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Abstract: The hypothetical particles dyons, which carry both electric and magnetic charges simultaneously, are widely
discussed in application to electromagnetic theory and magnetohydrodynamics. Particularly, the duality-invariant field
equations were suggested with suitable definitions of the dyon’s electromagnetic characteristics. In this study, we propose
an alternative formulation of the duality-invariant field equations for dyons based on octonion algebra. Octonions have
been used to express the equations for potentials, field strengths, and sources in a more compact and consistent manner.
Additionally, the octonionic form of the energy conservation law for dyons has been derived.
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1. Introduction
The hypothetical particles dyons, which carry both electric and magnetic charges simultaneously, were first
proposed by Julian Schwinger as a phenomenological alternative to quarks [1, 2]. Many physical theories of
electromagnetism and linear gravity have been developed for dyons in the literature; see [2]–[10]. Recently after
Olesen’s study [11], Coceal et al. constructed the equations of magnetic plasma, usual plasma, and the pair
of both magnetic and electric plasma with dyons, which are deeply connected to the idea of electric-magnetic
duality [4].

Mathematics, physics, and many physical applications are performed by using vector, matrix, and tensor
algebra. In addition to these algebraic structures, the solutions and representations of physical problems are
discussed with quaternions, octonions, sedenions, octons, and sedeons, which are multicomponent number
systems. These algebras offer important and alternative notations of physical systems for representing them in
a more compact, effective, and elegant way. Particularly, there are many studies on electromagnetism, linear
gravity, and quantum mechanics that were performed in terms of hypercomplex values; see [12]–[48].

The purpose of this study is to identify the duality-invariant field equations and energy conservation law
for dyons in octonionic algebra representation. The paper has the following structure. In Section 2, we briefly
recall the information about octonion algebra and its complex type. A short review of equations and results
for dyonic electrodynamics is presented in Section 3. The generalized representation of the duality-invariant
form of equations for dyons in terms of octonion algebra is given in Section 4. In the final section, the energy
conservation law for dyons is derived via octonions.
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2. Mathematical preliminaries
Octonions are eight-component hypercomplex numbers also called Cayley numbers. They are a unique alter-
native and division algebra with both noncommutative and nonassociative structures [49, 50]. According to
different systems, they form some styles such as classical, complexified, dual, hyperbolic or split types.
The real octonion X is defined as

X =

7∑
n=0

xnen = x0e0 + x1e1 + x2e2 + x3e3 + x4e4 + x5e5 + x6e6 + x7e7, (1)

where the xn terms are real number coefficients of the octonion and the en s are its basis elements. For two
real octonions X and Y , the sum and difference are given as

X ± Y =

7∑
n=0

(xn ± yn)en = (x0e0 + x1e1 + x2e2 + x3e3 + x4e4 + x5e5 + x6e6 + x7e7)

± (y0e0 + y1e1 + y2e2 + y3e3 + y4e4 + y5e5 + y6e6 + y7e7).

(2)

The circular octonion X consists of two parts:

SX = x0e0, VX = X⃗ = x1e1 + x2e2 + x3e3 + x4e4 + x5e5 + x6e6 + x7e7 (3)

where SX and VX show the scalar and vectorial parts, respectively. Therefore, the real octonion X can be
written in a shorter form as

X = SX + VX = x0e0 + X⃗. (4)

In this study, the Cayley–Dickson multiplication rules, as one form of construction processes in the literature,
are used in all steps as shown in the Table [16]–[20].

Table 1. Multiplication rules of an octonion’s units in Cayley–Dickson form.

e1 e2 e3 e4 e5 e6 e7

e1 −1 e3 −e2 e5 −e4 −e7 e6

e2 −e3 −1 e1 e6 e7 −e4 −e5

e3 e2 −e1 −1 e7 −e6 e5 −e4

e4 −e5 −e6 −e7 −1 e1 e2 e3

e5 e4 −e7 e6 −e1 −1 −e3 e2

e6 e7 e4 −e5 −e2 e3 −1 −e1

e7 −e6 e5 e4 −e3 −e2 e1 −1

By means of these rules, the product of two classical octonions is given as follows:

