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Abstract: We review our investigations devoted to the analysis of the resonances Zc(3900) , Zc(4430) , Zc(4100) ,
X(4140) , X(4274) , a1(1420) , Y (4660) , X(2100) , X(2239) , and Y (2175) discovered in various processes by Belle,
BaBar, BESIII, D0, CDF, CMS, LHCb and COMPASS collaborations. These resonances are considered as serious
candidates to four-quark (tetraquark) exotic mesons. We treat all of them as diquark-antidiquark states with relevant
spin-parities, find their masses and couplings, as well as explore their dominant strong decay channels. Calculations
are performed in the context of the QCD sum rule method. Thus, the spectroscopic parameters of the tetraquarks
are evaluated using the two-point sum rules. For computations of the strong couplings GTM1M2 , corresponding to
the vertices TM1M2 and necessary to find the partial widths of the strong decays T → M1M2 , we employ either the
three-point or full/approximate versions of the QCD light-cone sum rules methods. Obtained results are compared with
available experimental data, and with predictions of other theoretical studies.
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1. Introduction
During last five decades the Quantum Chromodynamics (QCD) as the theory of strong interactions was
successfully used to explore spectroscopic parameters and decay channels of hadrons, to analyze features
of numerous exclusive and inclusive hadronic processes. The asymptotic freedom of QCD allowed ones to
employ at high momentum transfers the perturbative methods of the quantum field theory. At relatively low
momentum transfer, Q2 ∼ 1 GeV2 , when the coupling of the strong interactions, αs(Q2) , is large enough
and nonperturbative effects become important, physicists invented and applied various models and approaches
to investigate hadronic processes. Now the QCD, appeared from merging of the parton model and nonabelian
quantum field theory of colored quarks and gluons, is a part of the standard model (SM) of elementary particles.
It is worth noting that despite numerous attempts of various experimental collaborations to find particles and
interactions beyond the standard model, all observed experimental processes and measured quantities can be
explained within framework of this theory.

In accordance with a contemporary paradigm, conventional mesons and baryons have quark-antiquark qq

and three-quark (antiquark) qq′q′′ structures, respectively. The electromagnetic, weak and strong interactions
of these particles can be explored in the context of SM. But fundamental principles of the QCD do not forbid
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existence of multi-quark hadrons, i.e., particles made of four, five, six, etc. quarks. Apart from pure theoretical
interest, multi-quark systems attracted interests of researches as possible cures to treat old standing problems
of conventional hadron spectroscopy. Actually, a hypothesis about multi-quark nature some of known particles
was connected namely with evident problems of quark-antiquark model of mesons. In fact, in the ordinary
picture the nonet of scalar mesons are 13P0 quark-antiquark states. But different and independent calculations
prove that 13P0 states are heavier than 1 GeV . Therefore, only the isoscalar f0(1370) and f0(1710) , isovector
a0(1450) or isospinor K∗

0 (1430) mesons can be identified as members of the 13P0 multiplet. Because the
masses of mesons from the light scalar nonet are below 1 GeV , during a long time the mesons f0(500) , f0(980) ,
K∗

0 (800) , and a0(980) were subject of controversial theoretical hypothesis and suggestions. To describe unusual
properties of light mesons R. Jaffe assumed that they are composed of four valence quarks [1]. Within this
paradigm problems with low masses, and a mass hierarchy inside the light nonet seem found their solutions.
The current status of these theoretical studies can be found in Refs. [2–5].

Another interesting result about multi-quark hadrons with important consequences was obtained also by
R. Jaffe [6]. He considered six-quark (dibaryon or hexaquark) states built of only light u , d , and s quarks that
belong to flavor group SUf (3) . Using for analysis the MIT quark-bag model, Jaffe predicted existence of a H -
dibaryon, i.e., a flavor-singlet and neutral six-quark uuddss bound state with isospin-spin-parity I(JP) = 0(0+) .
This double-strange six-quark structure with mass 2150 MeV lies 80 MeV below the 2mΛ = 2230 MeV

threshold and is stable against strong decays. It can transform through weak interactions, which means that
mean lifetime of H -dibaryon, τ ≈ 10−10s , is considerably longer than that of most ordinary hadrons. It is
remarkable that the hexaquark uuddss may be considered as a candidate to dark matter provided its mass
satisfies some constraints [7–10].

Theoretical studies of stable four-quark configurations meanwhile were continued using available methods
of high energy physics. The four-quark mesons or tetraquarks composed of heavy bb or cc diquarks and light
antidiquarks were considered as true candidates to such states. The class of exotic mesons QQQQ and QQqq′

was investigated in Refs. [11–13], where a potential model with additive two-particle interactions was utilized
to find stable tetraquarks. In the framework of this method it was proved that tetraquarks QQqq may bind to
stable states if the ratio mQ/mq is large. The similar conclusion was drawn in Ref. [14], where a restriction on
the confining potential was its finiteness at small two-particle distances. It was found there, that the isoscalar
axial-vector tetraquark T−

bb;ud
resides below the threshold necessary to create B mesons, and therefore can

transform only through weak decays. But the tetraquarks Tcc;qq′ and Tbc;qq′ may form both unstable or stable
compounds. The stability of structures QQqq in the limit mQ → ∞ was studied in Ref. [15], as well.

Progress of those years was not limited by qualitative analysis of four-quark bound states. Thus already at
eighties of the last century investigations of tetraquarks and hybrid hadrons were put on basis of QCD-inspired
nonperturbative methods, which allowed ones to perform quantitative analyses and made first predictions for
their masses and other parameters [16–21]. But achievements of these theoretical investigations then were not
accompanied by reliable experimental measurements, which negatively affected development of the field.

Situation changed after observation of the charmoniumlike state X(3872) reported in 2003 by the Belle
collaboration [22]. Existence of the narrow resonance X(3872) was later verified by various collaborations such
as D0, CDF and BaBar [23–25]. Discovery of charged resonances Zc(4430) and Zc(3900) had also important
impact on physics of multi-quark mesons, because they could not be confused with neutral cc charmonia, and
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were candidates to four-quark mesons. The Z±
c (4430) were observed in B meson decays B → Kψ′π± by

Belle as resonances in the ψ′π± invariant mass distributions [26]. The resonances Z+
c (4430) and Z−

c (4430)

were fixed and investigated later again by Belle in the processes B → Kψ′π+ and B0 → K+ψ′π− [27, 28],
respectively. Evidence for Zc(4430) and its decay to J/ψπ was found in reaction B̄0 → J/ψK−π+ by the
same collaboration [29]. Along with masses and widths of these states Belle fixed also their quantum numbers
JP = 1+ as a realistic assumption. The parameters of Z−

c (4430) were measured in decay B0 → K+ψ′π− by
the LHCb collaboration as well, where its spin-parity was clearly determined to be 1+ [30, 31].

Another charged tetraquarks Z±
c (3900) were found in the process e+e− → J/ψπ+π− by BESIII as

resonances in the J/ψπ± invariant mass distributions [32]. These structures were seen by Belle and CLEO
[33, 34], as well. The BESIII announced also detection of a neutral Z0

c (3900) state in the process e+e− →
π0Z0

c → π0π0J/ψ [35].

An important observation of last few years was made by D0, which reported about a structure X(5568) in
a chain of transformations X(5568) → B0

sπ
± , B0

s → J/ψϕ , J/ψ → µ+µ− , ϕ→ K+K− [36]. It was noted that
X(5568) is first discovered exotic meson which is composed of four different quarks. Indeed, from the decay
channels X(5568) → B0

sπ
± it is easy to conclude that X(5568) contains b, s, u, d quarks. The resonance

X(5568) is a scalar particle with the positive charge conjugation parity JPC = 0++ , its mass and width are
equal to m = 5567.8±2.9(stat)

+0.9
−1.9(syst) MeV and Γ = 21.9±6.4(stat)

+5.0
−2.5(syst) MeV , respectively. But, very

soon LHCb announced results of analyses of pp collision data at energies 7 TeV and 8 TeV collected at CERN
[37]. The LHCb could not find evidence for a resonant structure in the B0

sπ
± invariant mass distributions at

the energies less than 5700 MeV . Stated differently, a status of the resonance X(5568) , probably composed
of four different quarks is controversial, and necessitates further experimental studies. The exotic state named
X(5568) deserves to be looked for by other collaborations, and maybe, in other hadronic processes.

There are new experimental results on different resonances which may be considered as exotic mesons.
Thus, recently LHCb rediscovered resonances X(4140) and X(4274) in the J/ψϕ invariant mass distribution
by analyzed the exclusive decay B+ → J/ψϕK+ [38, 39]. It reported on detection of heavy resonances X(4500)

and X(4700) in the same J/ψϕ channel as well. Besides, LHCb fixed the spin-parities of these resonances.
It turned out that X(4140) and X(4274) are axial-vector states JPC = 1++ , whereas X(4500) and X(4700)

are scalar particles with JPC = 0++ . The first two states were already discovered by CDF in the decays
B± → J/ψϕK± [40], and confirmed later by CMS and D0 [41, 42], respectively. Hence they are old members of
tetraquarks’ family, whereas last two heavy states were seen for the first time. The resonances X may belong
to a group of hidden-charm exotic mesons. From their decay modes, it is also evident that they have to contain
a strange ss component as candidates for tetraquarks. In other words, the quark content of the states X is
presumably ccss .

The family of vector resonances {Y } , which are candidates for tetraquarks, contains at least four hidden-
charm particles with the quantum numbers JPC = 1−− . One of them, the resonance Y (4660) for the first time
was detected by Belle via initial-state radiation in the process e+e− → γISRψ

′ π+π− as one of two resonant
structures in the ψ′π+π− invariant mass distribution [43, 44]. The second state observed in this experiment
was labeled Y (4360) . The analyses of Refs. [43, 44] proved that these resonances cannot be identified with
known charmonia. The state Y (4630) , which is traditionally identified with Y (4660) , was seen in the process
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e+e− → Λ+
c Λ

−
c as a peak in the Λ+

c Λ
−
c invariant mass distribution [45]. The BaBar studied the same process

e+e− → γISRψ
′π+π− and independently confirmed appearance of two resonant structures in the π+π−ψ′

invariant mass distribution [46]. Masses and widths of these structures allowed BaBar to identify them with
resonances Y (4660) and Y (4360) , respectively. Apart from these two resonances, there are states Y (4260) and
Y (4390) which can also be considered as members of {Y } family.

Among new resonances it is worth noting the state Z−
c (4100) discovered also by LHCb in the decay

B0 → K+ηcπ
− [47]. In this article, it was noted that the spin-parity of this structure is JP = 0+ or JP = 1− :

both assignments are consistent with the data. From analysis of the decay Z−
c (4100) → ηcπ

− it is clear
that Z−

c (4100) may be composed of quarks cdcu , and is probably another member of the family of charged
Z -resonances with the same quark content: let us emphasize that the well-known resonances Z±

c (4430) and
Z±
c (3900) have also the cdcu or cucd contents.

In the present work, we review our theoretical works devoted to investigations of these and other
resonances as candidates to exotic four-quark mesons. All investigations in our original articles were carried out
in framework of the QCD sum rule approach, which is an effective nonperturbative method to study exclusive
hadronic processes [48, 49]. The spectroscopic parameters of tetraquarks were calculated by means of the QCD
two-point sum rule method. Their decays can be explored using other versions of the sum rule method. It
is known that tetraquarks decay dominantly to two conventional mesons via strong interactions. Widths of
these processes are determined by strong couplings describing vertices of initial and final particles. Therefore,
strong couplings are key components of relevant investigations, and they can be extracted either from the QCD
three-point sum rule approach or light-cone sum rule (LCSR) method [50].

Calculation of the strong couplings corresponding to tetraquark-meson-meson vertices in the framework
of the LCSR method requires additional technical recipes. The reason is that a tetraquark contains four valence
quarks, and light-cone expansion of the relevant nonlocal correlation function leads to expressions with local
matrix elements of one of a final meson. Then the four-momentum conservation in a such strong vertex can
be satisfied by setting the four-momentum of this meson equal to zero, i.e., by treating it a ”soft” particle.
Difficulties appeared due to such approximation can be evaded using a soft-meson technique of the LCSR
method [51, 52]. Let us note that in the case of three-meson vertices a soft limit is an approximation to
full LCSR correlation functions, whereas for vertices with one tetraquark this approach is an only way to
compute them. For analyses of four-quark systems the soft-meson approximation was adjusted in Ref. [53], and
successfully applied to study decays of various tetraquarks. The full version of the LCSR method is restored
when exploring strong vertices of two tetraquarks and a meson [54]. In the present review all of these methods
will be used to evaluate strong couplings of exotic and conventional mesons.

Detailed information on exotic resonances XY Z including a history of the problem, as well as experi-
mental and theoretical achievements of last years are collected in numerous interesting reviews [55–66].

This review is organized in the following form: In Sec. 2, we investigate charged axial-vector resonances
Zc(3900) and Zc(4430) by treating them as exotic mesons cucd . In our approach we consider Zc(4430) as
a radial excitation of the ground-state particle Zc(3900) . Apart from the spectroscopic parameters of these
resonances, we calculate their full widths by exploring strong decays Zc(3900), Zc(4430) → J/ψπ, ψ′π, η′cρ, and
ηcρ . In the next section we model the resonance Z−

c (4100) as a scalar tetraquark cdcu , and find its mass and
coupling. The full width of Z−

c (4100) is evaluated by taking into account the strong decays Z−
c (4100) → ηcπ

−

, η′cπ−, D0D−, and J/ψρ− . Section 4 is devoted to analysis of the resonances X(4140) and X(4274) as
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tetraquarks cscs with JPC = 1++ and color-triplet and color-sextet organization of constituent diquarks,
respectively. We also consider their decay modes X(4140) → J/ψϕ and X(4274) → J/ψϕ . Our analysis
demonstrate that parameters of X(4140) are compatible with LHCb data, while prediction for the full width
of X(4274) exceeds experiment data. In Sec. 5 we investigate the tetraquark ([us][us] − [ds][ds])/

√
2 with

spin-parities JPC = 1++ and find its parameters. The decays of this state to final mesons f0(980)π0 , K∗±K∓ ,

K∗0K
0 and K

∗0
K0 are also investigated. Obtained results allow us to interpret this tetraquark as the axial-

vector resonance a1(1420) . The resonance Y (4660) is explored in Sec. 6 as a vector tetraquark [cs][cs] with
internal structure Cγ5 ⊗ γ5γµC . We calculate the mass and coupling of this state, and investigate decay
channels Y → J/ψf0(500) , ψ′f0(500) , J/ψf0(980) and ψ′f0(980) . The resonances X(2100) and X(2239) and
their structures, spectroscopic parameters, and decay modes are considered in Sec. 7. Section 8 is reserved for
analysis of the resonance Y (2175) , which is interpreted as the vector tetraquark Ỹ = [su][su] . We evaluate its

spectroscopic parameters, and explore strong decays Ỹ → ϕf0(980) , Ỹ → ϕη , and Ỹ → ϕη′ . The section 9
contains our brief concluding notes. In Appendix 10, we provide expressions of quark propagators which have
been used in calculations.

2. The resonances Zc(3900) and Zc(4430)

The parameters of Z−(4430) were measured by the LHCb collaboration in the B0 → K+ψ′π− decay

M = (4475± 7+15
−25) MeV, Γ = (172± 13+37

−34) MeV, (1)

where its spin-parity was definitely fixed to be JP = 1+ [30, 31]. Another charged tetraquarks Z±
c (3900) were

discovered by BESIII
M = (3899.0± 3.6± 4.9) MeV, Γ = (46± 10± 20) MeV, (2)

and have the spin-parity JP = 1+ [32].
Theoretical investigations of the resonances Zc(3900) and Zc(4430) (in this section Zc and Z , re-

spectively) embrace plethora of models and computational methods [60, 62]. The goal of these studies is to
understand internal quark-gluon structures of the states Zc and Z , to find their spectroscopic parameters, and
partial widths of relevant decay channels. Thus, Z was examined as a diquark-antidiquark [67–74] or a meson
molecule state [75–79], a threshold effect [80], and a hadrocharmonium composite [81]. A situation around of
the resonance Zc does not differ significantly from studies which try to describe properties of Z . In fact, there
are publications, in which Zc is treated as the tightly bound diquark-antidiquark [53, 82–84], as a molecule
built of conventional mesons [85–93], or as a threshold cusp [94, 95].

The intriguing assumption was made in Ref. [72], in which the authors interpreted Zc and Z as the
ground state and first radial excitation of the same tetraquark. This suggestion was justified by observation
that dominant decay modes of these resonances are

Z±
c → J/ψπ±, Z± → ψ′π±, (3)

and that a mass splitting between 1S and 2S vector charmonia mψ′ −mJ/ψ is approximately equal to a mass
gap mZ −mZc

. This idea was realized in the diquark-antidiquark model in Refs. [73, 74], where the authors
evaluated masses and current couplings (pole residues) of Zc and Z . Within this scheme decay modes of the
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resonances Zc and Z were considered in Ref. [74]: these processes contain important dynamical information
on structures of particles under discussion. The analysis performed in these works seems confirm a suggestion
about their ground state and excited natures.

The mass and decay constant (or current coupling) are parameters of ordinary and exotic mesons, which
have to be measured and evaluated primarily. As usual, all theoretical models suggested to describe the internal
organization of tetraquarks and explain their features begin from evaluation of these parameters. Only after
successful comparison of a theoretical result for the mass with existing experimental information a model may be
accepted and used for further analysis of a tetraquark candidate. But for reliable conclusions on the structure of
discovered resonances, one needs additional information. Experimental collaborations measure not only masses
of resonances, but their full widths as well. They also determine spins and parities of these structures.

Because an overwhelming number of models predict correctly the masses of the resonances Zc and Z ,
there is a necessity to compute full widths of these structures. In all fairness, there are publications in which
decays of Z± were analyzed as well. Indeed, within a phenomenological Lagrangian approach and a molecule
picture decays Z± → J/ψπ±; ψ′π± were studied in Ref. [78]. Unfortunately, in this article Z± were treated as
pseudoscalar or vector particles ruled out by new measurements. The decay modes Z+ → J/ψπ+; ψ′π+ were
reanalyzed in context of the covariant quark model in Ref. [79].

In Refs. [82] and [53] the authors studied decays of the resonance Zc by modeling it as a diquark-
antidiquark state with the quantum numbers JPC = 1+− . In Ref. [82] partial widths of the decays Z+

c →

J/ψπ+, ηcρ, and D+D
⋆0 were computed by employing the three-point sum rule approach. The light cone

sum rule method and a technique of soft-meson approximation were used to evaluate widths of processes
Z+
c → J/ψπ+, ηcρ in Ref. [53].

Decays of the resonances Z±
c were also investigated in the context of alternative approaches [79, 87, 89]. In

fact, processes Zc → J/ψπ, ψ′π, hc(1P )π were considered in Ref. [87] using the phenomenological Lagrangian
approach and modeling Zc as an axial-vector meson molecule DD . In the context of the same model radiative
and leptonic decays Z+

c → J/ψπ+γ and J/ψπ+l+l−, l = (e, µ) were analyzed in Ref. [89]. The covariant quark

model was employed to calculate partial widths of the channels Z+
c → J/ψπ+, ηcρ

+, D
0
D⋆+, and D

∗0
D+ in

Ref. [79]. Let us note also Ref. [93], in which the decay Zc → hcπ was explored in the light front model.
In this section, we evaluate spectroscopic parameters of the resonances Zc and Z , and investigate their

decay channels by suggesting that Zc and Z are a ground state and radial excitation of the tetraquark with
JPC = 1+− , respectively. In other words, we treat them as 1S and 2S axial-vector members of the [cu][cd]

multiplet and present results of Ref. [74].

2.1. The masses and couplings of the tetraquarks Zc and Z

The QCD two-point sum rule method is one of best approaches to calculate the spectroscopic parameters of
the resonances Zc and Z . We find the masses and couplings of positively charged tetraquarks cucd , but due
to the exact chiral limit accepted throughout this review, parameters of resonances with negative charges do
not differ from them.

Starting point to extract the mass and coupling of the tetraquarks Zc and Z is the correlation function

Πµν(p) = i

∫
d4xeipx⟨0|T {JZµ (x)JZ†

ν (0)}|0⟩. (4)
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Here, JZµ (x) is the interpolating current for these tetraquarks: it corresponds to axial-vector particle JPC = 1+−

and is given by the expression

JZµ (x) =
ϵϵ̃√
2

{[
uTa (x)Cγ5cb(x)

] [
dd(x)γµCc

T
e (x)

]
−
[
uTa (x)Cγµcb(x)

] [
dd(x)γ5Cc

T
e (x)

]}
, (5)

where the notations ϵ = ϵabc and ϵ̃ = ϵdec are introduced. In Eq. (5) a, b, c, d, e are color indices, whereas C is
the charge conjugation operator.

In these calculations, we accept the ”ground-state+radially excited state+continuum” scheme, and carry
out ordinary and well-known calculations: we find the physical side of the sum rules by inserting into Πµν(p) a
full set of relevant states, separating contributions of the resonances Zc and Z , and performing the integration
over x . As a result, for ΠPhys

µν (p) we obtain

ΠPhys
µν (p) =

⟨0|JZµ |Zc(p)⟩⟨Zc(p)|JZ†
ν |0⟩

m2
Zc

− p2
+

⟨0|JZµ |Z(p)⟩⟨Z(p)|JZ†
ν |0⟩

m2
Z − p2

+ · · · , (6)

where mZc
and mZ are the masses of Zc and Z , respectively. Contributions to the correlation function

originating from higher resonances and continuum states are denoted by dots.
In order to finish analysis of the phenomenological side, we introduce the couplings fZc and fZ through

matrix elements
⟨0|JZµ |Zc⟩ = fZcmZcεµ, ⟨0|JZµ |Z⟩ = fZmZ ε̃µ, (7)

where εµ and ε̃µ are the polarization vectors of Zc and Z , respectively. Then the function ΠPhys
µν (p) can be

written as

ΠPhys
µν (p) =

m2
Zc
f2Zc

m2
Zc

− p2

(
−gµν +

pµpν
m2
Zc

)
+

m2
Zf

2
Z

m2
Z − p2

(
−gµν +

pµpν
m2
Z

)
+ · · · . (8)

The Borel transformation applied to Eq. (8) yields

BΠPhys
µν (p) = m2

Zc
f2Zc

e−m
2
Zc
/M2

(
−gµν +

pµpν
m2
Zc

)
+m2

Zf
2
Ze

−m2
Z/M

2

(
−gµν +

pµpν
m2
Z

)
+ · · · , (9)

with M2 being the Borel parameter.
The second component of the QCD sum rules is the correlation function ΠOPE

µν (p) expressed in terms of

quark propagators. It can be found after inserting the explicit expression of JZµ into Eq. (4) and contracting
heavy and light quark fields

ΠOPE
µν (p) = − i

2

∫
d4xeipxϵϵ̃ϵ′ϵ̃′

{
Tr
[
γ5S̃

aa′

u (x)γ5S
bb′

c (x)
]
Tr
[
γµS̃

e′e
c (−x)γνSd

′d
d (−x)

]
−Tr

[
γµS̃

e′e
c (−x)γ5Sd

′d
d (−x)

]
Tr
[
γν S̃

aa′

u (x)γ5S
bb′

c (x)
]
− Tr

[
γ5S̃

a′a
u (x)γµS

b′b
c (x)

]
×Tr

[
γ5S̃

e′e
c (−x)γνSd

′d
d (−x)

]
+Tr

[
γν S̃

aa′

u (x)γµS
bb′

c (x)
]
Tr
[
γ5S̃

e′e
c (−x)γ5Sd

′d
d (−x)

]}
. (10)

Here
S̃abc(q)(x) = CSabTc(q)(x)C, (11)
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and Sabc(q)(x) are quark propagators: their explicit expressions are moved to Appendix 10.

