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Abstract: We undertook a theoretical study of a scalar boson confined by Woods–Saxon potential in a nucleus
via the Duffin–Kemmer–Petiau equation. We analytically obtained the eigenvectors and energy levels through the
hypergeometric functions. Single-particle energy levels of a boson in the 208Pb nucleus were calculated numerically.
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1. Introduction
The Duffin–Kemmer–Petiau (DKP) equation is a relativistic wave equation that has the same form for spin-
0 and spin-1 particles, which are analyzed by the Klein–Gordon (for spin-0 particles) and Proca (for spin-1
particles) equations. The DKP equation is a first-order equation, as is the Dirac equation. These two equations
are also structurally similar to each other. The gamma matrices in the Dirac equation are replaced by the beta
matrices in the DKP equation [1–3]. The DKP equation has explored meson-nucleus scattering with minimal
scalar and vector interaction that has been used for photon nucleus scattering in the Dirac equation [4]. The
DKP equation reduces to the Klein–Gordon equation in the absence of scalar interaction and gives the same
results as the Klein–Gordon equation in minimal coupled vector interaction [5,6]. The DKP equation is used to
obtain the relativistic dynamics of bosons subject to a variety of nonminimal vector coupling potentials. These
potentials are not expressed in the Klein–Gordon equation [7,8].

The DKP equation has been misinterpreted by some authors due to the richness of its interactions. For
spin-1 particles, the correct use of nonminimal vectorial interaction in the DKP equation was given by Castro
[9]. The DKP equation has an original formulation in the 3+1 space-time dimension. The DKP equation for
both spin-0 and spin-1 was reduced to 1+1 space-time dimension. However, the spin-1 version of the DKP
equation is unitarily equivalent to its spin-0 version in 1+1 dimension, as was shown by Lunardi [10]. Recently,
the DKP equation was utilized to obtain the scattering states of scalar bosons subject to the vector Yukawa
potential [11]. The DKP equation with time-dependent interaction was used to study the scalar bosons in (1+1)
and (2+1) dimensional space-time [12]. The scattering and bound states of the vector boson in the presence of
Aharonov–Bohm flux were studied with the DKP equation by using self-adjoint extension. This showed that
these states depend on the spin projection [13]. The massive DKP theory was utilized to reproduce relativistic
Bose–Einstein condensation for both spin-0 and spin-1 field at finite temperature [14]. The DKP formalism
also has applications in curved space-times [15–18]. The DKP was solved to understand elastic meson-nucleus
scattering in the presence of minimal plus nonminimal vector Coulomb potential [19].
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The purpose of this paper is to investigate the behavior of scalar bosons confined by Woods–Saxon
potential in the central field by the DKP equation. In recent years, this problem has been solved by using
the Nikiforov–Uvarov (NU) method [20,21]. However, in those works, the authors made a mistake due to the
method they used. This was because the NU method cannot perform an accurate examination of this problem
in physical boundary conditions. In this paper, the correct solutions of the problem are given. In Section 2, the
DKP equation is introduced for scalar bosons in the presence of scalar and vector interaction in a central field.
In Section 2.1, the DKP equation is solved for a scalar boson confined in Woods–Saxon potential in a central
field using Pekeris approximation. The conclusions are given in Section 3.

2. DKP equation in the central field

The DKP Hamiltonian for scalar and vector interactions is [2]:

(
β⃗ • p⃗c+mc2 + Us + β0U0

v

)
ψ (r) = β0Eψ , (1)

where

ψ (r) =

(
ψupper

iψlower

)
with ψupper =

(
φ
ϕ

)
and ψlower =

 A1

A2

A3

 (2)

β0 is the usual 5 × 5 matrix and Us and U0
v represent the scalar and vector interactions, respectively. The

equation is written as: (
mc2 + Us

)
ϕ =

(
E − U0

v

)
φ+ ℏc∇⃗ • A⃗,

∇⃗ϕ =
(
mc2 + Us

)
A⃗, (3)(

mc2 + Us

)
φ =

(
E − U0

v

)
ϕ,

where A⃗ = (A1, A2, A3) . In Eq. (2), ψ (r) is simultaneously an eigenfunction of J2 and J3 , given as:

J2

(
ψupper

ψlower

)
=

(
L2ψupper

(L+ S)
2
ψlower

)
= J (J + 1)

(
ψupper

ψlower

)
, (4)

J3

(
ψupper

ψlower

)
=

(
L3ψupper

(L3 + s3)
2
ψlower

)
=M

(
ψupper

ψlower

)
, (5)

where the total angular momentum J = L + S , which commutes β0 , is a constant of motion. The general
solution of Eq. (1) is:

ψJM (r) =

 fnJ (r)YJM (Ω)
gnJ (r)YJM (Ω)

i
∑

L hnJL (r)YM
JL1 (Ω)

 , (6)

where YJM (Ω) are the spherical harmonics of order J , YM
JL1 (Ω) are the normalized vector spherical harmonics,

and fnJ (r) , gnJ (r) , and fnJL (r) are radial wave functions. The equations above give the following coupled

598



CANDEMİR/Turk J Phys

differential equations:

(
E − U0

v

)
fnJ (r) =

(
mc2 + Us

)
gnJ (r) , (7a)

ℏc
(
d

dr
− J

r

)
fnJ (r) =

−1

αJ

(
mc2 + Us

)
hnJJ+1 (r) , (7b)

ℏc
(
d

dr
+
J + 1

r

)
fnJ (r) =

1

ζJ

(
mc2 + Us

)
hnJJ−1 (r) , (7c)

− αJ

(
d

dr
+
J + 2

r

)
hnJJ+1 (r) + ζJ

(
d

dr
− J − 1

r

)
hnJJ−1 (r)

1

ℏc
((
mc2 + Us

)
fnJ (r)−

(
E − U0

v

)
gnJ (r)

)
, (7d)

where αJ =
√
(J + 1) /J + 2 , ςJ =

√
J/J + 2 , fnJ (r) = F (r)/r , gnJ (r) = G (r)/r , and hnJJ±1 (r) =

H±1 (r)/r . Taking Us = 0 and eliminating G (r) , H1 (r) , and H−1 (r) in terms of F (r) , the DKP equation in
the presence of a time-like component of four-dimensional vector potential is given by [2,20]:(

d2

dr2
− J (J + 1)

r2
+

(
E − U0

v

)
(ℏc)2

− m2c4

(ℏc)2

)
FnJ (r) = 0. (8)

2.1. The solutions of DKP equation with Woods-Saxon potential in the presence of a central field
In this section, we obtain the corrected wave function and energy eigenvalues of scalar bosons confined by
Woods–Saxon potential in the presence of a central field by the DKP equation.

Woods–Saxon potential is a short-range potential and is given by:

U0
v (r) =

U0

1 + e(r−R)/a
, (9)

where U0 is the depth of potential, R is the radius of potential, and a is the width of surface diffuseness [22].
The Woods–Saxon potential and its modifications are used for various applications in different branches of
physics [23–25]. In particular, they have been used to understand the nuclear shell model and to describe the
interaction of a neutron with the heavy nucleus [26]. Therefore, the analytical solutions of wave equations of
nonrelativistic and relativistic particles confined by Woods–Saxon potential have been investigated using various
methods [27–31].

Considering the Woods–Saxon potential given by Eq. (9) as the time-like component of the four-
dimensional vector potential given in Eq. (8), the radial DKP equation can be written as:(

d2

dr2
− J (J + 1)

r2
+

1

(ℏc)2
V 2
0(

1 + e(r−R)/a
)2 +

(2EV0)

(ℏc)2
(
1 + e(r−R)/a

) − E2 −m2c4

(ℏc)2

)
FnJ (r) = 0. (10)

There is no exact solution of this equation due to the centrifugal term J(J+1)
r2 . To overcome this challenge,

Pekeris approximation will be used for the centrifugal term as follows [32]:

J (J + 1)

r2
∼=
J (J + 1)

R

(
D0 +

D1(
1 + e(r−R)/a

) + D2(
1 + e(r−R)/a

)2
)