XY = x0y0 + x0Y⃗ + X⃗y0 − X⃗ · Y⃗ + X⃗ × Y⃗. (5)

The octonion conjugate process can be shown by changing the signs outside of the scalar part of the
octonion X :

X = x0e0 −
7∑

n=1

xnen = x0 − X⃗. (6)
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For two real octonions, the octonionic conjugate process can be summarized as follows:

(X) = X, (X + Y) = X + Y, (XY) = (Y)(X). (7)

In the case of having vectorial parts in equation (5), the scalar and vectorial products can be defined in terms
of two real octonions as follows:

X⃗ · Y⃗ = −1

2

[
XY + (XY)

]
, (8)

X⃗ × Y⃗ =
1

2

[
XY − (XY)

]
. (9)

The norm process, which satisfies the commutative property, is given by multiplying the octonion and its
conjugate in the following form:

N(X) = XX = XX =

7∑
n=0

x2n. (10)

If the octonion is in the nonzero form, the multiplicative inverse X−1 can be expressed by the conjugate and
norm as follows:

X−1 = X/N(X). (11)

A complex octonion C is a combination of two real octonions X and Y with a new unit i :

C = X + iY =

7∑
n=0

(xn + iyn)en =

7∑
n=0

cnen. (12)

It is easily seen that the cn terms are complex numbers and i represents the complex unit, which has the
property i2 = −1 . As complex octonions have algebraic characteristics similar to those of the real ones, they
differ from the others in terms of their components due to the additional complex unit i . Note that the additional
complex conjugate occurs in a simultaneous way. Octonion conjugate C and complex conjugate C∗ are written
as follows [17, 18]:

C = (x0 + iy0)e0 − (x1 + iy1)e1 − (x2 + iy2)e2 − (x3 + iy3)e3

− (x4 + iy4)e4 − (x5 + iy5)e5 − (x6 + iy6)e6 − (x7 + iy7)e7,
(13)

C∗ = (x0 − iy0)e0 + (x1 − iy1)e1 + (x2 − iy2)e2 + (x3 − iy3)e3

+ (x4 − iy4)e4 + (x5 − iy5)e5 + (x6 − iy6)e6 + (x7 − iy7)e7.
(14)

It is clear that the other algebraic properties are similar to the circular octonions. Note that they now have
sixteen components due to the complex unit i .

3. Duality-invariant field equations for dyons

Let us consider the general case of the Maxwell equations written for electric and magnetic sources [51]. The
existence of magnetic charges can be understood by means of Dirac’s classical papers [52, 53]. In addition to
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the ρe electric charge and J⃗e current densities, one introduces ρm magnetic charge and J⃗m current densities
[16]. This equation set is written as follows:

∇⃗ · E⃗ = 4πρe,

∇⃗ · B⃗ = 4πρm,

∇⃗ × E⃗ = −1

c

∂B⃗

∂t
− 4π

c
J⃗m,

∇⃗ × B⃗ =
1

c

∂E⃗

∂t
+

4π

c
J⃗e,

(15)

where E⃗ , B⃗ , and c are the electric field, magnetic induction, and speed of light, respectively. Although the
magnetic monopole is not experimentally observed, it is frequently discussed in mathematical physics, high
energy physics, and solid state physics. In addition, the presence of the magnetic monopole is closely linked
to the presence of the short-U (1) gauge group and specifies the C-invariability [7]. The monopole is better
comprehended in non-Abelian gauge theories. Maxwell’s equations, which are the fundamental structures
for electromagnetism generated by both electric and magnetic fields, are also invariant under the duality
transformations as well as Lorentz transformations. The duality transformations are frequently presented for
the electromagnetic terms as follows:

E⃗ → E⃗ cos θ + B⃗ sin θ; B⃗ → −E⃗ sin θ + B⃗ cos θ. (16)

For the special case of θ = π
2 , they will transform into

E⃗ → B⃗; B⃗ → −E⃗, (17)

and by using the transformation matrices, Eqs. (16) and (17) can be briefly transcribed by using matrices as
follows thanks to [2], [3], and [7]–[10]:

(
E⃗

B⃗

)
→

(
cos θ sin θ
− sin θ cos θ

)(
E⃗

B⃗

)
, (18a)

(
E⃗

B⃗

)
→

(
0 1
−1 0

)(
E⃗

B⃗

)
. (18b)

The most significant property of these transformation matrices is that the determinant is equal to +1. This
means that the transformations remain unchanged. Many times, the other electromagnetic equalities can be
given in the following form:

ρe −→ ρm, ρm −→ −ρe,

J⃗e −→ J⃗m, J⃗m −→ −J⃗e,

ϕe −→ ϕm, ϕm −→ −ϕe,

A⃗e −→ A⃗m, A⃗m −→ −A⃗e.