The function ΠOPE
µν (p) has the following decomposition over the Lorentz structures

ΠOPE
µν (p) = ΠOPE(p2)gµν + Π̃OPE(p2)pµpν , (12)

where ΠOPE(p2) and Π̃OPE(p2) are corresponding invariant amplitudes.
The QCD sum rules for the parameters of Z can be found by equating invariant amplitudes of the same

structures in ΠPhys
µν (p) and ΠOPE

µν (p) . For our purposes terms proportional to gµν are convenient structures,
and we employ them in further calculations.

The invariant amplitude ΠPhys(p2) corresponding to structure gµν has a simple form. The similar
function ΠOPE(p2) can be written down as the dispersion integral

ΠOPE(p2) =

∫ ∞

4m2
c

ds
ρOPE(s)

s− p2
, (13)

where the two-point spectral density is denoted by ρOPE(s) . It is equal to the imaginary part of the correlation
function ∼ gµν , and can be obtained by means of well-known prescriptions. Let us note that calculations have
been performed by taking into account various vacuum condensates up to dimension eight. We omit here the
details of computations, and do not write down explicitly ρOPE(s) .

To suppress contributions of higher resonances and continuum states, we apply the Borel transformation
on the variable p2 to both sides of QCD sum rule’s equality, and subtract them by using the assumption on the
quark-hadron duality. After some operations one gets the sum rules for the parameters of the excited Z state:

m2
Z =

∫ s∗0
4m2

c
ρOPE(s)se−s/M

2

ds− f2Zc
m4
Zc
e−m

2
Zc
/M2∫ s∗0

4m2
c
ρOPE(s)e−s/M2ds− f2Zc

m2
Zc
e−m

2
Zc
/M2

, (14)

and

f2Z =
1

m2
Z

[∫ s∗0

4m2
c

ρOPE(s)e(m
2
Z−s)/M2

ds− f2Zc
m2
Zc
e(m

2
Z−m2

Zc
)/M2

]
, (15)

where s∗0 is the continuum threshold parameter, which separates contributions of the tetraquarks Zc + Z and
higher resonances and continuum states from each another.

We consider the mass and coupling of Zc as input parameters in Eqs. (14) and (15). These parameters
can be found from the sum rules

m2
Zc

=

∫ s0
4m2

c
dsρOPE(s)se−s/M

2∫ s0
4m2

c
dsρOPE(s)e−s/M2

, (16)

and

f2Zc
=

1

m2
Zc

∫ s0

4m2
c

dsρOPE(s)e(m
2
Zc

−s)/M2

. (17)

The expressions (16) and (17) correspond to the ”ground-state + continuum” scheme when one includes the
tetraquark Z into a class of ”higher resonances”. It is clear that ρOPE(s) is the common spectral density, and
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the continuum threshold should obey s0 < s⋆0 . Once calculated the parameters mZc and fZc of the tetraquark
Zc appear as an input information in the sum rules (14) and (15) for the tetraquark Z .

The sum rules obtained here depend on various vacuum condensates, which are input parameters in
numerical computations. These sum rules contain also the mass of c quark. The quark, gluon, and mixed
vacuum condensates, as well as masses of the quarks are well known:

⟨q̄q⟩ = −(0.24± 0.01)3 GeV3, ⟨s̄s⟩ = 0.8 ⟨q̄q⟩, ⟨qgsσGq⟩ = m2
0⟨qq⟩,

⟨sgsσGs⟩ = m2
0⟨s̄s⟩,m2

0 = (0.8± 0.1) GeV2, ⟨αsG
2

π
⟩ = (0.012± 0.004) GeV4,

⟨g3sG3⟩ = (0.57± 0.29) GeV6, ms = 93+11
−5 MeV, mc = 1.27± 0.2 GeV,

mb = 4.18+0.03
−0.02 GeV. (18)

The masses and couplings of the tetraquarks depend on auxiliary parameters M2 and s0(s
⋆
0) , which

have to satisfy constraints of sum rule computations. It means that edges of the working windows for the Borel
parameter should be fixed by convergence of the operator product expansion (OPE) and restriction imposed
on the pole contribution (PC). Additionally, extracted quantities should be stable while the parameter M2 is
varied within this region. Analysis carried out by taking into account these conditions allows one to extract
regions of the parameters M2 and s0 , where aforementioned constraints are fulfilled. Our predictions are
collected in Table 1, where we present not only parameters of the resonances Z and Zc , but write down also
windows for M2 and s0(s

⋆
0) used to extract them. One can see that agreement between mZc and experimental

data is excellent. It also confirms our previous prediction for mZc made in Ref. [53]. Result for mZ is less than
the corresponding LHCb datum, but it is still compatible with measurements provided one takes into account
errors of calculations.

Table 1. The masses and current couplings of the resonances Zc and Z .

Resonance Zc Z

M2 (GeV2) 3− 6 3− 6

s0(s
⋆
0) (GeV2) 4.22 − 4.42 4.82 − 5.22

mZ (MeV) 3901+125
−148 4452+182

−228

fZ × 102 (GeV4) 0.42+0.07
−0.09 1.48+0.31

−0.42

2.2. Strong decays of the tetraquarks Zc and Z

The masses of Zc and Z obtained above should be employed to distinguish from each another their kinematically
allowed and forbidden decay modes. Moreover, parameters of these resonances enter as input information to
sum rules for strong couplings corresponding to vertices ZcMhMl and ZMhMl , and are also embedded into
formulas for decay widths.

The tetraquarks Zc and Z can dissociate to conventional mesons through different ways. We consider
only their decays to mesons J/ψπ , ψ′π , and ηcρ , η′cρ . One can find masses and decay constants of these
mesons in Table 2, and easily check that these processes are kinematically allowed modes.

In our treatment, the tetraquark Z is the first radial excitation of Zc . It is clear that ψ′ and η′c ≡ ηc(2S)

are first radial excitations of the mesons J/ψ and ηc , respectively. Therefore, in framework of the QCD sum
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rule method, we have to analyze decays Zc, Z → J/ψπ, ψ′π and Zc, Z → ηcρ, η
′
cρ in a correlated form. The

reason is that, in the QCD sum rules particles are modeled by interpolating currents which couple both to their
ground states and excitations.

Table 2. Masses and decay constants of the conventional mesons.

Parameters Values (MeV)
mJ/ψ 3096.900± 0.006

fJ/ψ 411± 7

mψ′ 3686.097± 0.025

fψ′ 279± 8

mηc 2983.4± 0.5

fηc 404

mη′c
3686.2± 1.2

fη′c 331

mπ 139.57018± 0.00035

fπ 131.5

mρ 775.26± 0.25

fρ 216± 3

2.2.1. Decays Zc, Z → J/ψπ, ψ′π

In order to calculate partial widths of the decays Zc → J/ψπ, ψ′π and Z → J/ψπ, ψ′π , we begin from analysis
of the correlation function

Πµν(p, q) = i

∫
d4xeipx⟨π(q)|T {Jψµ (x)JZ†

ν (0)}|0⟩, (19)

where
Jψµ (x) = ci(x)γµci(x), (20)

and ψ is one of J/ψ and ψ′ mesons. The current JZν (x) is defined by Eq. (5), and p′ = p+ q and p , q are the
momenta of initial and final particles, respectively. As we have just emphasized above the interpolating currents
JZν (x) and Jψµ (x) couple to Zc, Z and J/ψ, ψ′ , respectively. Therefore, the correlation function ΠPhys

µν (p, q) ,
necessary for our purposes, contains four terms

ΠPhys
µν (p, q) =

∑
ψ=J/ψ,ψ′

[
⟨0|Jψµ |ψ (p)⟩
p2 −m2

ψ

⟨ψ (p)π(q)|Zc(p′)⟩
⟨Zc(p′)|JZ†

ν |0⟩
p′2 −m2

Zc

+
⟨0|Jψµ |ψ (p)⟩
p2 −m2

ψ

⟨ψ (p)π(q)|Z(p′)⟩ ⟨Z(p
′)|JZ†

ν |0⟩
p′2 −m2

Z

]
+ · · · . (21)

To find the correlation function, we use the matrix elements

⟨0|Jψµ |ψ (p)⟩ = fψmψεµ, ⟨Zc(p′)|JZ†
ν |0⟩ = fZc

mZc
ε′∗ν , ⟨Z(p′)|JZ†

ν |0⟩ = fZmZ ε̃
′∗
ν , (22)
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with mψ , fψ , and εµ being the mass, decay constant, and polarization vector of J/ψ or ψ′ mesons. Accord-
ingly, ε′ν and ε̃′ν stand for the polarization vectors of the states Zc and Z , respectively. We model the vertices
in the forms

⟨ψ (p)π(q)|Zc(p′)⟩ = gZcψπ [(p · p′)(ε∗ · ε′)− (p · ε′)(p′ · ε∗)] ,

⟨ψ (p)π(q)|Z(p′)⟩ = gZψπ [(p · p′)(ε∗ · ε̃′)− (p · ε̃′)(p′ · ε∗)] , (23)

where gZcψπ and gZψπ are the strong couplings, that have to be evaluated from the sum rules. After some
transformations, we get for ΠPhys

µν (p, q) the expression

ΠPhys
µν (p, q) =

∑
ψ=J/ψ,ψ′

 fψfZc
mZc

mψgZcψπ(
p′2 −m2

Zc

) (
p2 −m2

ψ

) (m2
Zc

+m2
ψ

2
gµν − p′µpν

)

+
fψfZmZmψgZψπ

(p′2 −m2
Z)
(
p2 −m2

ψ

) (m2
Z +m2

ψ

2
gµν − p′µpν

)+ · · · . (24)

It is convenient to proceed by choosing structures ∼ gµν and corresponding invariant amplitudes.

To derive the second ingredient of the sum rule ΠOPE
µν (p, q) , we express the correlation function (19) in

terms of the quark propagators, and find

ΠOPE
µν (p, q) =

∫
d4xeipx

ϵϵ̃√
2

[
γ5S̃

ib
c (x)γµS̃

ei
c (−x)γν + γν S̃

ib
c (x)γµS̃

ei
c (−x)γ5

]
αβ

×⟨π(q)|uaα(0)ddβ(0)|0⟩, (25)

where α and β are the spinor indices.
In order to continue, we expand uaα(0)d

d
β(0) over the full set of Dirac matrices Γj and project them onto

the color-singlet states by employing the formula

uaαd
d
β → 1

12
Γjβαδad

(
uΓjd

)
, (26)

where Γj

Γj = 1, γ5, γλ, iγ5γλ, σλρ/
√
2. (27)

Then the matrix elements ⟨π(q)|uaα(0)ddβ(0)|0⟩ transform in accordance with the scheme

⟨π(q)|uaα(0)ddβ(0)|0⟩ →
1

12
Γjβαδad⟨π(q)|u(0)Γ

jd(0)|0⟩. (28)

It is seen that the correlation function ΠOPE
µν (p, q) depends on local matrix elements of the pion. This is typical

situation for the LCSR method when one of particles is a tetraquark. For such tetraquark-meson-meson vertices,
the four-momentum conservation requires equating a momentum one of final mesons, in the case under discussion
of the pion, to q = 0 [53]. This constraint has to be taken into account also in the phenomenological side of
the sum rule. At vertices of ordinary two-quark mesons, in general q ̸= 0 , and only as some approximation
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one sets q equal to zero. A limit q = 0 in the conventional LCSR is known as the soft-meson approximation
[51]. Contrary, tetraquark-meson-meson vertices can be explored in the framework of the LCSR method only if
q = 0 . An important conclusion made in Ref. [51] states that for the strong couplings of ordinary mesons the
full LCSR method and its soft-meson version lead to numerically close predictions.

Having inserted Eq. (28) into the correlation function, we perform the summation over color and calculate
traces over Lorentz indices. Relevant prescriptions were explained in a detailed form in Ref. [53], hence we do
not concentrate here on these questions. These manipulations allow us to determine local matrix elements of the
pion that contribute to ΠOPE

µν (p, q) , and find the spectral density ρOPE(s) as the imaginary part of ΠOPE
µν (p, q) .

It appears that the matrix element of the pion

⟨0|d(0)iγ5u(0)|π(q)⟩ = fπµπ, (29)

where µπ = m2
π/(mu +md) , contributes to ρOPE(s) .

To calculate ρOPE(s) , we choose in ΠOPE
µν (p, q) the structure ∼ gµν , and get

ρOPE(s) =
fπµπ

12
√
2

[
ρpert.(s) + ρn.−pert.(s)

]
. (30)

The spectral density ρOPE(s) consists of two components. Thus, its perturbative part ρpert.(s) has a simple
form and was computed in Ref. [53]

ρOPE(s) =
(s+ 2m2

c)
√
s(s− 4m2

c)

π2s
. (31)

The ρn.−pert.(s) is a nonperturbative component of the spectral density, which includes terms up to eighth
dimension: ρn.−pert.(s) is given by the formula

ρn.−pert.(s) =
〈αsG2

π

〉
m2
c

∫ 1

0

f1(z, s)dz +
〈
g3sG

3
〉∫ 1

0

f2(z, s)dz +
〈αsG2

π

〉2
m2
c

∫ 1

0

f3(z, s)dz. (32)

Explicit expressions of functions f1(z, s) , f2(z, s) , and f3(z, s) were written down in Appendix of Ref. [74].
Having found ρOPE(s) , we now are ready to calculate the phenomenological side of the sum rule in the

soft-meson approximation. Because in the soft limit p′ = p , the invariant amplitude in Eq. (21) depends solely
on variable p2 and has the form

ΠPhys(p2) =
fJ/ψfZc

mZc
mJ/ψm

2
1

(p2 −m2
1)

2 gZcJ/ψπ +
fψ′fZc

mZc
mψ′m2

2

(p2 −m2
2)

2 gZcψ′π +
fJ/ψfZmZmJ/ψm

2
3

(p2 −m2
3)

2 gZJ/ψπ

+
fψ′fZmZmψ′m2

4

(p2 −m2
4)

2 gZψ′π + . . . , (33)

where

m2
1 = (m2

Zc
+m2

J/ψ)/2,m
2
2 = (m2

Zc
+m2

ψ′)/2, m2
3 = (m2

Z +m2
J/ψ)/2,m

2
4 = (m2

Z +m2
ψ′)/2.
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In the soft-meson limit the physical side of the sum rules has complicated content. Thus, besides gZcJ/ψπ

it contains also other strong couplings, i.e., terms that remain unsuppressed even after the Borel transformation
[51]. To exclude them from ΠPhys(p2) one has to act by the operator

P(M2,m2) =

(
1−M2 d

dM2

)
M2em

2/M2

, (34)

to both sides of sum rules [52]. In our studies, in order to evaluate strong couplings and calculate decay widths
of various tetraquarks, we benefited from this technique (see, Ref. [53], as an example). But unsuppressed terms
come from vertices of excited states of initial (final) particles, i.e., from vertices ZJ/ψπ , Zψ′π and Zcψ

′π . In
other words, contributions considered as contaminations while one investigates a vertex of ground-state particles
become a subject of analysis in the present case. Because, in general, ΠPhys(p2) contains four terms, and at the
first stage of analyses, is the sum of two contributions, we do not apply the operator P to present sum rules.

We proceed by following recipes of the previous subsection, i.e., we fix the parameter s0 below threshold
for the decays Z → J/ψπ and Z → ψ′π . Then in the considering range of s ∈ [0, s0] only first two terms
in Eq. (33) should be explicitly taken into account: last two terms are automatically included into a ”higher
resonances and continuum”. The one-variable Borel transformation applied to remaining two terms is the first
step to derive a sum rule equality. Afterwards, we equate the physical and QCD sides of the sum rule, and
carry out the continuum subtraction in accordance with the hadron-quark duality hypothesis

fZcmZc

[
fJ/ψmJ/ψm

2
1gZcJ/ψπe

−m2
1/M

2

+ fψ′mψ′m2
2gZcψ′πe

−m2
2/M

2
]
=

∫ s0

4m2
c

dse−s/M
2

ρQCD(s). (35)

But this expression is not enough to determine two unknown variables gZcψ′π and gZcJ/ψπ . The second equality
is obtained from Eq. (35) by applying the operator d/d(−1/M2) to its both sides. The equality derived by
this way, and the master expression (35) allows us to extract sum rules for the couplings gZcψ′π and gZcJ/ψπ .
They are necessary to compute partial width of the decays Zc → ψ′π and Zc → J/ψπ , and appear as input
parameters in the next sum rules.

The sum rules for the couplings gZψ′π and gZJ/ψπ are found by choosing
√
s⋆0 = mZ + (0.5− 0.7) GeV .

Such choice for s⋆0 is motivated by observation that a mass splitting in a tetraquark multiplet is approximately
0.5 − 0.7 GeV . For s ∈ [0, s⋆0] the processes Z → J/ψπ and Z → ψ′π have to be taken into account as well.
In other words, in this step of studies all terms in Eq. (33) have to be explicitly taken into account. We derive
sum rules for the couplings gZψ′π and gZJ/ψπ by repeating manipulations explained above and using two other
couplings as input parameters.

We evaluate the width of the decay Z → ψπ by utilizing of the formula

Γ (Z → ψπ) =
g2Zψπm

2
ψ

24π
λ (mZ , mψ,mπ)

[
3 +

2λ2 (mZ , mψ,mπ)

m2
ψ

]
, (36)

where

λ(a, b, c) =

√
a4 + b4 + c4 − 2 (a2b2 + a2c2 + b2c2)

2a
. (37)

The equation (36) is valid for all four decay channels, where Z = Zc or Z, and ψ = J/ψ or ψ′ , respectively.
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It is clear that apart from couplings gZψπ the partial width of the processes Z → ψπ contains parameters
of initial and final particles. The spectroscopic parameters of the tetraquarks Z and Zc have been calculated in
this section. Masses and decay constants of mesons J/ψ , ψ′ , π are presented in Ref. [96]. All these information
are collected in Table 2, where we also write down spectroscopic parameters of the mesons ηc , η′c and ρ , which
will be used below to explore another decay channels of Z and Zc . Let us note that decay constants fηc and
fη′c are borrowed from Ref. [97].

The working windows for the Borel and continuum threshold parameters used to evaluate strong couplings
do not differ from ones employed for analysis of the masses and current couplings. Another problem, which
should be considered, is contributions to the sum rules arising from excited terms. It is known, that dominant
contribution to the sum rules is generated by a ground-state term. In the case under analysis, besides the strong
coupling of the ground-state particles, we evaluate couplings of one or two radially excited particles as well.
The sum rules for these couplings may lead to reliable predictions provided their effects and contributions are
sizeable. This question can be analyzed by exploring the pole contribution to the sum rules

PC =

∫ s0
0
dsρOPE(s)e−s/M

2∫∞
0
dsρOPE(s)e−s/M2

. (38)

Choosing s0 = 4.22 GeV2 and fixing M2 = 4.5 GeV2 we find PC = 0.81 , which is generated by the terms
proportional to couplings gZcJ/ψπ and gZcψ′π . At the next phase of analysis, we fix s0 ≡ s⋆0 and get PC = 0.95 ,
which now embraces effects of all four terms. In other words, contributions of terms ∼ gZJ/ψπ and ∼ gZψ′π

amount to 14% part of the sum rules. We see that, effects of terms connected directly with decays of Z
are small, nevertheless gZJ/ψπ and gZψ′π are extracted from full expressions, which contain contributions of
four terms, and therefore their evaluations are founded on reliable basis. It is also seen that an effect of the
”higher excited states and continuum” does not exceed 5% of PC , which means that contaminations arising
from excited states higher than the resonance Z are negligible.

Numerical values of couplings g are sensitive to parameters M2 and s0 , nevertheless theoretical uncer-
tainties of g generated by variations of M2 and s0 remain within limits typical for sum rule computations.These
uncertainties and ones arising from other parameters form the full theoretical errors of numerical analysis.

Our computations for gZψ′π and width of the corresponding decay Z → ψ′π yield

gZψ′π = (0.58± 0.16) GeV−1, Γ(Z → ψ′π) = (129.7± 37.6) MeV. (39)

The coupling gZJ/ψπ and width of the process Z → J/ψπ are found as

gZJ/ψπ = (0.24± 0.06) GeV−1, Γ(Z → J/ψπ) = (27.4± 7.1) MeV. (40)

Predictions obtained for all of strong couplings, and for the partial width of corresponding decay channels are
presented in Table 3.

2.2.2. Decays Zc, Z → η′cρ, ηcρ

The Zc and Z decay also to final mesons ηcρ and η′cρ . Because the decay Zc → η′cρ is kinematically forbidden,
in this subsection we have three channels Z → η′cρ , Z → ηcρ and Zc → ηcρ to be studied. Let us note that
present analysis differs in some aspects from prescriptions explained above.
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Table 3. The strong coupling g and width of the Z(Zc) → ψ′(J/ψ)π decay channels.

