is immersed
in a vector field cloud. The astrophysical significance of such configurations are similar to those of the DEF
theory, but they provide richer phenomenology. We call this phenomenon “spontaneous vectorization”, and the
growth of fields in gravity theories in this manner in general is named “spontaneous tensorization.” [6].

The second path to generalize the DEF theory recognizes that the tachyon is not the only type of
instability that leads to spontaneous growth. For the tachyon, the effective potential term of the scalar has the
“wrong” sign, leading to a mass-square term with the wrong sign. If the effective kinetic term has the wrong
sign, then the highest derivative term in the EOM changes sign, and we have a “ghost” field. Such terms are
equivalent to having derivative couplings as in the action [5]

1

16π

∫
d4x

√
−g[R− 2∇µϕ∇µϕ− 2mϕϕ

2]

+Sm[fm, A2
∂(K)gµν ] , K = gµν∇µϕ∇νϕ , (6)

which gives the EOM

∇µ

[
(−8πT̃A3

∂A
′
∂ + 1)∇µϕ

]
= m2

ϕϕ . (7)

The principal part (the term with the highest order derivative) of the linearized EOM reads

(−4πT̃β∂ + 1)2ϕ = . . . , (8)

if we use A∂ = eβ∂K/2 or some similar function of K . Hence, the wave operator rather than the mass term
changes sign, but the final result is the same: ϕ = 0 is unstable. We should note that NS solutions with
such derivative couplings are possible, but they contain sharp structures which can be possibly ruled out by
astrophysical observations [5].

The third way to generalize the DEF theory gives up the matter coupling idea which we have employed
so far, and couples the field that is to grow spontaneously to some other term, such as the Gauss–Bonnet
term [8–10]

1

16π

∫
d4x

√
−g[R− 2∇µϕ∇µϕ+ λ2f(ϕ)R] . (9)

Here, R = R2 − 4RµνR
µν + RµνρσR

µνρσ is the Gauss–Bonnet invariant and f(ϕ) is some coupling function.
Note that the term the scalar field couples to is pure curvature, that is, it is constructed out of the metric only.
The EOM is

2ϕ = −λ2

4

df

dϕ

∣∣∣∣
ϕ=0

R . (10)

If the first derivative of the coupling function vanishes, such as f(ϕ) = 1 − eβϕ
2/2 , then the linearized EOM

becomes

2ϕ ≈ −λ2

4

d2f

dϕ2

∣∣∣∣
ϕ=0

Rϕ ≡ m2
eff ϕ . (11)

This behavior is identical to that of the scalar in the DEF theory, small perturbations are tachyonic for a correct
choice of β , and most of the astrophysical results follow. This theory has the additional advantage that any
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object that generates enough curvature, not just matter, can spontaneously scalarize, and scalarized black hole
solutions have been calculated [8, 9].

One can combine the aforementioned paths, and obtain theories of spontaneous vectorization based on
ghosts, so we have both tachyon- and ghost-based spontaneous growth for scalars and vectors [5]. Similarly,
we can devise theories of generalized Einstein–Gauss–Bonnet theories with vectors instead of scalars [11]. In
another alternative, one can come up with spontaneous growth theories that contain both scalars and vectors,
in analogy to the Higgs mechanism, and preserve the gauge symmetry of the vectors [19]. However, not all
mechanisms of spontaneous growth work for all fields. For example, the spontaneous growth of spinor fields can
only be achieved via a mechanism which can be best described as ghost-based, but has differences from all the
mechanisms we mentioned [7].