(19)
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Because of the different spatial and temporal symmetries in terms of various physical systems, the Maxwell equa-
tions with monopole term denoted in Eq. (15) are invariant under the electromagnetic duality transformations
in general forms [38]:

E⃗ → αE⃗ + βB⃗,

B⃗ → αB⃗ − βE⃗,

J⃗e → αJ⃗e + βJ⃗m,

J⃗m → αJ⃗m − βJ⃗e,

ρe → αρe + βρm,

ρm → αρm − βρe,

(20)

where the α and β terms denote any parameters. After Coceal et al’s work in [4] in terms of the electromagnetic
duality form, Mironov and Mironov developed new duality notations for dyons that satisfy the transformation
matrix equal to +1 [38].

In the case of dyons, the duality-invariant electric and magnetic fields can be defined by using Coceal’s
suggestion [4, 6] and reforming Mironov’s developments [38] in the following form:

E⃗ =
1

λ
(eE⃗ + gB⃗), (21)

B⃗ =
1

λ
(−gE⃗ + eB⃗). (22)

Here, the duality-invariant fields E⃗ and B⃗ are not the physical fields. They are quantities, which occurred
from linear combinations of E⃗ electric field and B⃗ magnetic induction [4, 6, 38]. λ is the impact constant
depending on electric and magnetic charges in the form of λ =

√
e2 + g2 . In this sense, the determinant

of the new transformation denoted in (21) and (22) is equal to +1 and plays the invariability role just as
cos2θ + sin2θ = +1 . In addition to the Maxwell equations, the electric-magnetic field strengths and Lorenz’s
gauge conditions defined by potential terms are given in the following expressions, respectively:

E⃗ = −∇⃗ϕe −
1

c

∂A⃗e

∂t
− ∇⃗ × A⃗m, (23)

B⃗ = ∇⃗ × A⃗e − ∇⃗ϕm − 1

c

∂A⃗m

∂t
. (24)

∇⃗ · A⃗e +
1

c

∂ϕe

∂t
= 0, (25)

∇⃗ · A⃗m +
1

c

∂ϕm

∂t
= 0. (26)
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To describe the dyons it is convenient to introduce the renormalized sources:

ρ =
λ

e ρe =
λ

g ρm, (27a)

J⃗ =
λ

e J⃗e =
λ

g J⃗m, (27b)

and the renormalized field potentials [38]:

ϕ =
λ

e ϕe =
λ

gϕm, (28a)

A⃗ =
λ

e A⃗e =
λ

g A⃗m. (28b)

The Maxwell-like equations for dyons have been redefined in the following form [38]:

∇⃗ · E⃗ = 4πρ,

∇⃗ · B⃗ = 0,

∇⃗ × E⃗ = −1

c

∂B⃗
∂t

,

∇⃗ × B⃗ =
1

c

∂E⃗
∂t

+
4π

c
J⃗,

(29)

where the ρ and J⃗ terms indicate the duality-invariant electrical charge and current densities, respectively.
Then the dyonic strengths of electric and magnetic terms can be rewritten as:

E⃗ = −∇⃗ϕ− 1

c

∂A⃗

∂t
,

B⃗ = ∇⃗ × A⃗.