, (11)
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where

D0 = 1− 4

α
+

12

α2
, D1 =

8

α
+

48

α2
, D2 =

48

α2
, (12)

with α = R/a . Substituting Eq. (11) into Eq. (10) and using a new variable, y (r) = 1
/ [

1 + e(r−R)/a
]
, the

DKP equation reduces to:(
d2

dy2
+

1− 2y

y (1− y)

d

dy
+

−ξ21y2 + ξ22y − ξ23

[y (1− y)]
2

)
FnJ (y) = 0 , (13)

with

ξ1 =

√√√√a2

(
J (J + 1)D2

R2
− U2

0

(ℏc)2

)
, (14)

ξ2 = −

√√√√a2

(
J (J + 1)D1

R2
+

2U0EnJ

(ℏc)2

)
, (15)

ξ3 =

√√√√a2

(
J (J + 1)D0

R2
−
m2c4 − E2

nJ

(ℏc)2

)
. (16)

To obtain the solution, as done in other studies [20,21], the NU method can be used [33] to solve the second-order
differential equation in the following form:(

d2

ds2
+
τ̃ (s)

σ (s)

d

ds
+

σ̃ (s)

σ2 (s)

)
ψ (s) = 0 . (17)

In this method, the energy eigenvalue equation is given by:

k + π
′
(s) = −nτ

′
(s)− n (n− 1)

2
σ

′′
(s) , n = 0, 1, 2 . . . , (18)

where the prime denotes the derivative with respect to s, n is a constant, and the k values are obtained by
considering that the discriminant of the square root has to be zero in Eq. (18). In Eq. (17), π (s) and τ (s)

are respectively defined as:

π (s) =
σ

′
(s)− τ̃ (s)

2
±

√(
σ′ (s)− τ̃ (s)

2

)2

− σ̃ (s) + kσ (s) , (19)

τ (s) = τ̃ (s) + 2π (s) with τ
′
(s) < 0. (20)

The wave function can be separated by ψ (s) = ϕ (s) f (s) . The asymptotic behavior of ψ (s) is ϕ (s) ,
which is obtained from:

ϕ
′
(s)

ϕ (s)
=
π (s)

σ (s)
. (21)
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Comparing Eq. (13) and Eq. (17), the following relationships are obtained:

σ̃ (y) = −ξ21y2 + ξ22y − ξ23 ,

τ̃ (y) = 1− 2y , (22)

σ (y) = y (1− y) .

By determining the parameter of Eq.(18), an energy equation is found as follows:

n2 + n− ξ22 + (2ξ3 + 2n− 1)

(√
ξ23 + ξ21 − ξ22 + ξ3

)
= 0. (23)

However, this energy eigenvalue equation is inaccurate due to the application of the wrongly selected method.
The NU method does not scrutinize how the wave function behaves at the boundary condition near the origin
(r = 0 −→ y = 1) . Therefore, the wave function in the boundary conditions must be carefully scrutinized.

To find the wave function FnJ (y) = ϕ (y) f (y) we consider the asymptotic part of the wave function
ϕ (y) from Eq. (21) as ϕ (y) = yξ3 (1− y)

η . Thus, the wave function is:

Fn,J (y) = yξ3 (1− y)
η
f (y) , (24)

with η =
√
ξ23 + ξ21 − ξ22 . This wave function satisfies the boundary condition in Fn,J (r → ∞, y → 0) = 0 and

Fn,J (r → 0, y → 1) = 0 . By replacing Eq. (24) in Eq. (13), we obtain:

y (1− y) f
′′

nJ (y) + (1 + 2ξ3 + 2 (1 + ξ3 + η)) f
′

nJ (y)

− ((ξ3 + η) (1 + 2ξ3) −ξ22
)
fnJ (y) = 0 . (25)

This equation is known as the hypergeometric equation [34]:

y (1− y)ω
′′
(y)− [c− (a+ b+ 1) y]ω

′
(y)− abω (y) = 0 , (26)

and its solution is ω (y) = 2F1 (a, b, c, y) . Comparing Eq. (25) with Eq. (26), the parameters a, b, and c are
found as:

a =
1

2

(
1 + 2ξ3 + 2η ∓

√
1− 4ξ21

)
,

b =
1

2

(
1 + 2ξ3 + 2η ±

√
1− 4ξ21

)
, (27)

c = 1 + 2ξ3.