Channels Z → ψ′π Z → J/ψπ Zc → ψ′π Zc → J/ψπ

g (GeV−1) 0.58± 0.16 0.24± 0.06 0.29± 0.08 0.38± 0.11

Γ (MeV) 129.7± 37.6 27.4± 7.1 7.1± 1.9 39.9± 9.3

As usual, we consider the correlation function

Πν(p, q) = i

∫
d4xeipx⟨ρ(q)|T {Jηc(x)JZ†

ν (0)}|0⟩, (41)

where ηc ≡ ηc, η
′
c , and the current Jηc(x) is defined as

Jηc(x) = ci(x)iγ5ci(x). (42)

To express the correlation function in terms of involved particles’ physical parameters, we use the matrix
elements

⟨0|Jηc |ηc(p)⟩ =
fηcm

2
ηc

2mc
, (43)

with mηc and fηc being the mass and decay constant of the meson ηc . The similar matrix element is also valid
for the meson η′c . The matrix elements of vertices are modeled in the forms

⟨ηc (p) ρ(q)|Z(p′)⟩ = gZηcρ [(q · ε̃′)(p′ · ε∗)− (q · p′)(ε∗ · ε̃′)] , (44)

and
⟨ηc (p) ρ(q)|Zc(p′)⟩ = gZcηcρ [(q · ε′)(p′ · ε∗)− (q · p′)(ε∗ · ε′)] , (45)

where q and ε are the momentum and polarization vector of the ρ -meson, respectively.
We write the phenomenological side of the sum rules ΠPhys

ν (p, q) in the form

ΠPhys
ν (p, q) =

⟨0|Jηc |ηc (p)⟩
p2 −m2

ηc

⟨ηc (p) ρ(q)|Zc(p′)⟩
⟨Zc(p′)|JZν |0⟩
p′2 −m2

Zc

+
∑

ηc=ηc,η′c

⟨0|Jηc |ηc (p)⟩
p2 −m2

ηc

⟨ηc (p) ρ(q)|Z(p′)⟩
⟨Z(p′)|JZν |0⟩
p′2 −m2

Z

+ · · · . (46)

It contains three terms, which can be simplified using matrix elements introduced above. The full expression of
ΠPhys
ν (p, q) is cumbersome, therefore we write down only the invariant amplitude corresponding to the structure

∼ ϵ∗ν in the limit q → 0 , which is employed in our analysis. This amplitude is given by the formula

ΠPhys(p2) =
fηcfZcmZcm

2
ηcgZcηcρ

4mc (p2 − m̃2
1)

2 (m2
Zc

−m2
ηc) +

fηcfZmZm
2
ηcgZηcρ

4mc (p2 − m̃2
2)

2 (m2
Z −m2

ηc)

+
fη′cfZmZm

2
η′c
gZη′cρ

4mc (p2 − m̃2
3)

2 (m2
Z −m2

η′c
) + · · · , (47)

where the notations m̃2
1 = (m2

Zc
+m2

ηc)/2 , m̃2
2 = (m2

Z +m2
ηc)/2 and m̃2

3 = (m2
Z +m2

η′c
)/2 are introduced.
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Computation of the correlation function ΠOPE
ν (p, q) using quark propagators leads to the expression

ΠOPE
ν (p, q) = −i

∫
d4xeipx

ϵϵ̃√
2

[
γ5S̃

ib
c (x)γ5 × S̃eic (−x)γν + γν S̃

ib
c (x)γ5S̃

ei
c (−x)γ5

]
αβ

×⟨ρ(q)|udα(0)daβ(0)|0⟩. (48)

In the q → 0 limit the contributions to ρOPE(s) come from the matrix elements [53]

⟨0|u(0)γµd(0)|ρ(p, λ)⟩ = ϵ(λ)µ fρmρ, (49)

and
⟨0|u(0)gG̃µνγνγ5d(0)|ρ(p, λ)⟩ = fρm

3
ρϵ

(λ)
µ ζ4ρ. (50)

These elements contain the ρ -meson’s mass and decay constant mρ , and fρ , and Eq. (50) additionally depends
on a normalization factor ζ4ρ of the ρ -meson’s twist-4 matrix element [98]. The numerical value of ζ4ρ was
estimated in Ref. [99] at the scale µ = 1 GeV , and amounts to ζ4ρ = 0.07± 0.03 .

We derive the spectral density ρOPE(s) in accordance with known recipes, and find

ρOPE(s) =
fρmρ

8
√
2

[√
s(s− 4m2

c)

π2
+ ρn.−pert.(s)

]
. (51)

The nonperturbative component of ρOPE(s) is calculated with dimension-8 accuracy and has the following form

ρn.−pert.(s) =
ζ4ρm

2
ρ

s
+
〈αsG2

π

〉
m2
c

∫ 1

0

f̃1(z, s)dz +
〈
g3sG

3
〉∫ 1

0

f̃2(z, s)dz +
〈αsG2

π

〉2
m2
c

∫ 1

0

f̃3(z, s)dz. (52)

Explicit expressions of the functions f̃1(z, s) , f̃2(z, s) , and f̃3(z, s) can be found in Appendix of Ref. [74].
To obtain sum rules, we utilize again a prescription described above. At the first step, i.e., for s ∈ [0, s0]

the physical side of the sum rule consists of a ground-state term. At this stage, we calculate the ground-state
coupling gZcηcρ , therefore to exclude effects of excited states from the physical side of the sum rule apply the
operator P(M2, m̃2

1) . Then, we find

gZcηcρ =
4mc

fηcfZc
mZc

m2
ηc(m

2
Zc

−m2
ηc)

P(M2, m̃2
1)

∫ s0

4m2
c

dse−s/M
2

ρOPE(s). (53)

In the domain s ∈ [0, s∗0] all terms from Eq. (47) should be included into analysis, and, as a result, we get
the expression with two additional couplings. Excited terms enter to this expression explicitly, and because our
goal is to determine relevant couplings, in this situation we do not use the operator P . The second equality
can be found by applying the operator d/d(−1/M2) to both sides of the first expression. Solutions of these
equations are sum rules for the couplings gZηcρ and gZη′cρ . The width of the decays Z → ηcρ , Z → η′cρ and
Zc → ηcρ after replacements mπ → mηc(mη′c

) and mψ → mρ can be computed using Eq. (36).
For the coupling gZcηcρ and width of the decay Zc → ηcρ , we get

gZcηcρ = (1.28± 0.32) GeV−1, Γ(Zc → ηcρ) = (20.28± 5.17) MeV. (54)

110



AGAEV et al./Turk J Phys

The strong couplings gZη′cρ and gZηcρ , and width of the decays Z → η′cρ and Z → ηcρ are equal to

gZη′cρ = (0.81± 0.20) GeV−1, Γ(Z → η′cρ) = (1.01± 0.27) MeV, (55)

and
gZηcρ = (0.48± 0.11) GeV−1, Γ(Z → ηcρ) = (11.57± 3.01) MeV. (56)

The processes Zc → J/ψπ and Zc → ηcρ were considered in Ref. [53] using the QCD light-cone sum
rule method and diquark-antidiquark type interpolating current. In Table 4, we compare the partial widths of
these modes from Ref. [53] with results obtained in Ref. [74]. It is clear that these predictions are very close to
each other. Stated differently, an iterative scheme used in this section led to results that are almost identical
with predictions of Ref. [53]. This fact can be treated as a serious argument in favor of the used approach. The
unessential discrepancies between two sets of results may be explained by accuracy of the spectral densities,
which here have been calculated by taking into account condensates up to eight dimensions, whereas in Ref.
[53] ρOPE

π (s) and ρOPE
ρ (s) contained only perturbative terms. Let us emphasize that, we have computed also

the partial width of the decay Zc → ψ′π , which was omitted in Ref. [53].
It is evident that Z decays dominantly via the process Z → ψ′π . The full width of Z saturated by two

channels Z → ψ′π and Z → J/ψπ equals to (157.1 ± 38.3) MeV . This prediction is compatible with LHCb
information (see, Eq. (1)), but is below the upper edge of the experimental data ≈ 212 MeV . Experimental
data on the width of the decay Z → J/ψπ is limited by Belle report about product of branching fractions

B(B0 → K−Z+)B(Z+ → J/ψπ) = (5.4+4.0
−1.0

+1.1
−0.9)× 10−6. (57)

By invoking similar experimental measurements for ψ′ , it is possible to estimate a ratio

RZ = Γ(Z → ψ′π)/Γ(Z → J/ψπ), (58)

which was carried out in Ref. [79]. But, we are not going to draw strong conclusions from such computations.
We think that, in the absence of direct measurements of Γ(Z → J/ψπ) , an only reasonable way is to compute
RZ , which is equal to RZ = 4.73± 1.84 .

Table 4. Predictions for decays of the resonance Zc .

Γ(Zc → J/ψπ) Γ(Zc → ψ′π) Γ(Zc → ηcρ)

(MeV) (MeV) (MeV)

[74] 39.9± 9.3 7.1± 1.9 20.28± 5.17

[53] 41.9± 9.4 − 23.8± 4.9

[82] 29.1± 8.2 − 27.5± 8.5

[79]A 27.9+6.3
−5.0 − 35.7+6.3

−5.2

[79]B 1.8± 0.3 − 3.2+0.5
−0.4

[87] 10.43− 23.89 1.28− 2.94 −

The decays of the resonances Z and Zc were studied in Refs. [79, 82, 87]: some of these predictions are

written down in Tables 4 and 5. Partial widths of decay modes Zc → J/ψπ , Zc → ηcρ , Zc → D
0
D⋆ and

111



AGAEV et al./Turk J Phys

Table 5. The same as in Table 4, but for the resonance Z .

Γ(Z → J/ψπ) Γ(Z → ψ′π) Γ(Z → ηcρ) Γ(Z → η′cρ)

(MeV) (MeV) (MeV) (MeV)

[74] 27.4± 7.1 129.7± 37.6 11.57± 3.01 1.01± 0.27

[79] 26.9 120.6 − −

Zc → D
⋆0
D in the context of the three-point sum rule method and diquark-antidiquark picture for Zc were

calculated in Ref. [82]. Their predictions for first two channels are shown in Table 4.
The resonance Zc was also treated in Ref. [79] both as diquark-antidiquark and molecule-type tetraquarks.

Decays Zc → J/ψπ , and Zc → ηcρ were explored there using the covariant quark model. Partial widths of
these processes were evaluated in the diquark-antidiquark picture using a size parameter ΛZc

= 2.25±0.10 GeV

in their model (model A), and in a molecular-type structure with ΛZc
= 3.3 ± 0.1 GeV (model B). Obtained

results are presented in Table 4, as well.
In the context of the phenomenological Lagrangian method decays of the tetraquark Zc were examined

in Ref. [87]. The Zc was considered there as hadronic molecules DD⋆ and D
⋆
D . In the case of the molecule’s

binding energy ϵ = 20 MeV the authors estimated widths of different decay processes: some of obtained results
are demonstrated in Table 4.

Decays of the resonance Z to J/ψπ and ψ′π were also studied in Ref. [79], where it was modeled as a
diquark-antidiquark system. Results for the partial widths of these decays obtained at ΛZ(4430) = 2.4 GeV ,
and estimates for Γ(Z → J/ψπ) + Γ(Z → ψ′π) = 147.5 MeV and RZ = 4.48 are close to our predictions.

We have examined the tetraquark Z as first radial excitation of the diquark-antidiquark state Zc . We
evaluated the masses and full widths of the resonances Zc and Z , and have found: mZc = 3901+125

−148 MeV ,

ΓZc
= (67.3 ± 10.8) MeV , and mZ = 4452+132

−161 MeV , ΓZ = (169.7 ± 38.4) MeV , respectively. Predictions
obtained here seem to support a suggestion about the excited nature of Z . But there are problems to be
considered before making viable conclusions. Namely, there is necessity to improve our predictions for the
full widths of tetraquarks Zc and Z by studying their other decay modes. Experimental studies of the Z

resonance’s decay modes, including a direct measurement of Γ(Z → J/ψπ) may be helpful to confirm its nature
as a radial excitation of the state Zc .

3. The tetraquark Z−
c (4100)

The tetraquark Z−
c (4100) was discovered by LHCb in B0 → K+ηcπ

− decays as a resonance in the ηcπ− mass
distribution [47]. The mass and width of this new Z−

c (4100) state (in this section will be denoted Zc ) were
found equal to

m = 4096± 20+18
−22 MeV, Γ = 152± 58+60

−35 MeV. (59)

In Ref. [47] the spin and parity of Z−
c (4100) were determined as well, and it was shown that assignments

JP = 0+ or JP = 1− do not contradict to the experimental data.
The theoretical articles, as usual, consider problems connected with the spin and possible decays of the

resonance Zc [100–103]. Thus, sum rule calculations performed in Ref. [100] showed that Zc is probably a
scalar tetraquark. The nature of Zc as a diquark-antidiquark state with JPC = 0++ was supported also in
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Ref. [101]. The resonances Zc and Z−
c (4200) in the hadrocharmonium model were considered as the scalar ηc

and vector J/ψ charmonia placed into a light-quark field with pion’s quantum numbers [102]. Then, due to
spin symmetry of charm quark, features of the particles Zc and Z−

c (4200) , as well as their decay modes are
connected by some relations.

Because the resonance Zc was seen in the decay Zc → ηcπ
− , it is natural to treat it as a scalar particle

with quark content ccdu . Really, the decay Zc → ηcπ
− is dominant S -wave mode for a scalar particle, but it

turns to P -wave decay channel in the case of a vector tetraquark. The mass and coupling of the scalar tetraquark
Zc built of [cd][cu] diquark-antidiquark were computed in our paper [104]. There, we also explored decays of Zc
and found its full width. The dominant strong decay of the resonance Zc is presumably the channel Zc → ηcπ

− .
But hidden-charm η′cπ

− , J/ψρ− and open-charm D0D− and D∗0D∗− decays are also kinematically allowed
S -wave channels of the resonance Zc . Below, we give detailed information about investigations of Zc based on
our work [104].

3.1. Mass and coupling of the scalar tetraquark Zc

The most stable and lower lying scalar tetraquark can be built of scalar diquark ϵijk[cTj Cγ5dk] and antidiquark

ϵimn[cmγ5Cu
T
n ] fields [55]. These two-quark states are color-antitriplet and -triplet configurations, respectively,

and both are antisymmetric in flavor indices.
For scalar particles the two-point correlation function Π(p) has a simple form and Lorentz structure: it

is given by the following formula

Π(p) = i

∫
d4xeipx⟨0|T {J(x)J†(0)}|0⟩. (60)

In expression above, the interpolating current for the tetraquark Zc is denoted by J(x) . In light of our
suggestion about internal organization of Zc , the current J(x) can be written in the form

J(x) = ϵϵ̃
[
cTj (x)Cγ5dk(x)

] [
cm(x)γ5Cu

T
n (x)

]
, (61)

where ϵ = ϵijk , ϵ̃ = ϵimn .
The sum rules for parameters of the tetraquark Zc can be extracted using the ”ground-state + continuum”

scheme. First of all, we need the phenomenological side of the sum rule ΠPhys(p) . For the scalar particle relevant
invariant amplitude ΠPhys(p2) = m2f2/(m2 − p2) is simple function of the mass m and coupling f . At the
next step, we have to determine the QCD side of the sum rules. In our case, it is given by the formula

ΠOPE(p) = i

∫
d4xeipxϵϵ̃ϵ′ϵ̃′Tr

[
γ5S̃

jj′

c (x)γ5S
kk′

d (x)
]
Tr
[
γ5S̃

n′n
u (−x)γ5Sm

′m
c (−x)

]
. (62)

For the mass m and coupling f of the tetraquark Zc after clear substitutions one can employ expressions
(16) and (17). The relevant computations are carried out by taking into account nonperturbative terms up to
dimension 10.

The sum rules for spectroscopic parameters of Zc contain various vacuum condensates, values of which
have been presented in Eq. (18). The sum rules depend also on the Borel M2 and continuum threshold
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s0 parameters: M2 and s0 are the auxiliary parameters and should be fixed in accordance with standard
restrictions of the sum rule calculations. Thus, at the maximum of M2 the pole contribution (38) should
exceed some fixed value: as usual, for four-quark systems minimum of PC is approximately 0.15− 0.2 .

In the previous section, we have defined PC in terms of the spectral density, but in a general form it can
be introduced through the ratio

PC =
Π(M2, s0)

Π(M2,∞)
, (63)

where Π(M2, s0) is the Borel transformed and subtracted invariant amplitude ΠOPE(p2) . The minimum of the
Borel parameter is determined from convergence of the operator product expansion, and can be extracted from
analysis of the parameter

R(M2) =
ΠDimN(M2, s0)

Π(M2, s0)
. (64)

Here, ΠDimN(M2, s0) is a contribution of the last term in expansion (or a sum of last few terms) to Π(M2, s0) .
The parameter R(M2) should be small enough to guarantee a convergence of sum rules.

The mass m and coupling f should not depend on the Borel parameter M2 . But analyses demonstrate
that m and f are sensitive to the choice of M2 . There are also dependence on the continuum threshold
parameter s0 , but √

s0 determines a position of the first excitation of Zc and bears some information about
a physical system. Therefore, M2 should be fixed in such a way as to minimize a dependence of m and f on
this parameter.

Computations demonstrate that regions for the parameters M2 and s0

M2 ∈ [4, 6] GeV2, s0 ∈ [19, 21] GeV2, (65)

satisfy all constraints of sum rule calculations. Indeed, at M2 = 6 GeV2 , we get PC = 0.19 , and in the region
M2 ∈ [4, 6] GeV2 the pole contribution changes from 0.54 till 0.19 . The low limit of the Borel parameter is
fixed from Eq. (64), in which we choose DimN = Dim(8 + 9 + 10) . Then at M2 = 4 GeV2 the parameter R
becomes equal to R(4 GeV2) = 0.02 which guarantees the convergence of the sum rules. At M2 = 4 GeV2 the
perturbative contribution amounts to 83% of the full result overshooting nonperturbative terms.

For the mass and coupling of the tetraquark Zc our calculations yield

m = (4080 ± 150) MeV, f = (0.58± 0.12)× 10−2 GeV4. (66)

One can see that the mass of the scalar diquark-antidiquark state Zc is in excellent agreement with LHCb data.
The scalar tetraquark [cu][cd] with the internal organization Cγ5 ⊗ γ5C was investigated in Ref. [105]

as well. Using the mass m = (3860 ± 90) MeV of this exotic state, the author interpreted it as a charged
partner of the resonance X∗(3860) . The charmoniumlike state X∗(3860) was seen by Belle [106] in the process
e+e− → J/ψDD , where D is one D0 or D+ mesons, and identified there with χc0(2P ) meson. Comparing our
result and prediction of Ref. [105], we find an overlapping region, but a difference 200 MeV between the central
values of the masses is sizable. This difference probably stems from working windows for the parameters M2

and s0 used in computations, and also may be explained by fixed or evolved treatment of vacuum condensates.
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3.2. Decays Zc → ηcπ
− and Zc → η′cπ

−

The strong decays of the resonance Zc form two groups of processes: the first of them contains decays with
two pseudoscalar mesons in a final state, whereas the second group embraces decays to two vector mesons. The
decays Zc → ηcπ

− and Zc → η′cπ
− are from the first group of processes. The final phases of these processes are

characterized by appearance of mesons ηc and η′c , where the latter is a first radially excited state of the former
one. In the QCD sum rule method such decays are explored in a correlated way. A suitable approach to analyze
the decays Zc → ηcπ

− and Zc → η′cπ
− is the QCD three-point sum rule method. The reason is that, this

method allows one to get for the physical side of sum rules relatively simple expression. In fact, we are interested
in extraction of sum rules for strong form factors gZcηciπ

(q2) , therefore in the context of standard operations

should apply double Borel transformation over the momenta of particles Zc and ηc . The Borel transformation
applied to physical side of the three-point sum rules suppresses contributions of higher resonances in these two
channels, and eliminate contributions of pole-continuum transitions [51, 52]. The elimination of such terms
is important for joint treatment of the form factors gZcηciπ

(q2) , because there is not a necessity to employ
additional operators to remove contaminations from the phenomenological side. Nevertheless, in the pion
channel still may survive contaminating terms corresponding to excited states of the pion [for the NNπ vertex,
see discussions in Refs. [107, 108]]. To decrease ambiguities in extracting of the strong couplings at the vertices,
it is possible to choose the pion on the mass shell, and consider one of remaining states (Zc or ηc ) as an
off-shell particle. This method was employed to investigate couplings of ordinary heavy-heavy-light mesons in
Refs. [109, 110]. Form factors extracted by treating a light or one of heavy mesons off-shell may differ from
each other considerably, but after extrapolating to the corresponding mass-shells give the same or negligibly
different strong couplings.

The process Zc → J/ψρ− belongs to the second group of Zc decays. We explore this decay using the
LCSR method and soft-meson approximation. The LCSR method allows us to determine the strong coupling
by evading extrapolating prescriptions and express gZcJ/ψρ

in terms of the vacuum condensates and matrix
elements of the ρ meson. The pole-continuum contributions surviving after a single Borel transformation in
the physical side of sum rules, can be removed by employing well-known procedures [52].

The strong couplings gZcηc1π
and gZcηc2π

can be found from analysis of the three-point correlation
function

Π(p, p′) = i2
∫
d4xd4ye−ipxeip

′y⟨0|T {Jηc(y)Jπ(0)J†(x)}|0⟩, (67)

where Jηc(y) is the interpolating current for ηc and η′c mesons (42), and Jπ(0) is the interpolating current for
the pion

Jπ(x) = ub(x)iγ5db(x) (68)

at x = 0 , respectively.
The correlation function Π(p, p′) in terms of the physical parameters of involved particles has the form

ΠPhys(p, p′) =

2∑
i=1

⟨0|Jηc |ηci (p′)⟩
p′2 −m2

i

⟨0|Jπ|π (q)⟩
q2 −m2

π

⟨ηci (p′)π(q)|Zc(p)⟩⟨Zc(p)|J†|0⟩
p2 −m2

+ . . . , (69)

where mπ is the mass of the pion, and m1 ≡ mηc , m2 = mη′c
are the masses of the mesons ηc and η′c ,

respectively. Their decay constants are denoted by f1 ≡ fηc and f2 ≡ fη′c and together with m1 and m2
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determine the matrix elements ⟨0|Jηc |ηci (p′)⟩ [see, Eq. (43)]. The matrix element of the pion is also well
known (29). In addition to this information the matrix elements of the vertices Zcηcπ

− and Zcη
′
cπ

− are
required as well. For these purposes, we use

⟨ηci (p′)π(q)|Zc(p)⟩ = gZcηciπ
(p · p′). (70)

Here, the strong coupling gZcηc1π
corresponds to the vertex Zcηcπ

− , whereas gZcηc2π
describes Zcη′cπ− .

After some manipulations for ΠPhys(p, p′) we find the following expression

ΠPhys(p, p′) =

2∑
i=1

gZcηciπ
m2
i fimf

2mc(p′2 −m2
i ) (p

2 −m2)

µπfπ
q2 −m2

π

(p · p′) + . . . (71)

The ΠPhys(p, p′) has a simple Lorentz structure, hence the invariant amplitude ΠPhys(p2, p′2) is equal to the
sum of two terms in Eq. (71). The double Borel transformation of ΠPhys(p2, p′2) over p2 and p′2 with the
parameters M2

1 and M2
2 , respectively, constitutes a physical side in a sum rule equality.

The correlation function calculated in terms of the quark propagators is:

ΠOPE(p, p′) = i2
∫
d4xd4ye−ipxeip

′yϵϵ̃Tr
[
γ5S

aj
c (y − x)γ5S̃

bk
d (−x)γ5S̃nbu (x)γ5S

ma
c (x− y)

]
. (72)

The Borel transformation BΠOPE(p2, p′2) of the amplitude ΠOPE(p2, p′2) forms the QCD side of the sum
rules. The first sum rule for gZcηc1π

and gZcηc2π
is obtained by equating Borel transformations of amplitudes

ΠPhys(p2, p′2) and ΠOPE(p2, p′2) and performing the continuum subtractions.
The Borel transformed and subtracted amplitude ΠOPE(p2, p′2) can be expressed using the spectral

density ρD(s, s
′, q2) which is determined as an imaginary part of the correlation function ΠOPE(p, p′)

Π(M2, s0, q
2) =

∫ s0

4m2
c

ds

∫ s′0

4m2
c

ds′ρD(s, s
′, q2)e−s/M

2
1 e−s

′/M2
2 , (73)

where M2 = (M2
1 ,M

2
2 ) and s0 = (s0, s

′
0) are the Borel and continuum threshold parameters, respectively.