(30)

In addition, the Lorenz-like condition can be rearranged for dyons in duality-invariant form as:

∇⃗ · A⃗+
1

c

∂ϕ

∂t
= 0. (31)

Furthermore, an analogy can also be set in terms of the electromagnetic energy conservation between the
classical electromagnetism and dyons. The energy conservation equation can be written as:

∇⃗ · (E⃗ × B⃗) = −1

c
B⃗ · ∂B⃗

∂t
− 1

c
E⃗ · ∂E⃗

∂t
− 4π

c
E⃗ · J⃗ , (32)

and, using the vector identity, the Poynting vector S⃗ or the electromagnetic energy flux is defined as S⃗ = E⃗ ×B⃗ .
Let U be an electromagnetic energy density, and the time-dependent changing of this term ∂U

∂t can be written
as follows:

∂U
∂t

=
1

2

∂

∂t
(E2 + B2) =

1

2

∂

∂t
(E⃗ · E⃗ + B⃗ · B⃗). (33)
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By using electromagnetic energy flux and density, the Poynting theorem can be briefly written for dyons in the
following expression:

∇⃗ · S⃗ +
1

c

∂U
∂t

= −4π

c
E⃗ · J⃗ . (34)

Thus, the well-known energy conservation equation for classical electromagnetism via both electric and magnetic
sources is obtained once again as follows:

∇⃗ · S⃗ +
1

c

∂U

∂t
= −4π

c
(J⃗e · E⃗ + J⃗m · B⃗). (35)

It is easily seen that equations (34) and (35) are similar to each other with the above duality operations. In order
to have more detailed expressions, one can use the equalities of dyonic systems in the framework of Mironov’s
paper [38].

4. Duality-invariant field equations in octonion form
In order to obtain the octonionic equations for dyons, the complex octonionic differential operator and its
conjugate should be defined in Cayley–Dickson notation as

2 =
i

c

∂

∂t
e0 +

∂

∂x
e5 +

∂

∂y
e6 +

∂

∂z
e7 (36)

and

2∗ = − i

c

∂

∂t
e0 +

∂

∂x
e5 +

∂

∂y
e6 +

∂

∂z
e7. (37)

The multiplication of these operators is shown as follows:

⊡ = 22∗ = 2∗2 =
1

c2
∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2
=

1

c2
∂2

∂t2
−∇2 =

1

c2
∂2

∂t2
−△ (38)

and this satisfies the commutativity where the ∇2 or △ symbol is the Laplace operator in Cartesian coordinates.
The expressions (21) and (22) for dyons can be first suggested in the complex octonionic form as

E =
1

λ
[eE + g(e4)B] , (39)

B =
1

λ
[−g(−e4)E + eB] , (40)

where E and B represent the octonionic duality-invariant field terms. Using these definitions, the complex field
octonion can be defined as

F = E + iB = Exe1 + Eye2 + Eze3 + iBxe5 + iBye6 + iBze7 (41)

or

F = 1
λ [eE + g(e4)B] + i

λ [−g(−e4)E + eB] . (42)
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This expression can be rewritten in a more clear form as

F =
1

λ
[e(Exe1 + Eye2 + Eze3) + g(e4)(Bxe5 +Bye6 +Bze7)]

+
i

λ
[−g(−e4)(Exe1 + Eye2 + Eze3) + e(Bxe5 +Bye6 +Bze7)]

(43)

or

F =
1

λ
[e(Exe1 + Eye2 + Eze3) + g(Bxe1 +Bye2 +Bze3)]

+
i

λ
[−g(Exe5 + Eye6 + Eze7) + e(Bxe5 +Bye6 +Bze7)] .

(44)

If the complex octonionic differential operator denoted in equation (36) is applied to the complex
octonionic field given in equation (44), the following equality is obtained:

2F = ie0
1

λ

[
g∇⃗ · E⃗ − e∇⃗ · B⃗

]
+ ie1

1

λ

[
e
c

∂Ex

∂t
+

g
c

∂Bx

∂t
+ g(∇⃗ × E⃗)x − e(∇⃗ × B⃗)x

]
+ ie2

1

λ

[
e
c

∂Ey

∂t
+

g
c

∂By

∂t
+ g(∇⃗ × E⃗)y − e(∇⃗ × B⃗)y

]
+ ie3

1

λ

[
e
c

∂Ez

∂t
+

g
c

∂Bz

∂t
+ g(∇⃗ × E⃗)z − e(∇⃗ × B⃗)z

]
+ e4

1

λ

[
e∇⃗ · E⃗ + g∇⃗ · B⃗

]
+ e5

1

λ

[
g
c

∂Ex

∂t
− e

c

∂Bx

∂t
− e(∇⃗ × E⃗)x − g(∇⃗ × B⃗)x

]
+ e6

1

λ

[
g
c

∂Ey

∂t
− e

c

∂By

∂t
− e(∇⃗ × E⃗)y − g(∇⃗ × B⃗)y

]
+ e7

1

λ

[
g
c

∂Ez

∂t
− e

c

∂Bz

∂t
− e(∇⃗ × E⃗)z − g(∇⃗ × B⃗)z

]
.