Therefore, the solution of Eq. (26) is obtained as:

Fn,J (y) = yξ3 (1− y)
η
2F1 (a, b, c; y). (28)

Now the correct energy eigenvalues can be calculated. For this, the wave function near the origin (r −→ y −→ 1)

is investigated. The following identity for the hypergeometric function can be used:

2F1 (a, b, c, y) =
Γ (c) Γ (c− a− b)

Γ (c− a) Γ (c− b)
2F1 (a, b, a+ b− c+ 1, 1− y)
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+
Γ (c) Γ (a+ b− c)

Γ (a) Γ (b)
(1− y)

c−a−b
2F1 (c− a, c− b, c− a+ b+ 1, 1− y) . (29)

It is known that 2F1 (a, b, c, 0) = 1 . Therefore, using Eq. (29) and boundary condition FnJ (r −→ 0, y −→ 1) =

0 and an approximation 1 + eR/a ≈ eR/a leads to:

Γ (a+ b− c)

Γ (c− a− b)

Γ (c− b)

Γ (b)

Γ (c− b)

Γ (a)
e2δR/a = −1 , (30)

where δ = iλ and γ =
√
ξ22 − ξ21 − ξ23 . Thus, from the quantum condition and using e−2iargΓ(y) = Γ(y)

Γ(y) , the

corrected energy eigenvalue equation is obtained as follows:

argΓ (2iλ)− argΓ

(
1

2

(
1 + 2ξ3 + 2iλ−

√
1− 4ξ21

))
− argΓ

(
1

2

(
1 + 2ξ3 + 2iλ−

√
1− 4ξ21

))
+
Rλ

a

= (n+ 1/2)π, n = 0,±1,±2, . . . (31)

To numerically calculate the corrected energy eigenvalues from Eq. (31) the parameters are set as mK−c2=493.677

MeV, U0= –67.54 MeV, R = 7.6136 fm, a = 0.65 fm−1 , and ℏc = 197.329 MeV [20,29,35]. These parameters
belong to the 208Pb nucleus. The numerical results are listed in the Table, which shows that the single-particle
energy levels of the kaon confined by the Woods–Saxon potential in the 208Pb nucleus decrease as quantum
numbers n and J increase .

Table 1. Energy levels EnJ (MeV) of K− (kaon) particles confined by the Woods–Saxon potential for (n , J ) states.

n J EnJ

0 0 –433.03300525732527
1 –434.06718583350555
2 –436.12898522457374

1 0 –450.77925900152399
1 –451.80308001111999
2 –453.84424689451373

2 0 –474.34735195773544
1 –475.35419286222988
2 –477.36188112729855

3 0 –494.07778168241688

The radial wave function given by Eq. (28) in terms of parameters in Eq. (27) is obtained as:

Fn,J = N

(
1

1 + e(r−R)/a

)ξ3 (
1− 1

1 + e(r−R)/a

)η

2F1

(
1

2

(
1 + 2ξ3 + 2iλ−

√
1− 4ξ21

)
;

1

2

(
1 + 2ξ3 + 2iλ−

√
1− 4ξ21

)
; 1 + 2ξ3;

1

1 + e(r−R)/a

)
, (32)

where N is obtained from the normalization condition. The Figure shows the unnormalized wave function as a
function of r for several n quantum numbers.

602



CANDEMİR/Turk J Phys

Figure 1. The unnormalized wave function for different n .

3. Conclusion
The DKP equation was solved to describe the dynamics of a scalar boson confined in the Woods–Saxon potential
of the nucleus by using Pekeris approximation. It has been realized that the NU method cannot take into account
the behavior of a boson’s wave function confined by Woods–Saxon potential in boundary conditions. Therefore,
the wave function obtained in terms of a hypergeometric function has been carefully examined. The corrected
energy eigenvalue equation and corresponding eigenfunction have been obtained. Some numerical results were
given in the Table. The results obtained in this paper might be useful in particle and nuclear physics.
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