Another way to combine the ghosts and tachyons is using a disformal coupling rather than a conformal
one. A scalar-dependent disformal coupling is of the form [20]

g̃µν = A2(ϕ)
[
gµν + ΛB2(ϕ)∂µϕ∂νϕ

]
. (12)

Inserting this to Eq. (1) and varying the action, we get [12, 21]

2ϕ = m2
ϕϕ+

4π

1 + ΛB2∂µϕ∂µϕ
× (13)

{
ΛB2 [(δ − α)T ρσ∂ρϕ∂σϕ+ T ρσ∂ρ∂σϕ]− αT

}
,

with α(ϕ) ≡ A−1(dA/dϕ) and δ(ϕ) ≡ B−1(dB/dϕ) . It is slightly more cumbersome to analyze the linearization
of this equation, but one can show that it contains elements from both tachyon- and ghost-based spontaneous
growth [12]. Disformal transformations can also be generalized to other fields, for example one of the few
possible vector-dependent transformations is given by

g̃µν = gµν +B(x)XµXν , (14)

which also leads to spontaneous vectorization.1

3. Spontaneous growth of p-form fields

A p -form (or a differential form) field Xµ1...µp is a completely antisymmetric (0, p) tensor field. Their basic
properties and operators on them which we use below can be found in Ref. [22]. In D ≥ p dimensions, a p -form
has the canonical action2

SF =

∫
d4x

√
−g LF = −

∫
d4x

√
−g

ηF︷ ︸︸ ︷
Fµ1...µp+1Fµ1...µp+1

(15)

where

F ≡ dX ⇒ Fµ1...µp+1
≡ (p+ 1)∇[µ1

Xµ2...µp+1] , (16)

1A detailed study of this co-authored by us is currently under review.
2Traditionally, there is also a factor of 1

2(p+1)!
in the action, but such factors can be absorbed in a field redefinition, and we will

omit them to make comparison to spontaneous vectorization easier.
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[ ] denoting antisymmetrization. The theory has the gauge freedom X → X+ dλ , where λ is any (p− 1)-form
field thanks to the property d(dλ) = 0 .

Similarities to massless vector fields are unmistakable from the field strength tensor to the gauge freedom.
Indeed, the canonical massless vector field action is nothing but the case for p = 1 up to some overall constant
factors. Note that one can add a mass term

SX =

∫
d4x

√
−g LX = −(p+ 1)m2

X

∫
d4x

√
−g

ηX︷ ︸︸ ︷
Xµ1...µpXµ1...µp , (17)

but this breaks the gauge symmetry. The EOM corresponding to the action SF + SX is

∇ρF
ρµ1...µp = m2

XXµ1...µp , (18)

in complete analogy to that of the vector field.
One should note that in D dimensions, all p -form fields vanish for p > D due to antisymmetry. Moreover,

there is a natural one-to-one mapping, the Hodge dual, between p -forms and (D − p) -forms; hence, one need
not consider form fields with p > D/2 . p -forms commonly appear in theories with extra dimensions, but we
will use D = 4 , which can be generalized in a trivial manner.

In the following subsections, we will apply all the mechanisms of spontaneous growth we have discussed
so far to p -form fields.

3.1. Tachyon-based spontaneous p-form field growth
The simplest theory that spontaneously grows p -forms is given by the action

1

16π

∫
d4x

√
−g [R+ LF + LX ] + Sm [fm, g̃µν ] . (19)

where
g̃µν = A2

X(ηX)gµν (20)

Recall that ηX = Xµ1...µpXµ1...µp ; hence, this theory is a complete analog of tachyon-based spontaneous

vectorization in Eq. 4. For our generic choice AX = eβXηX/2 , the EOM is

∇ρF
ρµ1...µp =

m2
eff︷ ︸︸ ︷

(−8(p+ 1)−1πA4
XβX T̃ +m2

X)Xµ1...µp . (21)

Appropriate values of βX lead to a negative m2
eff ; hence, a tachyon, and all the the succeeding discussion on

vectors is also valid for this theory of spontaneous p -form growth.
We should repeat that the mass term mX is not needed for spontaneous growth, it actually suppresses

it. However, it is likely needed to conform to observational bounds, as in the scalarization and vectorization
cases.