(45)

Using divergence, curl, and time derivative expressions of (21) and (22), expression (45) can be represented in
a simple form:

2F = ie0

[
−∇⃗ · B⃗

]
+ ie1

[
1

c

∂Ex
∂t

− (∇⃗ × B⃗)x
]
+ ie2

[
1

c

∂Ey
∂t

− (∇⃗ × B⃗)y
]

+ ie3

[
1

c

∂Ez
∂t

− (∇⃗ × B⃗)z
]
+ e4

[
∇⃗ · E⃗

]
+ e5

[
−1

c

∂Bx

∂t
− (∇⃗ × E⃗)x

]
+ e6

[
−1

c

∂By

∂t
− (∇⃗ × E⃗)y

]
+ e7

[
−1

c

∂Bz

∂t
− (∇⃗ × E⃗)z

]
.

(46)

On the other hand, the relationship between the complexified octonion source and Maxwell-like equations can
be correlated as

J = i
4π

c
[−Jxe1 − Jye2 − Jze3] + 4πρe4 = 4π

[
− i

c
J⃗ + ρe4

]
. (47)
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The more compact and basic form between field and source can be written as

2F = J. (48)

A potential for the dyonic system can be defined in octonion form as

A = −iAxe1 − iAye2 − iAze3 + ϕe4 = −iA⃗+ ϕe4, (49)

and then, if the operator described in equation (37) is operated to this potential, the following equality can be
obtained:

2∗A = e1

[
−∂ϕ

∂x
− 1

c

∂Ax

∂t

]
+ e2

[
−∂ϕ

∂y
− 1

c

∂Ay

∂t

]
+ e3

[
−∂ϕ

∂z
− 1

c

∂Az

∂t

]
+ ie4

[
−∇⃗ · A⃗− 1

c

∂ϕ

∂t

]
+ ie5

[
(∇⃗ × A⃗)x

]
+ ie6

[
(∇⃗ × A⃗)y

]
+ ie7

[
(∇⃗ × A⃗)z

]
.

(50)

Using equations (30) and (31), the following expression can be written

2∗A = Exe1 + Eye2 + Eze3 + iBxe5 + iBye6 + iBze7. (51)

Equation (51) is the same as equation (41) and it can be briefly rearranged as

2∗A = F. (52)

Also, if both sides of equation (52) are multiplied from the left by the operator in equation (36), it will be

22∗A = 2F. (53)

This equation can be shown using equations (38) and (48) as

⊡A = J. (54)

Hence, this expression will be referred to as the wave equation in octonion form and can be rewritten as[
1

c2
∂2

∂t2
−∇2

] [
ϕe4 − iA⃗

]
= 4π

[
ρe4 −

i

c
J⃗

]
, (55)

and then this dyonic wave equation can clearly be separated in terms of scalar and vectorial components:

1

c2
∂2ϕ

∂t2
− ∂2ϕ

∂x2
− ∂2ϕ

∂y2
− ∂2ϕ

∂z2
= 4πρ, (56a)

1

c2
∂2Ax

∂t2
− ∂2Ax

∂x2
− ∂2Ax

∂y2
− ∂2Ax

∂z2
=

4π

c
Jx, (56b)

1

c2
∂2Ay

∂t2
− ∂2Ay

∂x2
− ∂2Ay

∂y2
− ∂2Ay

∂z2
=

4π

c
Jy, (56c)

1

c2
∂2Az

∂t2
− ∂2Az

∂x2
− ∂2Az

∂y2
− ∂2Az

∂z2
=

4π

c
Jz. (56d)

It is understood that the wave equation for dyons gains a different and significant form.