The second sum rule for the couplings gZcηc1π
and gZcηc2π

can be obtained by acting operators

d/d(−1/M2
1 ) and/or d/d(−1/M2

2 ) on the first expression. These two expressions are enough to find gZcηc1π

and gZcηc2π
. An alternative way is the master sum rule used repeatedly to evaluate the couplings gZcηc1π

and

gZcηc2π
. For these purposes, we choose the continuum threshold parameter

√
s′0 that corresponds to the ηc

channel below the mass of the radially excited state η′c . In other words, we include η′c into high resonances and
get sum rule for the coupling of the ground-state meson ηc . At this phase of computations, the physical side
of the sum rule (71) depends only on the coupling gZcηc1π

. This sum rule can be solved to find the coupling
gZcηc1π

gZcηc1π
(M2, s

(1)
0 , q2) =

Π(M2, s
(1)
0 , q2)em/M

2
1 em

2
1/M

2
2

A1
, (74)

where

A1 =
mfm2

1f1µπfπ
4mc(q2 −m2

π)

(
m2 +m2

1 − q2
)
,
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and s
(1)
0 = (s0, s

′
0 ≃ m2

2).

At the next stage, we move the continuum threshold
√
s′0 to m2 + (0.5− 0.8) GeV and employ the sum

rule which now includes the ground-state meson ηc and its first radial excitation η′c . The QCD side of this

sum rule is determined by Π(M2, s
(2)
0 , q2) , where s

(2)
0 = (s0, s

′
0 ≃ [m2 + (0.5 − 0.8)]2) . By substituting the

obtained expression for gZcηc1π into this sum rule, it is not difficult to evaluate the second coupling gZcηc2π
.

The couplings extracted by this manner, as usual, depend on the Borel and continuum threshold param-
eters, but are functions of q2 as well. For simplicity of presentation, below we skip their dependence on the
parameters, and denote strong couplings obtained by substitution q2 = −Q2 as gZcηc1π

(Q2) and gZcηc2π
(Q2) .

The widths of the decays under analysis depend on values of the couplings at the pion’s mass shall q2 = m2
π

.
This region is not accessible to sum rule computations. The way out of this situation is to introduce extrapo-
lating functions F1(2)(Q

2) which at Q2 > 0 coincide with the sum rule’s predictions, but can be easily used in
the region Q2 < 0 as well.

The strong couplings depend on the masses and decay constants of the final-state mesons, which are
shown in Table 2. To perform numerical computations the Borel M2 and continuum threshold s0 parameters
have to be specified as well. The parameters M2

2 , s
′
0 in Eq. (74) are chosen as

M2
2 ∈ [3, 4] GeV2, s′0 = 13 GeV2, (75)

whereas in the sum rule for the second coupling gZcηc2π
(Q2) , we employ

M2
2 ∈ [3, 4] GeV2, s′0 ∈ [17, 19] GeV2. (76)

We have noted above that at the pion mass-shell Q2 = −m2
π the couplings can be evaluated using fit

functions. For these purposes, we use exponential-type functions

Fi(Q
2) = F i0exp

[
ci1
Q2

m2
+ ci2

(
Q2

m2

)2
]
, (77)

where F i0 , ci1 and ci2 are free parameters. Our analysis allows us to fix these parameters: we get F 1
0 =

0.49 GeV−1 , c11 = 27.64 and c21 = −34.66 . Another set reads F 2
0 = 0.39 GeV−1 , c12 = 28.13 and c22 = −35.24 .

The strong couplings at the mass-shell are equal to

gZcηc1π
(−m2

π) = (0.47± 0.06) GeV−1, gZcηc2π
(−m2

π) = (0.38± 0.05) GeV−1. (78)

The widths of the decays Zc → ηcπ
− and Zc → η′cπ

− can be evaluated by employing of the formula

Γ
[
Zc → ηc(IS)π

−] = g2
Zcηciπ

m2
i

8π
λ (m,mi,mπ)

[
1 +

λ2 (m,mi,mπ)

m2
i

]
, (79)

where I ≡ i = 1, 2 . For the decay Zc → ηcπ
− one has to set gZcηciπ

→ gZcηc1π
and mi → m1 , whereas in the

case of Zc → η′cπ
− quantities with subscript 2 have to be used.

Computations lead to the following predictions for the partial widths of the decay channels

Γ
[
Zc → ηcπ

−] = (81± 17) MeV, Γ
[
Zc → η′cπ

−] = (32± 7) MeV. (80)
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3.3. Decay Zc → D0D−

In this subsection we analyze S -wave decay of Zc to a pair of open-charm pseudoscalar mesons Zc → D0D− .
The relevant three-point correlation function is given by the expression

Π̃(p, p′) = i2
∫
d4xd4ye−ipxeip

′y⟨0|T {JD(y)JD
0

(0)J†(x)}|0⟩, (81)

where we introduce the interpolating currents for the pseudoscalar mesons D− and D0

JD(y) = cr(y)iγ5dr(y), J
D0

(0) = us(0)iγ5cs(0). (82)

The correlation function Π(p, p′) written down using physical parameters of these mesons and tetraquark
Zc takes the form

Π̃Phys(p, p′) =
⟨0|JD|D− (p′)⟩
p′2 −m2

D

⟨0|JD0 |D0 (q)⟩
q2 −m2

D0

⟨D− (p′)D0(q)|Zc(p)⟩⟨Zc(p)|J†|0⟩
p2 −m2

+ · · · , (83)

where mD and mD0 are masses of the mesons D− and D0 , respectively.
We continue analysis by using the matrix elements

⟨0|JD|D− (p′)⟩ = fDm
2
D

mc
, ⟨0|JD

0

|D0 (q)⟩ =
fD0m2

D0

mc
, ⟨D− (p′)D0(q)|Zc(p)⟩ = gZcDD

(p · p′). (84)

Simple manipulations lead to

Π̃Phys(p, p′) =
fD0m2

D0fDm
2
D

m2
c (p

′2 −m2
D)
(
q2 −m2

D0

) mf

p2 −m2
(p · p′) + · · · . (85)

The same correlation function written down in terms of the quark propagators is

Π̃OPE(p, p′) = i2
∫
d4xd4ye−ipxeip

′yϵϵ̃Tr
[
γ5S

rk
d (y − x)γ5S̃

sj
c (−x)γ5S̃nsu (x)γ5S

mr
c (x− y)

]
. (86)

The sum rule for the strong coupling gZcDD
can be expressed in a traditional form

gZcDD
(M2, s0, q

2) =
Π̃(M2, s0, q

2)em/M
2
1 em

2
D/M

2
2

B
, (87)

where

B =
fDm

2
DfD0m2

D0mf

2m2
c(q

2 −m2
D0)

(
m2 +m2

D − q2
)
.

Here, Π̃(M2, s0, q
2) is the amplitude Π̃OPE(p2, p′2, q2) after Borel transformation and subtraction procedures:

it is expressible in term of the spectral density ρ̃D(s, s
′, q2)

Π̃(M2, s0, q
2) =

∫ s0

4m2
c

ds

∫ s′0

m2
c

ds′ρ̃D(s, s
′, q2)e−s/M

2
1 e−s

′/M2
2 . (88)
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The sum rule for gZcDD
depends on masses and decay constants of the mesons D0 and D− : for

these parameters we utilize mD0 = (1864.83 ± 0.05) MeV , mD = (1869.65 ± 0.05) MeV and fD = fD0 =

(211.9 ± 1.1) MeV , respectively. Restrictions on parameters M2 and s0 do not differ from ones considered
above and are universal for such kind of computations. The M2

1 and s0 are varied within limits determined in
the mass calculations (65). The parameters M2

2 , s
′
0 in Eq. (88) are

M2
2 ∈ [3, 6] GeV2, s′0 ∈ [7, 9] GeV2. (89)

Numerical computations of Eq. (88) with regions (65) lead to stable results for the form factor gZcDD
(M2, s0, q

2)

at q2 < 0 . In what follows, we denote it gZcDD
(Q2) by introducing q2 = −Q2 and omit parameters M2 and

s0 .
The width of the decay Zc → D0D− depends on the strong coupling gZcDD

at the mass shell of the

meson D0 . Therefore,we utilize the fit function F̃ (Q2) from Eq. (77) with parameters F̃0 = 0.44 GeV−1 ,

c̃1 = 2.38 and c̃2 = −1.61 . In figure 1 we depict F̃ (Q2) and sum rule predictions for gZcDD
(Q2) demonstrating

very nice agreement between them.
The strong coupling at the mass shell Q2 = −m2

D0 is

gZcDD
(−m2

D0) = (0.25± 0.05) GeV−1. (90)

The width of the decay Zc → D0D− is calculated employing Eq. (79) with necessary replacements, and by
taking into account that λ⇒ λ (m,mD0 ,mD) .

The partial width of this decay reads

Γ[Zc → D0D−] = (19± 5) MeV. (91)

This result will be employed to evaluate the full width of the tetraquark Zc .

Figure 1. The sum rule predictions and fit function for the strong coupling gZcDD
(Q2) . The star marks the point

Q2 = −m2
D0 .
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3.4. Decay Zc → J/ψρ−

The scalar tetraquark Zc can decay to a pair of two vector mesons J/ψρ− . In the context of the LCSR method
this decay can be studied be means of the correlation function

Πµ(p, q) = i

∫
d4xeipx⟨ρ(q)|T {Jψµ (x)J†(0)}|0⟩, (92)

where the interpolating current for the vector meson J/ψ is denoted by Jψµ (x) .

The correlation function ΠPhys
µ (p, q) in terms of the physical parameters of the tetraquark Zc , and mesons

J/ψ and ρ is equal to

ΠPhys
µ (p, q) = gZcJ/ψρ

mJ/ψfJ/ψ

p2 −m2
J/ψ

mf

p′2 −m2

[
1

2

(
m2 −m2

J/ψ − q2
)
ε′µ − p · ε′qµ

]
+ . . . (93)

It contains Lorentz structures proportional to ε′µ and qµ . We work with the structure ∼ ε′µ and label the

corresponding invariant amplitude by ΠPhys(p2, q2) .
The second ingredient of the sum rule is the same correlation function ΠOPE

µ (p, q) expressed in terms of
quark propagators

ΠOPE
µ (p, q) = i2

∫
d4xeipxϵϵ̃

[
γ5S̃

aj
c (x)γµS̃

ma
c (−x)γ5

]
αβ

⟨ρ(q)|dkα(0)unβ(0)|0⟩. (94)

The ΠOPE
µ (p, q) contains two- and three-particle local matrix elements of the ρ -meson. Two of these elements

(49) and (50) do not depend on the ρ meson momentum, whereas others are determined using momentum
factors

⟨0|uσµνd|ρ(q, λ)⟩ = ifTρ (ϵ
(λ)
µ qν − ϵ(λ)ν qµ), ⟨0|ugGµνd|ρ(q, λ)⟩ = ifTρ m

3
ρζ
T
4 (ϵ

(λ)
µ qν − ϵ(λ)ν qµ),

⟨0|ugG̃µνiγ5d|ρ(q, λ)⟩ = ifTρ m
3
ρζ̃
T
4 (ϵ

(λ)
µ qν − ϵ(λ)ν qµ). (95)

By substituting these matrix elements into the correlation function (94), carrying out the summation over
color and calculating traces over Lorentz indices, we find local matrix elements of the ρ meson that contribute
to ΠOPE

µ (p, q) . It appears in the soft limit q → 0 contributions to the invariant amplitude ΠOPE(p2) come
from the matrix elements (49) and (50).

The Borel transformation of the amplitude ΠOPE(p2) is given by the formula

ΠOPE(M2) =

∫ ∞

4m2
c

dsρ̃OPE(s)e−s/M
2

+ΠOPE(tw4)(M2), (96)

with ρ̃OPE(s) and ΠOPE(tw4)(M2) being the spectral density and twist-4 contribution to ΠOPE(M2) , respec-
tively. Computation of ρ̃OPE(s) has been performed by taking into account condensates up to dimension six.
The spectral density consists of the perturbative and nonperturbative components

ρ̃OPE(s) =
fρmρ(s+ 2m2

c)
√
s(s− 4m2

c)

24π2s
+ ρn.−pert.(s). (97)
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The nonperturbative part of the spectral density ρn.−pert.(s) contains terms proportional to gluon condensates
⟨αsG2/π⟩ , ⟨αsG2/π⟩2 and ⟨g3sG3⟩ : Here, we do not write down their expressions explicitly. The twist-4 term
in Eq. (96) is equal to

ΠOPE(tw4)(M2) =
fρm

3
ρζ4ρm

2
c

8π

∫ 1

0

dα
e−m

2
c/M

2a(1−a)

a(1− a)
. (98)

The sum rule for the strong coupling is given by the formula

gZcJ/ψρ
=

2

mJ/ψfJ/ψmf(m2 −m2
J/ψ)

P(M2, m̃2)ΠOPE(M2, s0). (99)

where P(M2, m̃2) is the operator in Eq. (34), and m̃2 = (m2+m2
J/ψ)/2 . The width of the decay Zc → J/ψρ−

is determined by the expression

Γ
(
Zc → J/ψρ−

)
=
g2
ZcJ/ψρ

m2
ρ

8π
λ
(
m, mJ/ψ,mρ

) [
3 +

2λ2
(
m, mJ/ψ,mρ

)
m2
ρ

]
. (100)

Calculation of the sum rule Eq. (99) is done using M2 and s0 from Eq. (65). For the coupling gZcJ/ψρ
,

we find
gZcJ/ψρ

= (0.56± 0.07) GeV−1. (101)

Then the width of the decay Zc → J/ψρ− is

Γ
[
Zc → J/ψρ−

]
= (15± 3) MeV. (102)

For the full width of the resonance Zc saturated by decay modes Zc → ηcπ
− , η′cπ− , D0D− and Zc → J/ψρ− ,

we get
Γ = (147± 19) MeV. (103)

Our predictions for the mass m = (4080 ± 150) MeV and full width Γ = (147 ± 19) MeV of the
resonance Zc agree with LHCb data. Therefore, it is legitimate to interpret the charged resonance Z−

c (4100)

as the scalar diquark-antidiquark [cd][cu] with Cγ5 ⊗ γ5C structure. It is probably a member of charged Z -
resonance multiplets that include also the axial-vector tetraquarks Z±

c (3900) and Z±
c (4330) . The resonances

Z±
c (4330) and Z±

c (3900) were discovered in the ψ′π± and J/ψπ± invariant mass distributions, whereas the
neutral particle Z0

c (3900) was seen in the process e+e− → π0π0J/ψ . Since J/ψ and ψ′ are vector mesons, and
ψ′ is the radial excitation of J/ψ , it is reasonable to treat Zc(4330) as first radial excitation of Zc(3900) (see,
section 2). Then the resonance Zc fixed in the ηcπ

− channel can be considered as a scalar partner of these
axial-vector tetraquarks. It is also meaningful to assume that a neutral member of this family Z0

c (4100) may
be seen in the process e+e− → π0π0ηc with dominantly π0π0 mesons at the final state rather than DD ones.

4. The resonances X(4140) and X(4274)

Recently, after analyses of exclusive decays B+ → J/ψϕK+ , the LHCb confirmed existence of the resonances
X(4140) and X(4274) in the J/ψϕ invariant mass distribution [38, 39]. In the same J/ψϕ channel LHCb
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discovered heavy resonances X(4500) and X(4700) as well. The masses and decay widths of these resonances (in
this section X(4140) ⇒ X1, X(4274) ⇒ X2, X(4500) ⇒ X3 and X(4700) ⇒ X4 , respectively) in accordance
with LHCb measurements are

X1 :M = 4146± 4.5+4.6
−2.8 MeV, Γ = 83± 21+21

−14 MeV,

X2 :M = 4273± 8.3+17.2
−3.6 MeV, Γ = 56± 11+8

−11 MeV,

X3 :M = 4506± 11+12
−15 MeV, Γ = 92± 21+21

−20 MeV,

X4 :M = 4704± 10+14
−24 MeV, Γ = 120± 31+42

−33 MeV. (104)

The LHCb extracted also spins and PC -parities of these states. It appears that X1 and X2 are axial-vector
resonances with JPC = 1++ , whereas the X3 and X4 are scalar states JPC = 0++ .

First experimental information on resonances X1 and X2 [40–42] stimulated appearance of different
models to account for their properties. Thus, they were considered as meson molecules in Refs. [111–119].
The diquark-antidiquark picture was used in Refs. [120, 121] to model X1 and X2 . There are also competing
approaches which consider them as dynamically generated resonances [122, 123] or coupled-channel effects [124].

After LHCb measurements the experimental situation around the resonances X1 and X2 became more
clear. The reason is that LHCb removed from agenda an explanation of X1 as 0++ or 2++ D∗+

s D∗−
s molecular

states. The LHCb also excluded interpretation of X2 as a molecular bound-state and as a cusp. There were
usual attempts to interpret X resonances as excitations of the ordinary charmonium or as dynamical effects.
Indeed, by studying experimental information on processes B → Kχc1π

+π− and B → KDD by Belle and
BaBar (see, Refs. [125] and [126] ), the author of Ref. [127] identified the resonances X1 and Y (4080) with the
P -wave charmonia χc1(3

3P1) and χc0(3
3P0) , respectively.

Rescattering effects in the decay B+ → J/ψϕK+ were investigated in Ref. [128], where the author tried
to answer the question: can these effects simulate the discovered resonances X1 , X2 , X3 and X4 or not. In
accordance with this analysis, rescattering of D∗+

s D−
s and ψ′ϕ mesons may be seen as structures X1 and X4 ,

respectively. At the same time, inclusion of X2 and X3 into this scheme is problematic, and hence they maybe
are genuine four-quark states. But, the author did not rule out explanation of X2 as the excited charmonium
χc1(3

3P1)

The diquark-antidiquark and molecule pictures prevail over alternative models of X resonances, and
constitute foundations for various studies to explain experimental information on these states [129–134]. Thus,
the masses of the axial-vector diquark-antidiquark states [cs][cs] with different spin-parities and color structures
were calculated in Ref. [129]. Results obtained there for states JP = 1+ were used in Ref. [130] to interpret
X1 and X2 as tetraquarks [cs][cs] with opposite (i.e., color-triplet or -sextet constitutent diquarks) color
organizations. Within the same approach the resonances X3 and X4 were interpreted as D -wave excited states
of X1 and X2 [130].

In the framework of the tetraquark model the resonances X1 and X2 were also explored in Refs. [131]
and [132]. Results obtained in Ref. [131] excluded interpretation of X1 as a tightly bound diquark-antidiquark
state. The resonance X2 was modeled as an octet-octet type molecule state, and it was demonstrated that the
mass of X2 agrees with LHCb results, while its width significantly exceeds the experimental data [132]. The
resonance X3 was examined as radial excitation of the scalar structure X(3915) , whereas X4 was considered as
the ground-state tetraquark [cs][cs] composed of a vector diquark and antidiquark [133]. Let us note that the
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resonance X(3915) was detected by Belle in the J/ψω invariant mass distribution of the decay B → J/ψωK

[135], and also observed in the process γγ → J/ψω [136]. This structure was confirmed by BaBar in the same
reaction B → J/ψωK [137]. The X(3915) was commonly considered as the scalar charmonium χc0(2

3P0) .
But a lack of decay modes χc0(2P ) → DD stimulated other assumptions. In fact, an alternative conjecture
about the resonance X(3915) was proposed in Ref. [138], where it was interpreted as the lightest scalar diquark-
antidiquark state [cs][c̄s̄] . Exactly this structure was examined in Ref. [133] as the ground state of X3 , and
computations apparently support suggestions made on nature of the resonances X3 and X4 .

A plethora of charmoniumlike structures seen in numerous processes stimulated analysis of various
diquark-antidiquark states, and led to suggestions about existence of different tetraquark multiplets (see, Refs.
[139–141]). Thus, the resonances X were included into 1S and 2S multiplets of tetraquarks [cs]s=0,1[cs]s=0,1

built of color-triplet diquarks [140]. The X1 was interpreted as JPC = 1++ particle of the 1S multiplet. The
X2 resonance is probably, an admixture of two states with the quantum numbers JPC = 0++ and JPC = 2++ .
The idea about mixing phenomenon is inspired by the fact, that in the multiplet of the tetraquarks composed of
color-triplet diquarks, there is only one state with JPC = 1++ . The heavy resonances X3 and X4 are included
into the 2S multiplet as its JPC = 0++ members. But apart from the color triplet multiplets there may exist a
multiplet of tetraquarks composed of color-sextet diquarks [139], which also contains a state with JPC = 1++ .
Stated differently, the multiplet of the tetraquarks with color-sextet diquarks doubles a number of states [139],
and resonance X2 may be identified with its JPC = 1++ member.

It is evident that assumptions on internal organization of the resonances X in the diquark-antidiquark
model sometimes contradict to each other. In most of these studies, the spectroscopic parameters of these
states were calculated using the QCD two-point sum rule method. Results of these computations obtained by
employing various suggestions on interpolating currents are in agreement with existing experimental data. In
some cases predictions of various articles coincide with each other as well. Stated differently, the masses and
current couplings of exotic states do not give information enough to verify supposed models by comparing them
with experimental data or/and alternative theoretical models. In such cases additional useful information can
be extracted from studies of exotic states’ decay channels. The spectroscopic parameters and strong decays of
X1 and X2 were explored in Ref. [134], in which they were considered as tetraquarks made of color-triplet and
-sextet diquarks, respectively. Below, we present results of this analysis.

4.1. Parameters of the resonances X1 and X2

The masses and couplings of the resonances X1 and X2 can be calculated by utilizing the QCD two-point sum
rule method. Relevant sum rules can be extracted from analysis of the correlation function (4), where Jµ(x) is
the interpolating current of the state X with the spin-parities JPC = 1++ .