3.2. Ghost-based spontaneous p-form field growth
Like scalars, it is also possible to spontaneously grow p -form fields through a ghost-like instability. This is
achieved by the action

1

16π

∫
d4x

√
−g [R+ LF + LX ] + Sm [fm, g̃µν ] , (22)
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where

g̃µν = A2
F (ηF )gµν (23)

Namely, the action is exactly in the same form as Eq. 19, but the conformal scaling is now a function of the
kinetic term; hence, contains derivatives. The effect of this can be easily seen when we vary the action for the
choice AF = eβF ηF /2 and obtain the EOM

∇ρ

[
(−8πA4

FβF T̃ + 1)F ρµ1...µp

]
= m2

XXµ1...µp . (24)

This is just like ghost-based spontaneous scalarization in Eq. 7. The principal part of Eq. 24 is

(−8πA4
FβF T̃ + 1)∇ρF

ρµ1...µp = . . . , (25)

we see that it changes sign when βF is large enough. This is in complete analogy to the scalar case; hence, we
expect the p -form field to grow spontaneously due to this ghost-like degree of freedom, and all the consequences
of such an instability follow as before.

3.3. Spontaneous growth of p-form fields beyond matter coupling
So far, we only considered transformations of the metric in the matter coupling. However, we have seen that
this is not the only way to obtain an instability, and presented how to couple a scalar to a curvature term in
Eq. 9. This type of theory can also be generalized to p -form fields as

1

16π

∫
d4x

√
−g[R+ LF + λ2f(ηX)R] . (26)

If the coupling function has leading quadratic dependence on X such as f(ηX) = 1 − eβXηX/2 , the linearized
EOM is

∇ρF
ρµ1...µp ≈

m2
eff︷ ︸︸ ︷

λ2βX

2(p+ 1)
RXµ1...µp . (27)

This equation behaves like that of a tachyon if βX < 0 , and results in a phenomenology similar to the scalar
case. We only considered D = 4 here, where the Gauss–Bonnet term is the only option if we want to avoid
anomalies, but other Lovelock curvature terms are possible in higher dimensions [2]. We also did not consider an
intrinsic p -form field mass mX , but it is possible to add SX to the action and still have a tachyonic instability.
The only major difference would be in the far field behavior of the field as in spontaneous scalarization, which
can make agreement with binary star system observations easier.

One might be tempted to think that we can have a ghost-based version of this theory through a derivative
coupling, i.e.

1

16π

∫
d4x

√
−g[R+ SF + λ2f(ηF )R] . (28)

Even though the reversal of the sign of the principal part in the EOM occurs in this theory as well, third
derivatives of the metric also appear due to the derivatives of R [11]. More than two time derivatives are
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generically indicative of unphysical ghost degrees of freedom, the kind that does not eventually stop growing.
Because of this, theories involving higher curvature terms are thought not to be generalizable to derivative
couplings [11].

We should also add that one can replace the Gauss–Bonnet invariant with another action term, such as
the Chern–Simons term, or an expression that depends on some other field, which can also incite the required
instability [23]. However, we need to be careful not to have any undesired ghosts, which is the case for any
curvature term other than that of Gauss–Bonnet if we restrict ourselves to 4 dimensions. Nevertheless, such
theories are still of interest, considered as effective theories of a yet unknown more fundamental theory [2, 3].

3.4. Disformal transformations based on p-form fields
We discussed in the previous section that conformal scaling is not the only way to modify the metric that
couples to the matter field in Eq. 12. One can generalize such transformations to depend on p -forms. Namely,
consider the action in Eq. 19 or Eq. 22, but with a metric transformation of the form

g̃µν = gµν +BX(ηX)

X2
(µν)︷ ︸︸ ︷

Xρ1...ρp−1(µ|X
ρ1...ρp−1

|ν) (29)

in analogy to Eq. 14. (µ|...|ν) represents symmetrization over µ, ν , but none of the indices in between, as required
by the symmetry of the metric. The EOM is