18



KANSU et al./Turk J Phys

5. Octonionic energy conservation for dyons

In order to obtain the energy conservation law for dyons, the complex conjugate of the octonionic field equation
given in equation (41) should be defined as

F∗ = E − iB = Exe1 + Eye2 + Eze3 − iBxe5 − iBye6 − iBze7. (57)

Using the property of the scalar product of two octonions as shown in equation (8), F∗ · (2F) and F∗ · J terms
should be obtained. The scalar product rule for a complex octonion is parallel to a circular one. Hence, the
following equality can be written:

F∗ · (2F) = F∗ · J

−1

2

[
F∗(2F) + F∗(2F)

]
= −1

2

[
F∗J+ F∗J

] (58)

As the first step of this operation, the left side of equation (58) can be multiplied in octonion form. The product
of F∗(2F) and F∗(2F) terms is obtained in the following line:

F∗(2F) = F∗(2F) = ie0

[
1

c
E⃗ · ∂E⃗

∂t
− E⃗ · (∇⃗ × B⃗) + 1

c
B⃗ · ∂B⃗

∂t
+ B⃗ · (∇⃗ × E⃗)

]
. (59)

Then the following expression is also attained for the right side of equation (58) in a similar way by applying
the octonion product rule:

F∗J = F∗J = ie0

[
−4π

c
E⃗ · J⃗

]
. (60)

It can be easily seen from equations (59) and (60) that all components in the same basis element without the
e0 scalar unit zeroize each other. By using equations (59) and (60), the following equality can be rearranged in
a complex scalar basis element as

ie0

[
1

c
E⃗ · ∂E⃗

∂t
− E⃗ · (∇⃗ × B⃗) + 1

c
B⃗ · ∂B⃗

∂t
+ B⃗ · (∇⃗ × E⃗)

]
= ie0

[
−4π

c
E⃗ · J⃗

]
, (61)

and then, using electromagnetic energy flux and density, the Poynting theorem can be briefly written for dyons
in the following expression denoted in equation (34) once again:

∇⃗ · S⃗ +
1

c

∂U
∂t

= −4π

c
E⃗ · J⃗ . (62)

At the end of this process, it is easily seen that the duality-invariant field strengths (21) and (22) proposed
by Mironov are more correct. In this way, the equality E2 + B2 = E2 + B2 is obtained between classical
electrodynamics and dyonic systems, and then the energy conservation is confirmed for two systems by using
the result of the determinant equal to 1 by means of the transformation matrix elements.
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6. Conclusion
The electromagnetic equations are used in not only classical electromagnetism but also other subfields of physics
such as wave theory, magnetohydrodynamics, geophysics, and astrophysics. The duality-invariant equalities were
studied by Coceal et al. and then a different perspective was presented for physical science. After Coceal’s
paper, Mironov and Mironov presented duality-invariant equalities for electromagnetism by using the sedeon
structure, which is a space-time algebra having 16 components and associative properties [38]. The duality-
invariant expressions have not been studied by using eight components and an alternative division ring such as
octonions yet. In this context, this study fills a gap in the literature.

The dyonic field equations in octonionic form have been written with duality-invariant quantities E⃗ and
B⃗ as a linear combination of the physical E⃗ and B⃗ fields using the λ coefficient by including charge terms for
dyons. Note that this λ factor shows the dyonic system to be invariable under the duality transformations. We
used octonionic combinations of the electric field and magnetic flux density with a factor (e4 ). The reason for
this contribution is that physically octonionic fields E and B cannot be described on the same basis.

We investigated the dyonic equations in complex octonion algebra and the results were compared with
the classical equations. The law of energy conservation, known as the Poynting theorem, has been obtained
for dyons and written via octonion algebra in a different and alternative manner. Due to the usage of the λ

parameter for dyonic strengths, it has shown neither increases nor decreases in terms of energy. In other words,
the energy is conserved all the time, even if it transforms from one to another type. As a consequence, it is seen
that the equalities between the duality-invariant and classical ones are presented in an alternative and elegant
way via octonion algebra, which has the last member of the division ring in a high-dimensional mathematical
structure.
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