According to Ref. [130], the resonances X1 and X2 have the same quantum numbers, but different
internal color structures. This means that colorless particles X1 and X2 are built of color-triplet and color-
sextet diquarks, respectively. We pursue this suggestion and investigate X1 and X2 using the QCD sum rule
method and currents of different color organization. Namely, we suggest that the current

J1
µ = sTaCγ5cb

(
saγµCc

T
b − sbγµCc

T
a

)
+ sTaCγµcb

(
saγ5Cc

T
b − sbγ5Cc

T
a

)
, (105)
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which has the color structure
[
3c
]
cs

⊗ [3c]cs , presumably describes the resonance X1 , whereas

J2
µ = sTaCγ5cb

(
saγµCc

T
b + sbγµCc

T
a

)
+ sTaCγµcb

(
saγ5Cc

T
b + sbγ5Cc

T
a

)
, (106)

with the color-symmetric diquark and antidiquark [6c]cs ⊗
[
6c
]
cs

fields corresponds to the tetraquark X2 .
In order to derive required sum rules, we find an expression of the correlator in terms of the physical

parameters of the state X . In the case of a single particle X the Borel transformation of the phenomenological
side of the sum rules takes the simple form

BΠPhys
µν (q) = m2

Xf
2
Xe

−m2
X/M

2

(
−gµν +

qµqν
m2
X

)
+ · · · , (107)

with mX and fX being the mass and coupling of the state X .
The QCD side of the sum rule should be expressed in terms of quark propagators. For these purposes,

we contract c and s quark fields, and get for the correlation function ΠOPE
µν (q) the expression (for definiteness,

we provide explicitly results for J1
µ ):

ΠOPE
µν (q) = −i

∫
d4xeiqxϵϵ̃ϵ′ϵ̃′

{
Tr
[
γµS̃

n′n
c (−x)γνSm

′m
s (−x)

]
Tr
[
γ5S̃

aa′

s (x)γ5S
bb′

c (x)
]

+Tr
[
γµS̃

n′n
c (−x)γ5Sm

′m
s (−x)

]
Tr
[
γν S̃

aa′

s (x)γ5S
bb′

c (x)
]
+Tr

[
γ5S̃

n′n
c (−x)γνSm

′m
s (−x)

]
×Tr

[
γ5S̃

aa′

s (x)γµS
bb′

c (x)
]
+Tr

[
γ5S̃

n′n
c (−x)γ5Sm

′m
s (−x)

]
Tr
[
γν S̃

aa′

s (x)γµS
bb′

c (x)
]}

, (108)

where ϵ = ϵcab, ϵ̃ = ϵcmn and ϵ′ = ϵc
′a′b′ , ϵ̃′ = ϵc

′m′n′ .
The spectroscopic parameters of the tetraquarks X can be calculated using the sum rules (16) and (17)

after substituting 4m2
c , mZc

, and fZc
by 4(mc +ms)

2 , mX and fX .
The two-point spectral density ρOPE(s) necessary for calculations can be derived using methods presented

already in the literature (see, for example, Ref. [53]). Therefore, we do not detail here these usual and routine
computations. Our predictions for parameters of the resonances X1 and X2 are collected in Table 6, where
we also present working regions for M2 and s0 . In the working regions of the Borel and continuum threshold
parameters the pole contribution is equal to 0.23 , which is typical for the sum rule calculations involving
tetraquarks. To keep under control convergence of the operator product expansion, we find a contribution of
each term with fixed dimension: in the working regions convergence of OPE is satisfied. Let us only note that
a contribution of the dimension-8 term to the whole result does not overshoot 1% .

Table 6. The masses and couplings of the tetraquarks X1 and X2 .

X X1 X2

M2 (GeV2) 4− 6 4− 6

s0 (GeV2) 20− 22 21− 23

mX (MeV) 4183± 115 4264± 117

fX (GeV4) (0.94± 0.16)× 10−2 (1.51± 0.21)× 10−2

In Figures 2 and 3, we depict the parameters of the tetraquark X1 as functions of M2 and s0 . It is
clear that mX1

and fX1
are sensitive to the choice of these parameters. But, while effects of M2 and s0 on
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the mass mX1 are weak, a dependence of fX1 on the Borel and continuum threshold parameters is noticeable.
These effects combined with uncertainties of other input parameters generate errors of sum rule calculations.
The theoretical errors of calculations are presented in Table 6 as well. The similar analysis and conclusions are
valid for the state X2 , which can be seen in Figures 4 and 5.

Figure 2. The mass of the X1 state as a function of the Borel M2 (left panel), and continuum threshold s0 parameters
(right panel).

Figure 3. The dependence of the coupling fX of the X1 resonance on the Borel parameter at chosen s0 (left panel),
and on s0 at fixed M2 (right panel).

We see that our predictions for masses of the states X1 and X2 agree with the LHCb data. At this
phase of studies one can conclude that the resonances X1 and X2 with the spin-parities JPC = 1++ enter to
multiplets of tetraquarks composed of the color-triplet and -sextet diquarks, respectively.

4.2. Width of decays X1 → J/ψϕand X2 → J/ψϕ

Because X1 and X2 were discovered in the J/ψϕ invariant mass distribution, processes X1 → J/ψϕ and
X2 → J/ψϕ are main decay modes of these resonances. In this subsection, we consider these two decays, and
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Figure 4. The mass of the X2 resonance as a function of the Borel M2 (left panel), and continuum threshold s0
parameters (right panel).

Figure 5. The coupling fX of the resonance X2 as a function of M2 (left panel) and s0 (right panel).

briefly explain operations required to explore the vertex XJ/ψϕ , where X is one of states X1 and X2 . Below,
we evaluate the strong coupling gXJ/ψϕ and width of the corresponding process X → J/ψϕ .

The strong coupling gXJ/ψϕ can be extracted from analysis of the correlation function

Πµν(p, q) = i

∫
d4xeipx⟨ϕ(q)|T {Jψµ (x)J†

ν(0)}|0⟩, (109)

with Jν and Jψµ being interpolating currents of the X state and J/ψ meson, respectively.

We calculate Πµν(p, q) using the LCSR method and the soft-meson approximation. For these purposes,
at the first step of analysis, we express the function Πµν(p, q) in terms of the masses, decay constants (current
couplings) of the particles X and J/ψ , and strong coupling gXJ/ψϕ .
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For ΠPhys
µν (p, q) , we get

ΠPhys
µν (p, q) =

⟨0|Jψµ |J/ψ (p)⟩
p2 −m2

J/ψ

⟨J/ψ (p)ϕ(q)|X(p′)⟩ ⟨X(p′)|J†
ν |0⟩

p′2 −m2
X

+ · · · . (110)

The matrix element of the J/ψ meson, necessary for our calculations, has been defined in Eq. (22), whereas for
the vertex, we introduce the matrix element

⟨J/ψ (p)ϕ(q)|X(p′)⟩ = igXJ/ψϕϵαβγδε
∗
α(p)εβ(p

′)ε∗γ(q)pδ. (111)

Here, ε∗γ(q) is the polarization vector of the ϕ meson. Then the contribution to ΠPhys
µν (p, q) of the ground-state

particles is

ΠPhys
µν (p, q) = i

fJ/ψfXmJ/ψmXgXJ/ψϕ

(p′2 −m2
X)
(
p2 −m2

J/ψ

) (ϵµνγδε∗γ(p)pδ − 1

m2
X

ϵµβγδε
∗
γ(p)pδp

′
βp

′
ν

)
+ · · · . (112)

In the soft limit p = p′ , and only the term ∼ iϵµνγδε
∗
γ(p)pδ survives in Eq. (112).

The correlation function ΠOPE
µν (p, q) for the current J1

µ is given by the expression

ΠOPE
µν (p, q) = i

∫
d4xeipxϵijkϵimn

{[
γν S̃

ak
c (x)γµS̃

na
c (−x)γ5

]
−
[
γ5S̃

ak
c (x)γµS̃

na
c (−x)γν

]}
αβ

×⟨ϕ(q)|sjαsmβ |0⟩. (113)

In the soft-meson approximation the matrix element

⟨0|s(0)γµs(0)|ϕ(p, λ)⟩ = fϕmϕϵ
(λ)
µ , (114)

of the ϕ meson contributes to the correlation function. Here, mϕ and fϕ are the mass and decay constant of
the ϕ meson, respectively. The soft-meson limit reduces also possible Lorentz structures in ΠOPE

µν (p, q) to the

term ∼ iϵµνγδε
∗
γ(p)pδ , which should be equated to the same structure in ΠPhys

µν (p, q = 0) .

The invariant amplitude corresponding to this Lorentz structure in ΠOPE
µν (p, q = 0) can be presented as

a dispersion integral with the spectral density ρOPE
c (s) . We skip further details of calculations, and write down

the final expression for ρQCD
c (s) , which reads

ρOPE
c (s) =

fϕmϕmc

4

[√
s(s− 4m2

c)

π2s
+𝟋n.−pert.(s)

]
. (115)

The nonperturbative component of ρQCD
c (s) , i.e., 𝟋n.−pert.(s) is determined by the following formula

𝟋n.−pert.(s) =
〈αsG2

π

〉∫ 1

0

f1(z, s)dz +
〈
g3sG

3
〉∫ 1

0

f2(z, s)dz +
〈αsG2

π

〉2 ∫ 1

0

f3(z, s)dz. (116)

The functions f1(z, s), f2(z, s) and f3(z, s) are given by the expressions

f1(z, s) =
1

18r2

{
− (2 + 3r(3 + 2r)) δ(1)(s− Φ) + (1 + 2r)

[
m2
c − sr

]
δ(2)(s− Φ)

}
, (117)
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f2(z, s) =
(1− 2z)

27 · 9π2r5

{
2r
[
3r (1 + rR) δ(2)(s− Φ) +

[
3sr2(1 + r)− 2m2

c (1 + rR)
]
δ(3)(s− Φ)

]
+
[
s2r4 − 2sm2

cr
2(1 + r) +m4

c(1 + rR)
]
δ(4)(s− Φ)

}
, (118)

f3(z, s) =
m2
cπ

2

22 · 34r2
[
δ(4)(s− Φ)− sδ(5)(s− Φ)

]
, (119)

where the short hand notations

r = z(z − 1), R = 3 + r, Φ =
m2
c

z(1− z)
, (120)

has been introduced. The function δ(n)(s− Φ) is defined as

δ(n)(s− Φ) =
dn

dsn
δ(s− Φ). (121)

For the interpolating current J2
µ we get

ΠOPE
µν (p, q) = i

∫
d4xeipx

{[
γν S̃

ib
c (x)γµS̃

ai
c (−x)γ5 − γ5S̃

ib
c (x)γµS̃

ai
c (−x)γν

]
αβ

×⟨ϕ(q)|saαsbβ |0⟩+
[
γν S̃

ib
c (x)γµS̃

bi
c (−x)γ5 − γ5S̃

ib
c (x)γµS̃

bi
c (−x)γν

]
αβ

⟨ϕ(q)|saαsaβ |0⟩
}
. (122)

The corresponding spectral density is

ρ(2)OPE
c (s) = 2ρ(1)OPE

c (s), (123)

where ρ(1)OPE
c (s) is given by Eq. (115).

The width of the decay X → J/ψϕ can be found by means of the formula

Γ(X → J/ψϕ) =
λ(mX ,mJ/ψ,mϕ)

48πm4
Xm

2
ϕ

g2XJ/ψϕ

[(
m2
X +m2

ϕ

)
m4
J/ψ +

(
m2
X −m2

ϕ

)2
×
(
m2
X +m2

ϕ − 2m2
J/ψ

)
+ 4m2

Xm
2
J/ψm

2
ϕ

]
, (124)

where λ(a, b, c) is the standard function (37).
In Table 7, we have collected our results for the couplings and decay widths. We also write down the

regions for the parameters M2 and s0 used in numerical calculations to evaluate the couplings gX1J/ψϕ and
gX2J/ψϕ . In these regions computations meet all standard constraints of the sum rule analysis.

In Table 8, we have collected the LHCb data and our results for parameters of X1 and X2 . The states
X1 and X2 were explored in numerous articles [113, 129–132]: some of their predictions are also shown. As
is seen, our results for the masses of tetraquarks X1 and X2 , evaluated in the context of the QCD sum rule
method, are in reasonable agreement with recent LHCb measurements [38]. We also see that width of the decay
X1 → J/ψϕ is compatible with experimental data, but Γ(X2 → J/ψϕ) significantly overshoots and does not
explain them.
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Table 7. The strong coupling gXJ/ψϕ and decay width Γ(X → J/ψϕ) .

X X(4140) X(4274)

M2 (GeV2) 5− 7 5− 7

s0 (GeV2) 20− 22 21− 23

gXJ/ψϕ 2.34± 0.89 3.41± 1.21

Γ(X → J/ψϕ) (MeV) 80± 29 272± 81

Table 8. The LHCb data and theoretical predictions for the mass and width of the resonances X1 and X2 .

mX1 ΓX1 mX2 ΓX2

(MeV) (MeV) (MeV) (MeV)

LHCb 4146± 4.5+4.6
−2.8 83± 21+21

−14 4273± 8.3+17.2
−3.6 56± 11+8

−11

[134] 4183± 115 80± 29 4264± 117 272± 81

[113] 4140± 90 − − −
[129] 4070± 100 − 4220± 100 −
[131] 3950± 90 − − −

5000± 100 − − −
[132] − − 4270± 90 1800

The resonance X1 was considered in Ref. [113] as a molecule state D⋆
sD

⋆

s with JPC = 0++ . Mass of this
molecule obtained by employing the QCD sum rule method correctly describes the experimental data. But the
problem is that, LHCb ruled out interpretation of the resonance X1 as a molecule-like state.

The parameters of X1 and X2 in the framework of the sum rule method were evaluated in Refs. [129, 130]
as well. Results obtained there, are in accord with the LHCb data. Let us emphasize that the resonances X1

and X2 were considered in Refs. [129, 130] as the axial-vector states built of color-triplet and -sextet diquarks,
respectively. The studies performed in Ref. [131] by means of the sum rule method and two interpolating
currents, however excluded diquark-antidiquark interpretation for X1 . The reason is that mX1 evaluated using
relevant sum rules is either below the LHCb data or exceeds them (see, Table 8).

The X2 was investigated as a molecule-like color-octet state [132], and its mass mX2 was found equal to

mX2
= 4.27± 0.09 GeV. (125)

But width of the decay X2 → J/ψϕ

Γ(X2 → J/ψϕ) = 1.8 GeV (126)

estimated using the QCD three-point sum rule method overshoots the LHCb value, and hence the author
removed his assumption about the structure of the state X2 from agenda.

In this section, we explored the resonances X1 and X2 . Our predictions for the mass and width of the
resonance X1 permit its interpretation as a serious candidate to a tetraquark with JPC = 1++ built of color-
triplet diquark (antidiquark). But, in light of the LHCb data, consideration of X2 as a tetraquark with only
color-sextet diquark constituents seems is problematic. The reason is that LHCb specifies X2 as a relatively
narrow state, while our estimate for its width equals to a few hundred MeV . It is quite possible that X2 is
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an admixture of a tetraquark with color-sextet ingredients and an ordinary charmonium. But this and other
assumptions on internal structure of the resonance X2 require additional analyses.

5. The axial-vector resonance a1(1420)

The resonance a1(1420) (or a1 throughout this section) reported by COMPASS collaboration [142] enlarged
a five-member family of axial-vector mesons with the spin-parities JPC = 1++ . In order to find a partner
of the isosinglet f1(1420) meson, COMPASS studied JPC = 1++ states in the diffractive process π− + p →
π−π−π+ + precoil . In the f0(980)π final state the collaboration discovered a resonance 1++ and identified it as
a1 meson with the mass and width

m = 1414+15
−13 MeV, Γ = 153+8

−23 MeV. (127)

Observation of the light axial-vector state a1 that may be interpreted as isovector partner of f1(1420)
meson, stimulated theoretical studies in the framework of numerous models and schemes. Goals of these
investigations were to reveal structure of a1 and compute its parameters. It is worth noting that by considering
a1 as an ordinary axial-vector meson COMPASS, at the same time, did not rule out its possible interpretation
as an exotic state. The reason behind of this conclusion is discovery of only a1 → f0(980)π decay channel of the
meson a1 . Problems connected with identification of a1 as a radially excited a1(1260) meson also feed ideas
on its exotic nature.

The meson f0(980) that appears in the decay a1 → f0(980)π gives additional information on possible
structure of a1 . It is one of the first mesons that was considered as candidate to a light four-quark state. The
meson f0(980) is a member of the first nonet of scalar particles, which already were analyzed as real candidates
to four-quark q2q2 states [1]. Because, f0(980) has a considerable strange component it was considered also
as a KK molecule [143]. Lattice simulations and various experiments seem confirm assumptions on four-quark
structure of f0(980) and some other hadrons [57, 144–146]. On the basis of new theoretical analysis conclusions
on a diquark-antidiquark structure of f0(980) and other light scalar mesons were also drawn in Refs. [147, 148].

Scalar mesons that form the first light nonet were investigated in the framework of the QCD sum rule
method as well. These studies led to contradictory results about their internal organization [149–157]. In fact,
some computations supported the diquark-antidiquark nature of these scalars [151–153], whereas the author of
Ref. [154] could not find in the light mesons signs of diquark components. Different models were examined to
explain properties of the light scalars and relevant experimental data. These models used various assumptions
on their structure, including mixing of diquark-antidiquarks of different flavor structures [153], and admixtures
of four- and two-quark components [155–157]. The modern theoretical studies and experimental data are in
favor of the tetraquark picture for the light scalar mesons [2–5, 158].

It is evident that different theoretical models consider f0(980) mainly as a tetraquark state, or at least as
a meson containing essential four-quark component. These features of f0(980) may provide useful information
on an internal structure of the meson a1 itself. Indeed, after discovery of the meson a1 , in the literature
appeared various models that considered it as an exotic state. It was modeled as an admixture of diquark-
antidiquark and two-quark components, mass of which is in accord with the COMPASS data [159]. As a pure
diquark-antidiquark compound a1 was investigated in Refs. [160, 161], predictions of which also agree with the
data.
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Alternative confirmation of the four-quark structure of a1 came from investigations performed in Ref.
[162], where in the soft-wall AdS/QCD approach the authors derived and solved a Schrodinger-type equation
for the tetraquark wave function. The result obtained there for the mass of the tetraquark with JPC = 1++ is
in agreement with the data [142].

Explanations of a1 as dynamical rescattering effects in a1(1260) meson’s decays are presented in the
literature by some articles [163–167]. Thus, a resonant structure in the f0(980)π mass distribution was
considered in Ref. [163] as a triangle singularity in the relevant decay channel of the a1(1260) meson. The
decay of the meson a1(1260) runs in accordance with the following scheme: at the first stage of transformations
a1(1260) decays to K∗K -mesons, at the second phase K∗ decays to K and π . Finally, K and K combine to
create the f0(980) meson. Investigation of these transformations and analysis of corresponding triangle diagram
shows the existence of a singularity which may be considered as the resonance observed by COMPASS. The
similar ideas were supported by Ref. [164], in which an anomalous triangle singularity were considered in various
processes, including a1(1260) → f0(980)π decay.

Two-body strong decays of a1 in the context of the covariant confined quark model were examined in
Ref. [168]. The meson a1 was modeled there as a four-quark state with diquark-antidiquark and molecule
structures. In the analysis of the decay a1 → f0(980)π the meson f0(980) was also interpreted as a four-quark
state with molecular or diquark organizations. Partial decay widths, and full width of the a1 state found in
this work allowed the authors to interpret a1 as a four-quark state with a molecule-type structure.

It is seen that we can group theoretical studies of the axial-vector state a1 into two almost equal classes:
the first class contains articles, in which it is considered as a four-quark system with different structures,
the second class encompasses works interpreting a1 as dynamical effect observed in the process a1(1260) →
f0(980)π . In this section we present our investigation of a1 and explain results obtained in Ref. [161].

5.1. Mass and current coupling of a1
In the diquark picture the quark content of the neutral isovector state IGJPC = 1−1++ has the form ([us][us]−
[ds][ds])/

√
2 . The isoscalar partner of a1 , namely f1(1420) then should have the composition ([us][us] +

[ds][ds])/
√
2 . In the chiral limit particles a1 and f1(1420) have equal masses.

A next problem connected with treatment of a1 in the framework of the QCD sum rule method is a
choice of the interpolating current. We choose the current Jµ(x) in the following form [160]

Jµ(x) =
1√
2
[Juµ (x)− Jdµ(x)]. (128)

Here, Jqµ(x) is given by the expression

Jqµ(x) = qTa (x)Cγ5sb(x)
[
qa(x)γµCs

T
b (x)− qb(x)γµCs

T
a (x)

]
+qTa (x)Cγµsb(x)

[
qa(x)γ5Cs

T
b (x)− qb(x)γ5Cs

T
a (x)

]
, (129)

with q being one of the light u , and d quarks.
After fixing Jµ(x) , we should calculate the correlation function Πµν(p) given by Eq. (4), which allows us

to evaluate the mass ma1 and coupling fa1 of the state a1 . The remaining manipulations are standard ones,
therefore we omit further details by emphasizing only that an invariant amplitude is calculated by including
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into analysis vacuum condensates up to dimension 12 . Let us note that contributions of terms up to dimension
eight are found by using corresponding spectral density, effects of other terms are evaluated directly from their
Borel transformations.

Sum rules depend on the auxiliary parameters M2 and s0 , the choice of which has to satisfy standard
constraints. Our analyses allow us to find regions, where M2 and s0 can be varied:

M2 ∈ [1.4, 1.8] GeV2, s0 ∈ [2.4, 3.1] GeV2. (130)

Predictions for mass and coupling of the state a1 extracted from the sum rules are plotted in Figures 6 and 7.
In these figures they are shown as functions of the Borel and continuum threshold parameters. It is clear that
ma1 is rather stable against varying of M2 and s0 . The dependence of fa1 on the Borel parameter is very
weak, but its variations with s0 are noticeable and generate essential part of theoretical ambiguities.

For ma1 and fa1 we find:

ma1 = 1416+81
−79 MeV, fa1 = (1.68+0.25

−0.26)× 10−3 GeV4. (131)

The prediction for the mass of a1 is in very nice agreement with data of the COMPASS collaboration. It is
also in accord with the mass of the a1 meson evaluated in Ref. [160] in the diquark-antidiquark model

ma1 = (1440± 80) MeV, fa1 = (1.32± 0.35 )× 10−3 GeV4. (132)

Our result for fa1 is compatible with prediction of Ref. [160] if one takes into account errors of computations:
in fact, there is a large overlap region between (131) and (132). A discrepancy between two sets of parameters
comes presumably from subleading terms in spectral density, which nevertheless do not change considerably the
final predictions.

Figure 6. The dependence of ma1 on M2 (left panel), and on s0 (right panel).

5.2. The decay channel a1 → f0(980)π
0

The COMPASS observed the axial-vector state a1 in the decay a1 → f0(980)π
0 . This process is P -wave decay

for a1 , and therefore is not its dominant decay mode. Nevertheless, it has to be analyzed in details because
untill now is a solely observed decay of the state a1 .

132



AGAEV et al./Turk J Phys

Figure 7. The coupling fa1 of the a1 state as a function of M2 at fixed s0 (left panel), and of s0 at fixed M2 (right
panel).