∇ρF
ρµ1...µp = m2

XXµ1...µp

−8(p+ 1)−1π
√
χB′

X T̃ ρσX2
(ρσ)X

µ1...µp

−8(p+ 1)−1π
√
χBX T̃σµpgσρX

µ1...µp−1ρ (30)

with √
χ ≡

√
−g̃/

√
−g and B′

X ≡ ∂BX/∂ηX .
To see the unstable mode in Eq. 30, let us linearize and recast it as

∇ρF
ρµ1...µp ≈ (m2

Xδµp
ρ − 8(p+ 1)−1πBX(0)T̃σµpgσρ)X

µ1...µp−1ρ

= Mµp
ρ Xµ1...µp−1ρ . (31)

Mµp
ρ acts as a mass-square tensor, and if it has any negative eigenvalues, the degree of freedom corresponding

to the related eigenvalue behaves as a tachyon. A negative eigenvalue can always be achieved by appropriate
values of BX(0) and T̃σµp . This can be more directly seen for a spacetime with a diagonal metric and stress-
energy tensor, as is usually encountered in spherically symmetric spaces such as nonrotating NSs. Then, the
linearized EOM becomes

∇ρF
ρµ1...µp ≈ (m2

X − 8(p+ 1)−1πBX(0)T̃µpµpgµpµp
)Xµ1...µp−1µp , (32)

where there is no summation over the index µp . The effective mass-square term is clearly negative for sufficiently
large negative values of BX(0) .

Having an instability starts the spontaneous growth process, but in order to have a stable solution, the
growth must shut off eventually. This can be achieved by having BX(ηX → ∞) = 0 , so that the modification
to the mass term in the fully nonlinear theory in Eq. 30 gets suppressed at high p -form field values. This means
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that our usual choice BX(ηX) = ΛXeβXηX/2 satisfies the above requirements. We added the constant factor
ΛX in this case since having a negative eigenvalue for Mµp

ρ requires BX(0) to be different from unity, and
possibly large.

Lastly, we add that Eq. 29 is not the only possible p -form dependent disformal coupling. For example,
one can also use the field strength tensor as in

g̃µν = gµν + ΛFBF (ηX)

F 2
(µν)︷ ︸︸ ︷

Fρ1...ρp(µ|F
ρ1...ρp

|ν) (33)

where ΛF is introduced to render BF dimensionless. We will not examine this theory in detail, but it leads to
ghost-based spontaneous growth due to the derivative terms in the coupling.

4. Conclusion
We have adapted all the known mechanism that lead to spontaneous scalarization in gravity to the case of
p -form fields. This is not a trivial task, since there are fields where only one mechanism of spontaneous growth
is possible, like spinors [7], or there is no known mechanism at all, such as rank-2 tensors [5]. One helpful fact
we utilized is that vector fields can be expressed as 1 -form fields, and vectors are very amenable to spontaneous
growth through various mechanisms which can be generalized to p -forms.

We have explicitly investigated the spontaneous growth of p -forms through matter couplings that arise
from both conformal and disformal transformations, each of which can lead to ghost-like or tachyon-like
instabilities. We have also seen that one can couple the form field to a curvature term, and still obtain
spontaneous growth, with the added benefit that black holes can also grow p -form clouds since matter is not
required.

Different spontaneous growth mechanisms are not equally plausible. Tachyon-based mechanisms generi-
cally respect the known bounds from observations. However, ghost-based mechanisms generically lead to sharp
structures in compact objects such as cusps in the density profile [5]. Even though we are not aware of any
observations that directly rule out such features, we expect them to have easily recognizable signatures; hence,
they should be quickly confirmed or ruled out in the near future.

As with much of the recent work on spontaneous tensorization, the case of p -form fields are not only
valuable in their own right, but rather they are also the newest example that spontaneous growth is ubiquitous
in gravity theories. We believe that the best approach to understand spontaneous tensorization is analyzing the
common properties of various theories in order to better understand the spontaneous growth phenomena itself.
All spontaneous tensorization theories share the appealing property that they have large deviations from GR
in strong gravitational fields; hence, the era of gravitational wave science is an especially exciting time to relate
these theoretical ideas to observations.
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