In the framework of the LCSR method this decay can be studied starting from analysis of the correlation
function

Πµ(p, q) = i

∫
d4xeipx⟨π(q)|T {Jf (x)J†

µ(0)}|0⟩, (133)

where Jf (x) is the interpolating current of f0(980) . We treat f0(980) as the scalar diquark-antidiquark state
and fix its current Jf (x) in the following form

Jf (x) =
ϵdabϵdce√

2

{[
uTa (x)Cγ5sb(x)

] [
uc(x)γ5Cs

T
e (x)

]
+
[
dTa (x)Cγ5sb(x)

] [
dc(x)γ5Cs

T
e (x)

]}
. (134)

After adopting the currents, we should analyze the strong vertex a1f0π that contains two tetraquarks and an
ordinary meson, and differs from vertices of a tetraquark and two conventional mesons. To find the sum rule for
the coupling ga1f0π , we perform well-known manipulations. Thus, at the first phase, we rewrite the correlation
function using physical parameters of involved particles and get

ΠPhys
µ (p, q) =

⟨0|Jf |f0(p)⟩
p2 −m2

f0

⟨f0 (p)π(q)|a1(p′)⟩
⟨a1(p′)|J†

µ|0⟩
p′2 −m2

a1

+ · · · . (135)

The representation for ΠPhys
µ (p, q) can be simplified by means of the matrix elements of the states a1 , and

f0(980) , as well as by introducing the strong coupling ga1f0π to specify the vertex a1f0π

⟨f0 (p)π(q)|a1(p′)⟩ = ga1f0πp · ε′∗. (136)

Here p′, p and q are four-momenta of a1, f0(980) and π , respectively. In Eq. (136) ε′µ is the polarization

vector of a1 . The two-variable Borel transformations applied to ΠPhys
µ (p, q) yield

BΠPhys
µ (p, q) = ga1f0πmf0ma1ff0fa1e

−m2
f0
/M2

1−m
2
a1
/M2

2

[
1

2

(
−1 +

m2
f0

m2
a1

)
pµ +

1

2

(
1 +

m2
f0

m2
a1

)
qµ

]
, (137)
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where mf0 and ff0 are the mass and coupling of f0(980) , and M2
1 , M2

2 are Borel parameters which corre-
spond to variables p2 and p′2 , respectively. The ΠPhys

µ (p, q) and its Borel transformation contains structures
proportional to pµ and qµ . In our studies, we use the invariant amplitude that correspond to the structure
∼ pµ

ΠPhys
(
M2

1 , M
2
2

)
= ga1f0πmf0ma1ff0fa1

1

2
e−m

2
f0
/M2

1−m
2
a1
/M2

2

(
−1 +

m2
f0

m2
a1

)
. (138)

The sum rule can be derived after calculation of its second component. This means that the correlation function
Πµ(p, q) should be expressed in terms of quark propagators and of the pion’s distribution amplitudes. After
inserting currents into Eq. (133) and contracting quark fields, we get

ΠOPE
µ (p, q) = i

∫
d4xϵϵ̃ϵ′ϵ̃′eipx

{
Tr
[
γµS̃

a′a
u (x)γ5S̃

b′b
s (x)

] [
γ5S̃

ee′

s (−x)γ5
]
αβ

⟨π(q)|uc
′

α (x)u
c
β(0)|0⟩

−Tr
[
γ5S̃

ee′

s (−x)γ5S̃cc
′

u (−x)
] [
γµS̃

b′b
s (x)γ5

]
αβ

⟨π(q)|uaα(x)ua
′

β (0)|0⟩+Tr
[
γ5S̃

a′a
u (x)γ5S̃

b′b
s (x)

]
×
[
γ5S̃

ee′

s (−x)γµ
]
αβ

⟨π(q)|uc
′

α (x)u
c
β(0)|0⟩+Tr

[
γ5S̃

ee′

s (−x)γµS̃cc
′

u (−x)
] [
γ5S̃

b′b
s (x)γ5

]
αβ

×⟨π(q)|uaα(x)ua
′

β (0)|0⟩, (139)

where ϵϵ̃ϵ′ϵ̃′ = ϵdabϵdceϵd
′a′b′ϵd

′c′e′ .
Let us note that Eq. (139) is a full expression for ΠOPE

µ (p, q) , that encompasses contributions due to

both u and d components of the interpolating currents Jµ(x) and Jf (x) : this form of the correlation function
is convenient for our analysis. Apart from propagators, the function ΠOPE

µ (p, q) contains also nonlocal quark
operators sandwiched between the vacuum and pion states, which can be transformed in accordance with the
prescription (26).

The matrix elements of operators u(x)Γju(0) can be expanded over x2 and written down using the pion’s
two-particle DAs of different twist [169, 170]. For example, in the case of Γ = iγµγ5 and γ5 one obtains

√
2⟨π0(q)|u(x)iγµγ5u(0)|0⟩ = fπqµ

∫ 1

0

dueiuqx
[
ϕπ(u) +

m2
πx

2

16
A4(u)

]

+
fπm

2
π

2

xµ
qx

∫ 1

0

dueiuqxB4(u), (140)

and
√
2⟨π0(q)|u(x)iγ5u(0)|0⟩ =

fπm
2
π

mu +md

∫ 1

0

dueiuqxϕp3;π(u). (141)

Above, the twist-2 (or leading twist) DA of the pion is denoted by ϕπ(u) . The A4(u) and B4(u) are higher twist
functions which can be rewritten in terms of the pion two-particle twist-4 distributions. The matrix element
given by Eq. (141) is determined by one of two-particle twist-3 distribution amplitudes of the pion ϕp3;π(u) .
Another two-particle twist-3 DA ϕσ3;π(u) corresponds to matrix element (141) with iγ5 → σµν replacement.
The matrix elements which appear due to insertion into u(x)Γju(0) of the gluon field strength tensor Gµν(ux)
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can be expressed in terms of three-particle DAs of the pion. Their definitions and further details were presented
in Refs. [169, 170].

Because the correlation function written down in terms pion’s various DAs is rather cumbersome, we
do not provide it here. The ΠOPE

µ (p, q) contains Lorentz structures proportional to pµ and qµ . We use the

invariant amplitude ΠOPE
(
p2, p′2

)
that corresponds to a structure ∼ pµ and equate it to similar amplitude

from ΠPhys
µ (p, q) . The Borel transform of the invariant amplitude ΠOPE

(
p2, p′2

)
can be computed in a manner

described in Ref. [51]. Afterwards, we carry out the continuum subtraction, which simplifies when two Borel
parameters are equal to each other M2

1 =M2
2 . In the case under discussion we assume that a choice M2

1 =M2
2

does not lead to essential ambiguities in sum rules, and introduce M2 through

1

M2
=

1

M2
1

+
1

M2
2

. (142)

Continuum subtraction is carried out by means of recipes explained in Ref. [51]. Some of formulas used during
these manipulations were presented in Appendix B of Ref. [54].

Then, the strong coupling ga1f0π can be evaluated using the sum rule

ga1f0π =
2m2

a1

m2
f0

−m2
a1

e(m
2
f0

+m2
a1

)/2M2

mf0ma1ff0fa1
ΠOPE

(
M2, s0

)
, (143)

where ΠOPE
(
M2, s0

)
is the invariant amplitude after Borel transformation and subtaction procedures. The

partial width of decay a1 → f0(980)π
0 is given by the formula

Γ(a1 → f0π
0) = g2a1f0π

λ3(ma1 ,mf0 ,mπ)

24πm2
a1

. (144)

Important nonperturbative information in ΠOPE
(
M2, s0

)
is included into DAs of the pion. A consid-

erable part of ΠOPE
(
M2, s0

)
is generated by two-particle DAs of the pion at u0 = 1/2 . The leading twist DA

ϕπ(u) contributes to ΠOPE
(
M2, s0

)
not only directly, but also via higher-twist DAs with which it is connected

by equations of motion. Therefore, ϕπ(u) deserves a detailed analysis.

The DA ϕπ(u) can be expanded over the Gegenbauer polynomials C3/2
2n (ς)

ϕπ(u, µ
2) = 6uu

[
1 +

∑
n=1,2...

a2n(µ
2)C

3/2
2n (u− u)

]
, (145)

where u = 1− u . It depends not only on a longitudinal momentum fraction u carried by a quark, but due to
a2n(µ

2) also on a scale µ . The Gegenbauer moments a2n(µ2
0) at a normalization scale µ = µ0 fix an initial

shape of the distribution amplitude, and should be determined by some nonperturbative method or extracted
from experiment.

Here, we use two models for ϕπ(u, µ2 = 1 GeV2) . One of these models was obtained from LCSR analysis
of the pion’s electromagnetic transition form factor [171, 172]. The shape of this DA is fixed by the coefficients

a2 = 0.1, a4 = 0.1, a6 = 0.1, a8 = 0.034. (146)
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At the middle point it equals to ϕπ(1/2) ≃ 1.354 , which is not far from ϕasy(1/2) = 3/2 , where ϕasy(u) = 6uu

is the asymptotic DA. We use also the lattice model for ϕπ(u) [173], which contains only one nonasymptotic
term

ϕπ(u, µ
2) = 6uu

[
1 + a2(µ

2)C
3/2
2 (u− u)

]
. (147)

The second Gegenbauer moment a2(µ
2) of this DA at µ = 2 GeV was estimated a2 = 0.1364 ± 0.021 , and

evolved to
a2(1 GeV2) = 0.1836± 0.0283 (148)

at the scale µ = 1 GeV .
The sum rule (143) contains the spectroscopic parameters of the particles a1 and f0 . The mass ma1 and

coupling fa1 have been evaluated in the previous subsection. For mf0 we use experimental data [96]

mf0 = (990± 20) MeV, (149)

whereas the coupling of the meson f0(980) is borrowed from Ref. [151]

ff0 = (1.51± 0.14)× 10−3 GeV4. (150)

In Ref. [151] ff0 was extracted from the QCD sum rule analysis using the interpolating current (134), and
hence is appropriate for our goals. Here, we take into account a difference between definitions of ff0 employed
in Ref. [151], and accepted in the present review.

Numerical computations are carried out by utilizing the following regions for the Borel and continuum
threshold parameters

M2 ∈ [1.5, 2.0] GeV2, s0 ∈ [2.4, 3.1] GeV2, (151)

where all standard restrictions on M2 , and s0 imposed by the sum rules are satisfied.
For the pion DA (146) the strong coupling ga1f0π and width of the decay a1 → f0π

0 are equal to

ga1f0π = 3.41± 0.97, Γ(a1 → f0π
0) = (3.14± 0.96) MeV, (152)

respectively. For the DA from Eq. (148), we find

ga1f0π = 3.38± 0.93, Γ(a1 → f0π
0) = (3.09± 0.91) MeV. (153)

It is seen that an effect of different twist-2 DAs of the pion on final results is small.

5.3. The decay channels a1 → K∗±K∓ , K∗0K
0 and K

∗0
K0

Here, we consider S-wave decays of the exotic meson a1 . For these purposes, we compute strong couplings
ga1K∗K− and ga1K∗K+ of the vertices a1K

∗+K− and a1K
∗−K+ , as well as find other two couplings corre-

sponding to vertices a1K∗0K
0 and a1K

∗0
K0 . These vertices contain a tetraquark and two ordinary mesons.

For their investigation, the LCSR method should be used in connection with the soft-meson approximation.
In other words, to satisfy the four-momentum conservation at these vertices momentum of a final meson, for
example, a momentum of K− in a1K

∗+K− has to be set q = 0 .
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We start from the decay channel a1 → K∗+K− which can be studied using of the correlation function

Πµν(p, q) = i

∫
d4xeipx⟨K−(q)|T {JK

∗+

µ (x)J†
ν(0)}|0⟩, (154)

where JK∗+

µ (x) is the interpolating current of the K∗+ meson

JK
∗+

µ (x) = s(x)γµu(x). (155)

Following standard prescriptions, we write Πµν(p, q) in terms of physical parameters of the particles a1, K∗+

and K−

ΠPhys
µν (p, q) =

⟨0|JK∗+

µ |K∗+(p)⟩
p2 −m2

K∗
⟨K∗+ (p)K−(q)|a1(p′)⟩

⟨a1(p′)|J†
ν |0⟩

p′2 −m2
a1

+ ..., (156)

where p′ and p , q are momenta of the initial and final particles, respectively.
Further simplification of ΠPhys

µν (p, q) is achieved by replacing the matrix elements with their explicit
formulas

⟨0|JK
∗+

µ |K∗+(p)⟩ = fK∗mK∗εµ,

⟨K∗+ (p)K−(q)|a1(p′)⟩ = ga1K∗K− [(p · p′)(ε∗ · ε′)− (p · ε′)(p′ · ε∗)] . (157)

First of them, i.e., ⟨0|JK∗+

µ |K∗+(p)⟩ is written in terms of the mass mK∗ , decay constant fK∗ and polarization
vector εµ of the K∗+ meson. The second matrix element is expressed by employing the strong coupling ga1K∗K−

that should be evaluated from a sum rule. In the soft approximation q → 0 and p′ = p : As a result, we should
perform one-variable Borel transformation, which leads to

BΠPhys
µν (p) = ga1K∗K−mK∗ma1fK∗fa1

e−m
2/M2

M2

(
m2gµν − pνp

′
µ

)
+ · · · , (158)

where m2 = (m2
K∗ +m2

a1)/2

We preserve in Eq. (158) pν ̸= p′µ to show explicitly the Lorentz structures of BΠPhys
µν (p) . It is known

that in the soft limit there are contributions in Eq. (158) denoted by dots, which remain unsuppressed even
after Borel transformation. They correspond to strong vertices of higher excitations of particles involved into
a decay process. These terms appear as contaminations in the physical side of the sum rules and should be
removed using well-known recipes [51].

In the soft-meson approximation the correlation function ΠOPE
µν (p) is determined by the formula

ΠOPE
µν (p) = i

∫
d4xeipx

ϵϵ̃√
2

{[
γ5S̃

ic
u (x)γµS̃

bi
s (−x)γν

]
+
[
γν S̃

ic
u (x)γµS̃

bi
s (−x)γ5

]}
αβ

×⟨K−(q)|seα(0)uaβ(0)|0⟩, (159)

where ϵϵ̃ = ϵdabϵdec .
It turns out that the matrix element of the K meson that contributes to this correlation function is

⟨0|u(0)iγ5s(0)|K⟩ = fKµK , (160)
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where µK = m2
K/(ms +mu) . The function ΠOPE

µν (p) contains the same Lorentz structures as its phenomeno-
logical counterpart (158). To derive the sum rule for ga1K∗K− , we choose the invariant amplitude proportional
to gµν . The Borel transform of this amplitude reads

ΠOPE(M2) =

∫ ∞

4m2
s

dsρpert.(s)e−s/M
2

+
fKµK√

2

[
ms

6
(2⟨uu⟩ − ⟨ss⟩) + 1

72
⟨αsG

2

π
⟩

+
ms

36M2
⟨sgsσGs⟩ −

g2s
243M2

(
⟨ss⟩2 + ⟨uu⟩2

)]
, (161)

where

ρpert.(s) =
fKµK

12
√
2π2

s.

The function ΠOPE(M2) contains nonperturbative terms up to dimension six, and has a simple form. It is worth
emphasizing that the spectral density ρpert.(s) in Eq. (161) is calculated as imaginary part of the correlation
function, whereas Borel transforms of other terms are extracted directly from ΠOPE(p2) .

The sum rule for the strong coupling ga1K∗K− is given by the equality

ga1K∗K−mK∗ma1fK∗fa1m
2 e

−m2/M2

M2
+ ... = ΠOPE(M2). (162)

But, before to carry out the continuum subtraction, we need to exclude unsuppressed terms from the physical
side of this expression. To this end, we act on both sides of Eq. (162) by the operator P(M2,m2) , which
singles out the ground-state term and cancel contaminations. Remaining contributions can be subtracted in
a standard way, which requires replacing ∞ → s0 in the first term of ΠOPE(M2) while leaving components
∼ (M2)0 and ∼ 1/M2 in their original forms [51]. The width of the decay a1 → K∗+K− after replacements
gZψπ,mψ, λ (mZ , mψ,mπ) → ga1K∗K− ,mK∗ , λ (ma1 ,mK∗ ,mK) can be calculated using Eq. (36).

The sum rule for ga1K∗K− can be easily used for numerical calculations. The regions for parameters M2

and s0 employed in the decay a1 → f0(980)π are suitable for the process a1 → K∗+K− as well. For the masses
and decay constants of the mesons K∗+ and K− we use

mK± = (493.677± 0.016) MeV, mK∗± = (891.76± 0.25) MeV, (163)

and
fK± = (155.72± 0.51) MeV, fK∗0(±) = 225 MeV, (164)

respectively.
Results of calculations are presented below

ga1K∗K− = (2.84± 0.79) GeV−1, Γ(a1 → K∗+K−) = (37.84± 10.97) MeV. (165)

The width of the decay Γ(a1 → K∗−K+) are also given by Eq. (165).

The analysis of the decays a1 → K∗0K
0
(
K

∗0
K0
)

does not differ from one presented above. Let us

write down only masses of the K0(K
0
) and K∗0(K

∗0
) mesons

mK0 = (497.611± 0.013) MeV, mK∗0 = (895.55± 0.20) MeV, (166)
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employed in numerical calculations. The decay constants of these pseudoscalar and vector mesons are presented
in Eq. (164). We skip further details and write down final sum rule predictions for one of these channels

g
a1K∗0K

0 = (2.85± 0.82) GeV−1, Γ(a1 → K∗0K
0
) = (33.35± 9.76) MeV. (167)

Parameters of the process a1 → K
∗0
K0 are identical to ones of the decay a1 → K∗0K

0 presented in Eq. (167).
Predictions for decays of the state a1 obtained in this section allow us to find its full width Γ

Γ = (145.52± 20.79) MeV, (168)

which is compatible with the COMPASS data, if we take into account ambiguities of computations.
We have treated the meson a1 as a diquark-antidiquark state, and calculated its mass and widths of five

decay modes [161]. Our prediction for the mass ma1 = 1416+81
−79 MeV of the a1 is in good agreement with the

experimental result. Within small computational errors, it is also in accord with the result of Ref. [160]. The
full width of the meson a1 calculated utilizing five decay channels led to prediction Γ = (145.52± 20.79) MeV .
By taking into account errors of theoretical calculations and experimental measurements, it is consistent with
the COMPASS data Γ = 153+8

−23 MeV as well. Analysis performed in Ref. [161] proved that the axial-vector
meson a1(1420) can be considered as a viable candidate to a diquark-antidiquark state.

6. The resonance Y (4660)

The resonances Y (4660) (in a short form Y ) and Y (4360) were seen by the Belle collaboration through initial-
state radiation (ISR) in the electron-positron annihilation e+e− → γISRψ

′π+π− : they were fixed as resonant
structures in the ψ′π+π− invariant mass distribution [43, 44]. The mass and full width of the resonance Y

measured by Belle are [44]

mY = 4652± 10± 8 MeV, ΓY = 68± 11± 1 MeV. (169)

It is interesting that there are theoretical papers in the literature claiming to interpret Y and Y (4360)

in the contexts of different models and schemes of the high-energy physics. In fact, the resonance Y was
considered as the excited charmonia 53S1 and 63S1 in Refs. [174] and [175], respectively. To account for
collected experimental data, Y was analyzed as a bound state of the scalar f0(980) and vector ψ′ mesons
[176–178], or as a baryonium [179, 180]. The hadrocharmonium model for the resonances Y and Y (4360) was
proposed in Ref. [81].

The diquark-antidiquark picture is among widely used models of Y (4360) and Y , in which one assumes
they are composition of a diquark and an antidiquark with certain features. Thus, computations performed in
the context of the relativistic diquark model allowed the authors of Ref. [68] to interpret the resonance Y (4360)

as an excited 1P tetraquark composed of an axial-vector diquark and antidiquark. In this picture the resonance
Y is 2P excitation of a scalar diquark-antidiquark state. As a radial excitation of the tetraquark Y (4008) the
resonance Y (4360) was examined in Ref. [72]. In the framework of the QCD sum rule method Y was analyzed
as the P -wave tetraquark with Cγ5 ⊗ Dµγ5C type structure and [cs][cs] content in Ref. [181]. It was also
modeled in Ref. [182] as the tetraquark [cs][cs] with the interpolating current Cγ5 ⊗ γ5γµC . The mass of such
compound computed using the sum rule method agrees with experimental data.
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Strictly speaking, there are some options to construct a tetraquark with required P and C parities from
the five independent diquark fields without derivatives, which bear spins 0 or 1 and have different P -parities
[129]. This means that there are numerous tetraquarks with different diquark-antidiquark structures, but the
same quantum numbers JPC = 1−− . In the context of the QCD sum rule method such currents, excluding ones
with derivatives, were employed in Ref. [129] to compute masses of tetraquarks with JPC = 1−+, 1−−, 1++, 1+−

and quark contents [cs][cs] and [cq][cq] . All examined currents for the tetraquark [cq][cq] with JPC = 1−−

predicted m ∼ 4.6 − 4.7 GeV , which implies a possible tetraquark nature of Y as well. But these results do
not exclude interpretation of Y as a state [cs][cs] with JPC = 1−− and structure Cγν ⊗ σµνC −Cσµν ⊗ γνC ,
because the mass of such state m = 4.64± 0.09 GeV is also consistent with the mass of the Y resonance. The
sum rule method was utilized in Refs. [183–185] as well, in which the resonance Y was modeled as a tetraquark
with [cq][cq] or [cs][cs] contents, and Cγµ ⊗ γνC − Cγv ⊗ γµC and C ⊗ γµC type structures.

6.1. Mass and coupling of the vector tetraquark Y

We consider Y as the [cs][cs] tetraquark made of a scalar diquark and vector antidiquark with the Cγ5⊗γ5γµC
type structure [186]. In our calculations, we take into account condensates up to dimension 10 by including
into consideration the gluon condensate ⟨g3sG3⟩ omitted in aforementioned works, and improve an accuracy of
the predictions obtained there.

We start from consideration of the correlation function (4), where the interpolating current Jµ(x) is

Jµ(x) = ϵϵ̃
[
sTb (x)Cγ5cc(x)sd(x)γ5γµCc

T
e (x) + sTb (x)Cγµγ5cc(x)sd(x)γ5Cc

T
e (x)

]
. (170)

Remaining operations are standard, and the invariant amplitude proportional to a structure gµν in the physical
side of the sum rule is equal to

ΠPhys(p2) =
m2
Y f

2
Y

m2
Y − p2

(171)

The QCD side of the sum rule ΠOPE
µν (p) should be expressed in terms of the quark propagators, and has the

form

ΠOPE
µν (p) = i

∫
d4xeipxϵϵ̃ϵ′ϵ̃′

{
Tr
[
γ5S̃

bb′

s (x)γ5S
cc′

c (x)
]
Tr
[
γ5γµS̃

e′e
c (−x)γνγ5Sd

′d
s (−x)

]
+Tr

[
γ5γµS̃

ee′

c (−x)γ5Sd
′d
s (−x)

]
Tr
[
γ5γν S̃

bb′

s (x)γ5S
cc′

c (x)
]
+Tr

[
γ5S̃

ee′

c (−x)γνγ5Sd
′d
s (−x)

]
×Tr

[
γ5S̃

bb′

s (x)γµγ5S
cc′

c (x)
]
+Tr

[
γ5γν S̃

bb′

s (x)γµγ5S
cc′

c (x)
]
Tr
[
γ5S̃

ee′

c (−x)γ5Sd
′d
s (−x

]}
. (172)

The analysis performed by taking into account all usual restrictions of sum rule computations permits us
to find

M2 ∈ [4.9, 6.8] GeV2, s0 ∈ [23.2, 25.2] GeV2, (173)

as working windows for M2 and s0 . Really, at M2 = 4.9 GeV2 the convergence of the OPE is satisfied with
high accuracy and R(4.8 GeV2) = 0.017 [R is evaluated using DimN ≡ Dim(8 + 9 + 10) in Eq. (64)]. At
M2 = 6.8 GeV2 the pole contribution is PC = 0.16 , and at M2 = 4.9 GeV2 reaches its maximum PC = 0.78 .
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Moreover, at minimum of M2 the perturbative contribution constitutes more than 74% of the result and
significantly exceeds nonperturbative effects.

In Figures 8 and 9 we depict mY and fY as functions of the parameters M2 and s0 . It is evident that
variations of the mass and coupling on the Borel parameter are very weak: predictions for mY and fY are
stable against changes of M2 within limits of the working region. But, mY and fY demonstrate a sensitivity
to the continuum threshold parameter s0 : this dependence forms an essential part of ambiguities in obtained
predictions, which, however are within limits traditional for sum rule calculations. Then for the mass and
coupling of the resonance Y (4660) , we get

mY = 4677+71
−63 MeV, fY = (0.99± 0.16)× 10−2 GeV4. (174)

Figure 8. The dependence of the Y (4660) resonance’s mass on the Borel (left) and continuum threshold (right)
parameters.

Figure 9. The same as in figure 8 but for the coupling fY .

The result for mY is compatible with experimental data [44]. It is interesting to confront mY with
results of other theoretical studies. We have noted above, that the mass of the resonance Y was estimated
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using QCD sum rule method in various publications. Thus, in Ref. [181], in which the authors examined Y as
P -wave excitation of the scalar tetraquark [cs][cs] , its mass was found equal to mY = (4.69 ± 0.36) GeV . As
the vector tetraquark [cs][cs] the resonance Y was considered also in Ref. [182], with the prediction

mY = (4.65± 0.10) GeV. (175)

These results agree with experimental data, and, by taking into account errors of calculations, are in accord
also with our prediction.

Vector tetraquarks with [cq][cq] or [cs][cs] contents and charge conjugation parities C = ± were studied
in Ref. [129] as well. In this article, sum rules for the mass were calculated by including into analysis vacuum
condensates up to dimension 8 . For the tetraquark [cs][cs] built of the scalar diquark and vector antidiquark,
the authors employed two currents denoted there by J1µ and J3µ , respectively. The prediction obtained using
the first current exceeds the mass of the resonance Y

mJ1 = (4.92± 0.10) GeV, (176)

whereas the second one underestimates it, and leads to

mJ3 = (4.52± 0.10) GeV. (177)

These results do not coincide with data, and agree neither with our result nor with prediction of Ref. [182] made
by employing the current Eq. (170).

The Y was assigned in Ref. [185] to be the C ⊗ γµC -type vector tetraquark with the mass mY =

(4.66 ± 0.09) GeV and pole residue λY = (6.74 ± 0.88) × 10−2 GeV5 , which for the coupling fY leads to
fY = (1.45 ± 0.19) × 10−2 GeV4 . The difference between this result and our prediction (174) for fY can be
explained by assumptions on the internal structure of the vector resonance Y . In fact, we treat Y a state
built of a scalar diquark and vector antidiquark, whereas in Ref. [185] it was considered as a bound state of a
pseudoscalar diquark and axial-vector antidiquark.

It is evident that one can interpret the resonance Y as vector tetraquarks with the same content [cs][cs] ,
but distinct internal organizations and interpolating currents. Therefore, there is a necessity to analyze decay
channels of the state Y to make a choice between existing models. In the next subsection we investigate strong
decay modes of Y , where mY and fY appear as input information.

6.2. Strong decays of the tetraquark Y

The strong decays of the tetraquark Y can be determined by employing a kinematical constraint which is
evident from Eq. (174). We consider S -wave decays of Y , therefore the spin and parity in these processes are
conserved. Performed analysis allows us to see that processes Y → J/ψf0(980), ψ

′f0(980) , J/ψf0(500), and
ψ′f0(500) are among important decay modes of Y .

These decays in the final state contain scalar mesons f0(980) and f0(500) , which will be considered as
diquark-antidiquark states. A model proposed in Ref. [2] treats f0(980) and f0(500) as superpositions of the
basic states L = [ud][ud] and H = ([su][su] + [ds][ds])/

√
2 . Calculations carried out by employing this model

predicted the mass and full width of mesons f0(980) and f0(500) [3, 4], which are in reasonable agreement with
existing experimental data.
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We consider here in a detailed form decays of the tetraquark Y to mesons J/ψf0(980) and ψ′f0(980) ,
and compute the strong couplings gY ψf0(980) and gY ψ′f0(980) corresponding to the vertices Y J/ψf0(980) and
Y ψ′f0(980) , respectively. To this end, we use the LCSR method and analyze the correlation function

Πµν(p, q) = i

∫
d4xeipx⟨f0(q)|T {Jψµ (x)J†

ν(0)}|0⟩, (178)

where Jψµ (x) is the interpolating currents to J/ψ , and ψ′ .

To extract from Eq. (178) the sum rules for gY ψf0(980) and gY ψ′f0(980) , we first find Πµν(p, q) in terms
of the physical parameters of involved particles. After standard manipulations discussed in this review, we get

ΠPhys
µν (p, q) =

gY ψf0(980)fψmψfYmY

(p′2 −m2
Y )
(
p2 −m2

ψ

) (−p′µpν + m2
Y +m2

ψ

2
gµν

)

+
gY ψ′f0(980)fψ′mψ′fYmY

(p′2 −m2
Y )
(
p2 −m2

ψ′

) (−p′µpν + m2
Y +m2

ψ′

2
gµν

)
+ · · · , (179)

where mψ , and mψ′ are the mass of the mesons J/ψ and ψ′ , respectively. The decay constants of these
mesons are denoted by fψ and fψ′ . In order to derive sum rules for couplings gY ψf0(980) and gY ψ′f0(980) , we
use structures proportional gµν and corresponding invariant amplitudes.

At the next stage of calculations, we express the correlation function using the quark propagators, and
obtain

ΠOPE
µν (p, q) =

∫
d4xeipxϵϵ̃

[
γ5S̃

ic
c (x)γµS̃

ei
c (−x)γνγ5 − γνγ5S̃

ic
c (x)γµS̃

ei
c (−x)γ5

]
αβ

×⟨f0(q)|sbα(0)sdβ(0)|0⟩, (180)

Our computations for the Borel transformed correlation function ΠOPE(M2) give

ΠOPE(M2) =
λf ′

24π2

∫ ∞

4m2
c

ds

s

√
s(s− 4m2

c)(s+ 8m2
c) + λf ′

∫ 1

0

dαe−m
2
c/M

2ZF (α,M2). (181)

Here, λf ′ is the matrix element
⟨f0(980)(q)|s(0)s(0)|0⟩ = λf ′ , (182)

which has been calculated by employing the QCD two-point sum rule method in Ref. [186]. In Eq. (181)
F (α,M2) is a function that contains all nonperturbative contributions to ΠOPE(M2) up to dimension 8

F (α,M2) = −
〈
αsG

2/π
〉
m2
c

72M4

1

Z

[
m2
c (1− 2Z)−M2Z (3− 7Z)

]
+

⟨g3sG3⟩
45 · 29π2M8Z5

{
m6
c(1− 2α)2(9− 11Z) + 2m2

cM
4Z2[−42 + Z(122 + 9Z)]

−2M6Z3 [6− Z(22− 9Z)] +m4
cM

2Z
(
−11 + 119Z − 190Z2

)}
+

〈
αsG

2/π
〉2
m2
cπ

2

648M10Z3

[
m4
c −m2

cM
2(1 + 4Z) + 2M4Z(2− Z)

]
, (183)
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where Z = α(1− α) .
After equating the Borel transform of the invariant amplitudes ΠPhys(p2) and ΠOPE(M2) , and carrying

out continuum subtraction, we obtain an expression that contains two unknown variables gY Jf0(980) and
gYΨf0(980) . It is worth noting that continuum subtraction in the perturbative part has to done by ∞ → s0

replacement. As is seen, all terms in Eq. (183) are proportional to inverse powers of the parameter M2 , therefore
the nonperturbative contributions should be left in an unsubtracted form [51]. The second equality can be found
by applying the operator d/d(−1/M2) to the first expression. By solving these equalities it is possible to extract
sum rules for gY Jf0(980) and gYΨf0(980) .

The similar analysis is valid also for decays of Y to J/ψf0(500) , and ψ′f0(500) . The width of the
decays under analysis can be evaluated by means of the formula (36), where instead of parameters gZψπ , mψ ,
and λ (mZ , mψ,mπ) one has to use gY ψf0 , mψ , and λ(mY ,mψ,mf0) : here, ψ and f0 are one of the mesons
J/ψ , ψ′ and f0(500) , f0(980) , respectively.

The numerical computations are fulfilled by employing the vacuum condensates given in Eq. (18), and
using the mass and decay constant of the mesons J/ψ and ψ′ (see, Table 2). The parameters of the resonance
Y have been found in the previous subsection, and for the mass of the f0(980) meson we use its experimental
value mf0 = (990± 20) MeV .

The parameters M2 and s0 are changed in the regions M2 ∈ [4.9, 6.8] GeV2 and s0 ∈ [23.2, 25.2] GeV2 .
The results obtained for the strong couplings read

|gY Jf0(980)| = (0.22± 0.07) GeV−1, gYΨf0(980) = (1.22± 0.33) GeV−1. (184)

Then partial widths of the decay modes under analysis become equal to (in units of MeV):

Γ(Y → J/ψf0(980)) = 18.8± 5.4, Γ(Y → ψ′f0(980)) = 30.2± 8.5. (185)

Exploration of the next decays does not differ from previous analysis and gives the following predictions

gY Jf0(500) = (0.07± 0.02) GeV−1, |gYΨf0(500)| = (0.18± 0.05) GeV−1, (186)

and (in MeV)
Γ(Y → J/ψf0(500)) = 2.7± 0.7, Γ(Y → ψ′f0(500)) = 13.1± 3.7. (187)

The full width of the resonance Y evaluated by taking into account these four strong decay modes

ΓY = (64.8± 10.8) MeV (188)

agrees with the experimental result (68 ± 11 ± 1) MeV from Eq. (169). The Particle Data Group for the
full width of Y provides the world averaged estimate ΓY = (72 ± 11) MeV [96], which exceeds (169). But,
the result Eq. (188) within errors of computations and experimental measurements is consistent also with the
world average. We also take into account that in the diquark-antidiquark model there are other S -wave decay
channels Y → D±

s D
∓
s1(2460) and Y → D∗±

s D∓
s0(2317) of the resonance Y which contribute to ΓY and may

improve this agreement.
We have calculated the full width of the resonance Y by taking into account the strong decays Y →

J/ψf0(500) , ψ′f0(500) , J/ψf0(980) and ψ′f0(980) . However, only the process Y → ψ′π+π− was observed
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experimentally. It is known that the dominant decays of the f0(500) and f0(980) mesons are processes
f0 → π+π− and f0 → π0π0 . Therefore, the chains Y → ψ′f0(980) → ψ′π+π− and Y → ψ′f0(500) → ψ′π+π−

explain a dominance of the observed ψ′π+π− final state in the decay of the resonance Y . In the diquark-
antidiquark model the width of the mode Y → J/ψf0(980) is considerable. Besides, decays to mesons ψ′π0π0

and J/ψπ0π0 have to be detected as well. But neither J/ψπ+π− nor π0π0 were seen in decays of Y . It is
interesting that aforementioned final-state particles were observed in decays of the vector resonance Y (4260) :
its decays to J/ψπ+π− and J/ψπ0π0 as well as to J/ψK+K− were discovered in experiments. Therefore,
more accurate measurements may fix these modes in decays of the resonance Y as well.

7. The light resonances X(2100) and X(2239)

In previous sections we have explored heavy resonances which are candidates to exotic four-quark mesons. They
are heavy particles and contain a pair of cc quarks. Only small number of resonances observed experimentally
may be interpreted as multi-quark mesons composed exclusively of light quarks. The famous resonance Y (2175)

seen by BaBar in the process e+e− → γISRϕf0(980) [187] is one of such states. It was fixed as a resonant
structure in the ϕf0(980) invariant mass spectrum. The BESII, Belle, and BESIII collaborations observed this
state as well [188–190]. The mass and width of the resonance Y (2175) with spin-parities JPC = 1−− are
m = (2175± 10± 15) MeV and Γ = (58± 16± 20) MeV , respectively.

Some other light resonances that can be considered as four-quark states were discovered recently by
BESIII. One of them, i.e., X(2239) was fixed in the cross section’s lineshape of the process e+e− → K+K−

[191]. The mass and width of this resonant structure are equal to m = (2239.2 ± 7.1 ± 11.3) MeV and
Γ = (139.8 ± 12.3 ± 20.6) MeV , respectively. The X(2100) was discovered in the process J/ψ → ϕηη′ as a
resonance in the ϕη′ mass spectrum [192]. The BESIII explored angular distribution of J/ψ → X(2100)η , but
because of limited statistics could not distinguish 1+ and 1− options for the spin-parity JP of the X(2100) .
Therefore, the mass and width of this state were extracted by employing both of these options. For JP = 1− the
mass and width of the X(2100) were extracted to be m = (2002.1±27.5±21.4) MeV and Γ = (129±17±9) MeV .
In the case JP = 1+ BESIII found m = (2062.8± 13.1± 7.2) MeV and Γ = (177± 36± 35) MeV .

Almost all models and methods of the high energy physics were used to understand structures of these
light resonances. Because Y (2175) was observed for the first time more than ten years ago, there are various
articles in literature, in which it was investigated thoroughly. The Y (2175) was interpreted as 23D1 excited
state of the ordinary meson ss [193, 194]. It was considered as a dynamically generated ϕKK system [195], or a
system appeared due to self-interaction between ϕ and f0(980) mesons [196]. Other models suggest to explain
the resonance Y (2175) as a hybrid meson ssg , or a baryon-antibaryon qqsqqs state that couples strongly to
the ΛΛ channel (see Ref. [191] for other models).

As a vector tetraquark with ssss or ssss contents Y (2175) was examined in Refs. [197] and [198, 199],
respectively. An alternative suggestion on nature of this state was made in Ref. [200], where it was interpreted as
a vector diquark-antidiquark system with the content sqsq . The resonances X(2100) and X(2239) (hereafter
X1 and X2 , respectively) were explored as vector or axial-vector tetraquarks as well. Indeed, in Ref. [201] the
ssss four-quark compounds were studied within the relativized quark model. The authors made a conclusion
that the resonance X2 can be considered as a P -wave ssss tetraquark. The X1 was investigated within
framework the QCD sum rule method in Refs. [202, 203]. Results of these analyses can be explained by
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interpreting X1 as the axial-vector ssss tetraquark with JPC = 1+− . An alternative explanation of X1 as the
second radial excitation of the meson h1(1380) was suggested in Ref. [204].

In our article [205], we explored the light axial-vector TAV and vector TV tetraquarks ssss and calculated
their spectroscopic parameters. It appears, the resonance X1 may be considered as a axial-vector tetraquark:
we identified X1 with TAV . Among the vector particles Y (2175) and X2 , which we treated as different
resonances, parameters of the latter are closer to our predictions. Therefore, we interpreted the resonance X2

as the tetraquark TV . We evaluated also width of the decays X1 → ϕη′ and X1 → ϕη which are essential for
our interpretation of X1 . Presentation in this section is based on Ref. [205].

7.1. Mass and coupling of the axial-vector tetraquark ssss

In this subsection, we calculate the spectroscopic parameters of the axial-vector tetraquark TAV = ssss using
the QCD sum rule method. We consider the two-point correlation function Πµν(p) given by Eq. (4), with Jµ(x)

being the interpolating current for the axial-vector tetraquark TAV . The choice of Jµ(x) is a main decision in
our analysis, because TAV with spin-parities JPC = 1+− can be modeled by employing various currents. The
current that leads to credible results for parameters of TAV is given by the expression [202]

Jµ(x) =
[
sTa (x)Cγ

νsb(x)
] [
sa(x)σµνγ5Cs

T
b (x)

]
−
[
sTa (x)Cσµνγ5sb(x)

] [
sa(x)γ

νCsTb (x)
]
. (189)

The sum rules for the mass m and coupling f of the tetraquark TAV can be obtained in accordance with
prescriptions of the method. First, we should rewrite the correlation function Πµν(p) by utilizing the physical
parameters of TAV . After some operations for the physical side of the sum rules, we obtain

ΠPhys
µν (p) =

m2f2

m2 − p2

(
−gµν +

pµpν
m2

)
+ · · · . (190)

The correlation function Πµν(p) calculated using the quark propagators forms the QCD side of the sum rules.
It is determined by the formula

ΠOPE
µν (p) =

i

4

∫
d4xeipx

{
Tr
[
γαS̃a

′b(−x)γβSb
′a(−x)

]
Tr
[
Sab

′
(x)γνγβγ5S̃

ba′(x)γ5γµγα

]
−Tr

[
γαS̃bb

′
(−x)γβSa

′a(−x)
]
Tr
[
Sab

′
(x)γνγβγ5S̃

ba′(x)γ5γµγα

]
+ 62 similar terms

}
. (191)

In these computations, we employ the x -space light-quark propagator

Sab(x) ⇒ Sab(x) +
msgs
32π2

Gµνab σµν

[
ln

(
−x2Λ2

4

)
+ 2γE

]
+ · · · , (192)

where γE ≃ 0.577 is the Euler constant, and Λ is the QCD scale parameter. The scale parameter Λ can be
fixed inside of the region [0.5, 1] GeV ; we use the central value Λ = 0.75 GeV . We introduce also the notation
Gµνab ≡ GµνA tAab, A = 1, 2, . . . 8 , and tA = λA/2 , with λA being the Gell-Mann matrices.

At the next phase, we compute four-x Fourier integrals appeared in ΠOPE
µν (p) due to propagators. The

correlation function ΠOPE
µν (p) found by this manner contains two Lorentz structures. To extract the sum rules,

we work with terms proportional to gµν , because they do not receive contributions from scalar particles. By
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equating the relevant invariant amplitudes ΠPhys(p2) and ΠOPE(p2) , we get an expression in momentum space,
which after applying the Borel transformation and subtracting continuum effects becomes the first sum rule
equality. An expression obtained after these operations depends on the Borel M2 and continuum subtraction
s0 parameters.

A second equality which is necessary to get sum rules for m and f , can be derived by applying the
operator d/d

(
−1/M2

)
to the first expression. These two equalities are enough to fix the sum rules for m

and f . Obtained expressions for the mass and coupling of TAV contains perturbative and nonperturbative
parts. In numerical computations, we take into account nonperturbative terms up to dimension-20 , and bear
in mind that higher dimensional contributions appear due to the factorization hypothesis as product of basic
condensates, and do not embrace all dimension-20 terms.

Traditionally an important question is a choice of regions for the Borel M2 and continuum threshold
s0 parameters. These parameters should meet some known requirements. Our investigations prove that the
regions

M2 ∈ [1.4, 2] GeV2, s0 ∈ [6, 7] GeV2, (193)

obey required constraints. Indeed, at M2 = 2 GeV2 the pole contribution is equal to 0.39 , and reaches PC =

0.68 at the minimum of M2 = 1.4 GeV2 . In Figure 10 we plot the pole contribution as functions of M2 and
s0 , where these effects are seen explicitly. Convergence of the sum rules is also satisfied R(1.4 GeV2) < 0.01 .
The predictions for the mass and coupling of the tetraquark TAV are

m = (2067± 84) MeV, f = (0.89± 0.11)× 10−2 GeV4. (194)

Obtained results should not depend on the parameter M2 . But m and f evaluated from relevant sum
rules are sensitive to a choice of M2 . Theoretical errors in computations appear namely due to choices of M2

and s0 . Errors generated by ambiguities of ms and vacuum condensates are not considerable. Varying of ms ,
for example, inside boundaries 88 MeV ≤ ms ≤ 104 MeV generates corrections

(
+2
−1

)
MeV to m and

(
+0.0002
−0.0001

)
GeV4 to f . Of course, these errors and others connected with condensates are included into Eq. (194). The
mass m is depicted in Figure 11, where one sees its weak dependence on M2 and s0 .
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Figure 10. The pole contribution vs M2 and s0 .
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Figure 11. The dependence of the mass m on M2 and s0 .

The prediction for the mass of TAV agrees with the mass of the resonance X1 measured by BESIII.
Therefore, it is reasonable to identify TAV with the resonance X1 . This is in line with existing theoretical
predictions for m extracted from the QCD sum rule computations. In fact, the mass of X1 was found in Refs.
[202, 203] equal to

m = 2000+100
−90 MeV, m = (2080± 120) MeV, (195)

where computations were performed by taking into account condensates untill dimensions 12 and 10 , respec-
tively. There are differences between results (194) and (195), but all of them support a suggestion about an
diquark-antidiquark structure of the axial-vector resonance X1 . But to unveil a whole picture, we should explore
decay channels X1 → ϕη′ and X1 → ϕη to find width of X1 and compare it with experimental information:
only after successful outcome, we will be able to make firm decision about structure of X1 . In this section, we
are going to analyze this problem as well.

7.2. Spectroscopic parameters of the vector tetraquark ssss

We have investigated the axial-vector tetraquark TAV and classified it as a candidate to the resonance X1 . But
there are light resonances Y (2175) and X2 which may be interpreted as four-quark states. Here, we study the
vector tetraquark TV = ssss with spin-parities JPC = 1−− and compute its mass. After confronting our result
with the experimental data of the BaBar and BESIII collaborations, we can identify Y (2175) or X2 as the
state TV .

The mass m̃ and coupling f̃ of the tetraquark TV can be found using standard tools of the sum rule
method. This analysis does not differ significantly from operations performed above. A difference in the case
under consideration stems from a choice of the interpolating current J̃µ(x) , which for the vector tetraquark is
given by the formula [199]

J̃µ(x) =
[
sTa (x)Cγ5sb(x)

] [
sa(x)γµγ5Cs

T
b (x)

]
−
[
sTa (x)Cγµγ5sb(x)

] [
sa(x)γ5Cs

T
b (x)

]
. (196)

We should determine both sides of the sum rule equalities. The physical side of the sum rule is fixed by Eq.
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(190) with evident replacements. The QCD side of the sum rule Π̃OPE
µν (p) has the form

Π̃OPE
µν (p) = i

∫
d4xeipx

{
Tr
[
γ5S̃

b′b(−x)γ5γνSa
′a(−x)

]
Tr
[
Saa

′
(x)γ5S̃

bb′(x)γ5γµ

]
−Tr

[
γ5S̃

a′b(−x)γνγ5Sb
′a(−x)

]
Tr
[
Saa

′
(x)γ5S̃

bb′(x)γ5γµ

]
+ 14 similar terms

}
. (197)

The regions for the Borel and continuum threshold parameters M2 and s0 are given by the intervals

M2 ∈ [1.4, 2] GeV2, s0 ∈ [7, 8] GeV2. (198)

These regions differ from working windows of the axial-vector state (193) by a small shift in s0 . The regions
(198) meet all restrictions on the PC and convergence of OPE imposed by the sum rule method. In fact, at
M2 = 1.4 GeV2 the PC amounts to 0.6 , and at M2 = 2 GeV2 is equal to 0.3 . Convergence of OPE is also
fulfilled. The spectroscopic parameters of the vector tetraquark TV are

m̃ = (2283± 114) MeV, f̃ = (0.57± 0.10)× 10−2 GeV4. (199)

In figure 12 we depict m̃ and f̃ as functions of M2 and s0 .
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Figure 12. The m̃ (left panel) and f̃ (right panel) as functions of the Borel and continuum threshold parameters.

Confronting now m̃ with collected data on the resonances Y (2175) and X2 , we see that TV can be
interpreted as the resonance X2 . Indeed, a mass gap TV− X2 is approximately 60 MeV smaller than mass
splitting of TV and Y (2175) . The mass mX2 = 2227 MeV of the vector tetraquark ssss found in Ref. [201]
also agrees with BESIII data for X2 . This fact forced the authors to draw the similar conclusion about internal
organization of X2 .

Parameters of the vector tetraquark ssss were also calculated in the context the sum rule method in
Refs. [203] and [199]. The result for the mass of this exotic meson m̃ = (3080 ± 110) MeV obtained in Ref.
[203] disfavors interpreting it as the resonance Y (2175) . Confronting this prediction with the BESIII data, we
see that it is also difficult to classify this structure as the resonance X2 . In Ref. [199] the authors employed
two interpolating currents to study the vector tetraquark ssss . For m̃ these currents led to different values

m̃1 = (2410± 250) MeV, m̃2 = (2340± 170) MeV. (200)
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The first tetraquark was interpreted as a structure at around 2.4 GeV in the invariant mass spectrum ϕf0(980)

[199]. The second structure was identified with the resonance Y (2175) . We think that it is closer to X2 , which
was discovered later and the authors did not know about existence of this resonance.

7.3. Decays X1 → ϕη′ and X1 → ϕη

In this subsection we investigate decays X1 → ϕη′ and X1 → ϕη of the resonance X1 . We concentrate on the
process X1 → ϕη′ and present our studies in a detailed form. The second mode X1 → ϕη can be considered in
the same way.

We begin from analysis of the correlation function

Π̂µν(p, q) = i

∫
d4xeipx⟨η′(q)|T {Jϕµ (x)J†

ν(0)}|0⟩, (201)

which is necessary to study the decay X1 → ϕη′ . In Eq. (201) Jϕµ (x) is the interpolating current of the ϕ

meson
Jϕµ (x) = si(x)γµsi(x). (202)

Following the standard recipes, we write down Π̂µν(p, q) in terms of the physical parameters of the particles
X1, ϕ and η′

Π̂Phys
µν (p, q) =

⟨0|Jϕµ (x)|ϕ(p)⟩
p2 −m2

ϕ

⟨ϕ(p)η′(q)|X1(p
′)⟩ ⟨X1(p

′)|J†
ν |0⟩

p′2 −m2
+ · · · , (203)

where the momenta of the initial and final particles are denoted by p′ and p , q , respectively. By utilizing the
matrix elements

⟨0|Jϕµ (x)|ϕ(p)⟩ = fϕmϕεµ, ⟨ϕ(p)η′(q)|X1(p
′)⟩ = gX1ϕη′ [(p · p′)(ε∗ · ε′)− (p · ε′)(p′ · ε∗)] , (204)

one can simplify Π̂Phys
µν (p, q) . The matrix element ⟨0|Jϕµ (x)|ϕ(p)⟩ is determined by the mass mϕ , decay constant

fϕ and polarization vector εµ of ϕ meson. The vertex X1ϕη
′ is modeled using the strong coupling gX1ϕη′ ,

that should be extracted from the sum rule. In the soft-meson approximation q → 0 and p′ = p , we have to
perform one-variable Borel transformation which gives

BΠ̂Phys
µν (p) = gX1ϕη′mϕmfϕf

e−m
2/M2

M2

(
m2gµν − pνp

′
µ

)
+ · · · , (205)

where m2 = (m2
ϕ +m2)/2. To make explicit Lorentz structures of BΠ̂Phys

µν (p) , we keep in Eq. (205) pν ̸= p′µ .
The sum rule for gX1ϕη′ will be derived by using a structure proportional to gµν . In the soft limit we also act
on both the physical and QCD sides of the sum rule by the operator P(M2,m2) , that cancels unsuppressed

terms in BΠ̂Phys
µν (p) .

In the soft limit Π̂OPE
µν (p) is given by the formula

Π̂OPE
µν (p) = 2i

∫
d4xeipx

{[
σµργ5S̃

ib(x)γν S̃
bi(−x)γρ − γρS̃ib(x)γν S̃

bi(−x)γ5σµρ
]
αβ

⟨η′(q)|saα(0)saβ(0)|0⟩

+
[
γρS̃ia(x)γν S̃

bi(−x)γ5σµρ − γ5σµρS̃
ia(x)γρS̃bi(−x)γν

]
αβ

⟨η′(q)|sbα(0)saβ(0)|0⟩
}
. (206)
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The local matrix element of the η′ meson ⟨η′(q)|sbαsaβ |0⟩ can be transformed in accordance with Eq. (26). After

this transformation operators sΓjs , and ones generated due to Gµν insertions from quark propagators, form
local matrix elements of the η′ meson. Applying Eq. (26) to the correlation function, performing summation
over color and calculating traces of over spinor indices, we determine local matrix elements of the η′ meson
that contribute to Π̂OPE

µν (p) .

Our studies show that in the soft limit the twist-3 matrix element ⟨η′|siγ5s|0⟩ contributes to the

correlation function Π̂OPE
µν (p) . The matrix elements of the η and η′ mesons have some peculiarities connected

with mixing in the η−η′ system. In fact, through the mixing both the η′ and η mesons contains ss components.
It is clear that in the η′ meson dominant is a strange component, but it plays some role also in the η meson.
Due to existence of strange components both the decays X1 → ϕη′ and X1 → ϕη can be realized.

The η−η′ mixing can be described using two basics. For our analysis a suitable is the quark-flavor basis,
which was employed to investigate various exclusive processes with η′ and η mesons [206–208]. In this basis
the twist-3 matrix element ⟨η′|siγ5s|0⟩ is given by the formula

2ms⟨η′|siγ5s|0⟩ = hsη′ , (207)

where the parameter hsη′ is defined by the expression

hsη′ = m2
η′f

s
η′ −Aη′ , Aη′ = ⟨0|αs

4π
GaµνG̃

a,µν |η′⟩. (208)

In Eq. (208) mη′ and fsη′ are the mass and s -component of the η′ meson decay constant. Here, Aη′ is the
matrix element which appear due to U(1) axial-anomaly. The parameter hsη′ can be calculated using Eqs. (207)
and (208). It is also possible to use the phenomenological value

hsη′ = hs cosφ, hs = (0.087± 0.006) GeV3, (209)

where φ = 39◦.3± 1◦.0 is the mixing angle in the quark-flavor basis.

The Borel transform of the invariant function Π̂OPE(p2) which is related to a structure ∼ gµν reads

Π̂OPE(M2) =

∫ ∞

16m2
s

dsρpert.(s)e−s/M
2

− hsη′⟨ss⟩ − ⟨αsG
2

π
⟩
hsη′

8ms
−

hsη′

6M2
⟨sgsσGs⟩+

2g2sh
s
η′

81msM2
⟨ss⟩2,

(210)

where the perturbative contribution is given in terms of the spectral density

ρpert.(s) = −
hsη′

4msπ2
(s+ 3m2

s). (211)

Other components of Π̂OPE(M2) are nonperturbative contributions calculated by including terms up to dimen-

sion 6 . To carry out the continuum subtraction, we need to apply the operator P(M2,m2) to Π̂OPE(M2) .
Afterwards, we should replace in the first term ∞ by s0 , and leave in original forms contributions ∼ (M2)0

and ∼ 1/M2 . The width of the decay X1 → ϕη′ is determined by the formula (36), where substitutions gZψπ ,
mψ , λ (mZ , mψ,mπ) → gX1ϕη′ , mϕ, , λ(m,mϕ,mη′) must be done.
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The parameters M2 and s0 in numerical analysis are varied inside limits

M2 ∈ [1.4, 2] GeV2, s0 ∈ [6.2, 7.2] GeV2. (212)

The masses of the mesons ϕ and η′ are borrowed from Ref. [96]

mϕ = (1019.461± 0.019) MeV, mη′ = (957.78± 0.06) MeV, fϕ = (215± 5) MeV. (213)

We get the following results

gX1ϕη′ = (2.82± 0.54) GeV−1, Γ(X1 → ϕη′) = (105.3± 28.6) MeV. (214)

The X1 → ϕη′ is the dominant decay mode of the tetraquark X1 . The width of the decay X1 → ϕη can
be computed using formulas derived in the present subsection. The distinctions between two decays of X1 are
connected with the twist-3 matrix element

2ms⟨η|siγ5s|0⟩ = −hs sinφ, (215)

and the mass of the η meson mη = (547.862± 0.018) MeV . Computations lead to results

|gX1ϕη| = (0.85± 0.22) GeV−1, Γ(X1 → ϕη) = (24.9± 9.5) MeV. (216)

It is worth emphasizing that |gX1ϕη| has been evaluated using the region s0 ∈ [5.8, 6.8] GeV2 .
The full width of the resonance X1 saturated by two decays is equal to

Γ = (130.2± 30.1) MeV. (217)

This result for Γ is comparable with experimentally measured width of the resonance X1 .
In this section we have investigated the axial-vector and vector states ssss . The mass m = (2067± 84) MeV

of TAV evaluated here agrees with results of BESIII. The width of TAV which has been found equal to
Γ = (130.2± 30.1) MeV is consistent with these data as well. This information has allowed us to interpret the
resonance X1 as an axial-vector exotic meson ssss .

Another conclusion that can be made is that the vector tetraquark ssss may be considered as the
structure X2 rather than the resonance Y (2175) . Let us note that we have treated the resonances X2 and
Y (2175) as different particles, though their masses are close to each other. This picture is typical for a family
of heavy vector resonances Y as well [186]. Some of these states may be treated as the same resonances, but
even in this situation the mass range 4 − 5 GeV is overpopulated by JPC = 1−− mesons. A similar picture
seems persists also in a light sector of JPC = 1−− particles. Hence, more detailed experimental analyses are
necessary to differentiate these resonances, and determine reliably their parameters.

8. The resonance Y (2175)

As we have noted above, the vector resonance Y (2175) (in this section, Ỹ ) is one of a few light particles
which can be considered as a serious candidate to an exotic meson. Because it was observed in ϕf0(980)

invariant mass distribution, usually was treated as a state containing exclusively strange quarks and antiquarks
ssss . The reason for such interpretation of Ỹ is quite natural. Indeed, in the conventional model both ϕ and
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f0(980) are mesons with ss structure, a difference being only in their quantum numbers: While ϕ is the vector
particle, f0(980) is the scalar meson. But, the light meson f0(980) , as a member of the first scalar nonet, can
also be treated as a four-quark state. In this picture f0(980) is a superposition of diquark-antidiquark states

L = [ud][ud] and H = ([su][su] + [ds][ds])/
√
2 . Then it appears that Ỹ can be interpreted as a tetraquark

with sqsq content. In this section, we provide results of our analysis, obtained in Ref. [200] by treating Ỹ as
a vector tetraquark [su][su] .

8.1. Spectroscopic parameters of the tetraquark Ỹ : the mass mY and current coupling fY

To evaluate the mass mY and coupling fY of the vector tetraquark Ỹ , we use the QCD two-point sum rule
method and start our calculations from analysis of the correlation function (4), where use the current

JYµ (x) = [uTa (x)Cγ5sb(x)][ua(x)γµγ5Cs
T
b (x)]− [uTa (x)Cγµγ5sb(x)][ua(x)γ5Cs

T
b (x)]. (218)

The current JYµ consists of two pieces and each of them describes a vector JP = 1− tetraquark. This is evident

from quantum numbers of the diquark-antidiquark fields: the first term is built of the scalar diquark uTCγ5s and
vector antidiquark uγµγ5Cs

T , whereas in the second term the diquark and antidiquark are vector and scalar
states, respectively. The JYµ corresponds to the vector tetraquark with a definite charge-conjugation parity

JPC = 1−− . Indeed, because the charge-conjugation transforms diquarks to antidiquarks (and antidiquarks to
diquarks) the minus sign between two currents in JYµ implies C = −1 .

The analysis of the phenomenological side of the sum rules ΠPhys
µν (p) does not differ from similar expression

(190), where now one should use the mass mY and coupling fY of the state Ỹ . Because a part of ΠPhys
µν (p)

proportional to gµν is formed due to contributions of vector states, we work with this term and corresponding
invariant amplitude ΠPhys(p2) .

To get the sum rules’ QCD side, we compute Πµν(p) using quark-gluon degrees of freedom, and find

ΠOPE
µν (p) = i

∫
d4xeipx

{
Tr
[
γ5S̃

b′b
s (−x)γ5γνSa

′a
u (−x)

]
Tr
[
Saa

′

u (x)γ5S̃
bb′

s (x)γ5γµ

]
+Tr

[
γµγ5S̃

b′b
s (−x)γ5Sa

′a
u (−x)

]
Tr
[
Saa

′

u (x)γνγ5S̃
bb′

s (x)γ5

]
+Tr

[
Saa

′

u (x)γ5S̃
bb′

s (x)γ5

]
×Tr

[
γµγ5S̃

b′b
s (−x)γ5γνSa

′a
u (−x)

]
+Tr

[
γ5S̃

b′b
s (−x)γ5Sa

′a
u (−x)

]
Tr
[
Saa

′

u (x)γνγ5S̃
bb′

s (x)γ5γµ

]}
.(219)

The required sum rules for the mass and coupling of the tetraquark Ỹ can be obtained by extracting the invariant
amplitude ΠOPE(p2) related to a structure gµν in Eq. (219), and equating it to ΠPhys(p2) . Afterwards, one
should apply to this equality the Borel transformation and perform continuum subtraction. These operations
generate a dependence of sum rules on the Borel M2 and continuum threshold s0 parameters. Next steps to
get sum rules for mY and fY were described many times in this review, therefore we omit further details. Let
us only note that calculation of ΠOPE(p2) is carried out by including into analysis nonperturbative terms up
to dimension 15 .

The quantities mY and fY should be stable against variations of the Borel parameter M2 . But in
actual computations one can minimize these effects by fixing a plateau where dependence of physical quantities
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on M2 is minimal. The continuum threshold parameter s0 separates contributions of ground-state particles
from ones due to higher resonances and continuum states. In other words, s0 should be below the first excited
state of the particle under discussion Ỹ . In the case of ordinary hadrons, masses of excited states are known
either from experimental measurements or from alternative theoretical studies. For exotic particles a situation
is more complicated: there is not information on their radial and/or orbital excitations. For tetraquarks this
problem was addressed only in a few publications [72–74]. Therefore, one chooses s0 by demanding maximum
for the pole contribution, and a stability of extracting physical quantity. In this situation a self-consistency of
the prediction for mY , and s0 used for its computation is very important: √

s0 may exceed mY approximately

[0.3, 0.5] MeV , then a first excited state of Ỹ is above √
s0 .

Computations show that the regions

M2 ∈ [1.2, 1.7] GeV2, s0 ∈ [6, 6.5] GeV2 (220)

satisfy all restrictions imposed on M2 and s0 by the sum rule analysis. Predictions for mY and fY extracted
from this analysis read

mY = (2173± 85) MeV, fY = (2.8± 0.5)× 10−3 GeV4. (221)

Comparing mY with √
s0 , we see that √

s0 −mY = [0.28, 0.38] MeV is a reasonable mass gap to separate Ỹ

from its excitations.
Our result for mY is in good agreement with the BaBar datum (2175± 10± 15) MeV , but is below new

result of BESIII (2200± 6± 5) MeV . Nevertheless, if one takes into account theoretical errors of computations,
and errors of the experiment mY is consistent with BESIII data as well. In this situation, when there are
different models for Ỹ , a prediction for full width of this tetraquark and its confrontation with data can shed
light on internal structure of Ỹ .

8.2. The decay Ỹ → ϕf0(980)

The process Ỹ → ϕf0(980) is an important decay channel of the tetraquark Ỹ . The partial width of this

mode can be expressed in term of the strong coupling GY ϕf describing the vertex Ỹ ϕf0(980) . In its turn,
the coupling GY ϕf can be evaluated in the context of the LCSR method and expressed using various vacuum
condensates and distribution amplitudes of the ϕ meson.

We extract the sum rule for GY ϕf by computing the correlation function

Πµ(p, q) = i

∫
d4xeipx⟨ϕ(q)|T {Jf (x)JY †

µ (0)}|0⟩. (222)

We treat the scalar meson f0(980) [hereafter in expressions f = f0(980) ] as a pure H state, interpolating
current of which has been presented in Eq. (134). The phenomenological side of the sum rule is equal to the
expression

ΠPhys
µ (p, q) = GY ϕf

mY fYmfFf

2 (p′2 −m2
Y )
(
p2 −m2

f

) [(m2
f −m2

Y −m2
ϕ

)
ε∗µ +

m2
Y +m2

f −m2
ϕ

m2
Y

p · ε∗qµ

]
.

(223)
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The function ΠPhys
µ (p, q) is a sum of two terms with different Lorentz structures. We choose a structure ∼ ε∗µ

to extract the sum rule necessary for our purposes.
The QCD side of the sum rule ΠOPE

µ (p, q) is derived by inserting interpolating currents into Eq. (222).
After contracting quark fields, and rewriting an obtained expression using the quarks’ light-cone propagators
Sq(x) , we see that the matrix element in Eq. (222) is a sum of terms

[A(x)]
ab
αβ ⟨ϕ(q)|s

a
α(x)s

b
β(0)|0⟩, [B(x)]

ab
αβ ⟨ϕ(q)|s

a
α(0)s

b
β(x)|0⟩. (224)

Here A(x) and B(x) are composed of the propagators Sq(±x) , S̃q(±x) = CSTq (±x)C , and γ5(σ) matrices.
Explicit expression of Sq(x) is moved to Appendix.

Besides propagators, the function ΠOPE
µ (p, q) depends on nonlocal matrix elements of operator ss placed

between the vacuum and ϕ meson. These matrix elements, after using Eq. (26), can be expressed via the
ϕ meson’s distribution amplitudes. In fact, after performed operations A(x) and B(x) depend on colorless
operators s(x)Γjs(0) which can be expanded over x2 and expressed in terms of the ϕ meson’s DAs of different
twist. For Γj = 1 and iγµγ5 we employ the following formulas

⟨0|s(x)s(0)|ϕ(q)⟩ = −if⊥ϕ ε · xm2
ϕ

∫ 1

0

dueiuqxψ
∥
3(u), (225)

and

⟨0|s(x)γµγ5s(0)|ϕ(q)⟩ =
1

2
f
∥
ϕmϕϵµναβε

νqαxβ
∫ 1

0

dueiuqxψ⊥
3 (u). (226)

For the structures Γj = γµ and σµν we have

⟨0|s(x)γµs(0)|ϕ(q)⟩ = f
∥
ϕmϕ

{
ε · x
q · x

qµ

∫ 1

0

dueiuqx

[
ϕ
∥
2(u) +

m2
ϕx

2

4
ϕ
∥
4(u)

]

+

(
εµ − qµ

ε · x
q · x

)∫ 1

0

dueiuqxϕ⊥3 (u)−
1

2
xµ

ε · x
(q · x)2

m2
ϕ

∫ 1

0

dueiuqxC(u) + · · ·
}
, (227)

and

⟨0|s(x)σµνs(0)|ϕ(q)⟩ = if⊥ϕ

{
(εµqν − ενqµ)

∫ 1

0

dueiuqx

[
ϕ⊥2 (u) +

m2
ϕx

2

4
ϕ⊥4 (u)

]

+
1

2
(εµxν − ενxµ)

m2
ϕ

q · x

∫ 1

0

dueiuqx
[
ψ⊥
4 (u)− ϕ⊥2 (u)

]
+ (qµxν − qνxµ)

× ε · x
(q · x)2

m2
ϕ

∫ 1

0

dueiuqxD(u) + · · ·
}
. (228)

In equations above u is a longitudinal momentum fraction carried by a quark, and u = 1− u is a momentum
of an antiquark. The mass and polarization vector of the ϕ meson are denoted respectively by mϕ and εµ .
Combinations of two-particle DAs C(u) and D(u) are given by the following expressions

C(u) = ψ
∥
4(u) + ϕ

∥
2(u)− 2ϕ⊥3 (u), D(u) = ϕ

∥
3(u)−

1

2
ϕ⊥2 (u)−

1

2
ψ⊥
4 (u), (229)
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where subscripts in functions denote their twists. Expressions of matrix elements ⟨0|s(x)ΓJGµν(vx)s(0)|ϕ(q)⟩
in terms of the ϕ meson higher twist DAs, and detailed information on features of these DAs themselves can
be found in Refs. [98, 99, 209–211].

The main contribution to ΠOPE
µ (p, q) comes from the terms (224), where only perturbative components

of the propagators are used (see, figure 13). Contribution of this diagram can be evaluated by employing
the ϕ meson’s two-particle distribution amplitudes. The one-gluon exchange diagrams shown in figure 14 are
corrections, which can be expressed and calculated using relevant three-particle DAs. An analytic expression of
the ΠOPE

µ (p, q) in terms of the ϕ meson’s DAs is lengthy enough, hence we refrain from providing it here.

p p

Y (2175) f 0(980)

s s̄

q

φ

Figure 13. The leading order diagram contributing to ΠOPE
µ (p, q) .

Figure 14. The one-gluon exchange diagrams connected to three-particle DAs of ϕ meson.

In calculations, we use the amplitude ΠOPE(p′2, p2) extracted from a term proportional to ε∗µ , and equate

it to relevant amplitude from ΠPhys
µ (p, q) . The invariant amplitudes depend on p′2 and p2 , therefore one has

to perform double Borel transformation over p′2 and p2

ΠOPE(M2
1 ,M

2
2 ) = BM

2
1

p′2 B
M2

2

p2 ΠOPE(p′2, p2). (230)

The Borel transformed amplitude ΠOPE
(
M2

1 , M
2
2

)
can be computed using recipes of Ref. [54], and written down
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in form of a double dispersion integral. To simplify following operations, it is convenient to relate parameters M2
1

and M2
2 to each other by employing the relation M2

1 /M
2
2 = m2

Y /m
2
f and introducing the common parameter

M2 through the relation
1

M2
=

1

M2
1

+
1

M2
2

. (231)

This implies replacements

M2
1 =

m2
f +m2

Y

m2
f

M2, M2
2 =

m2
f +m2

Y

m2
Y

M2, (232)

which allows us to carry out an integration over one of variables in the double dispersion integral. The expression
obtained in this phase of computations depends also on the parameter u0

u0 =
M2

1

M2
1 +M2

2

=
m2
Y

m2
f +m2

Y

. (233)

As a result, we get a single integral representation for ΠOPE
(
M2
)

which simplifies the continuum subtraction
procedure: Formulas required to fulfil the subtraction are collected in Appendix B of Ref. [54].

Distribution amplitudes of the ϕ meson contain a lot of parameters. Thus, the leading twist DAs of the
longitudinally and transversely polarized ϕ meson have the forms

ϕ
∥(⊥)
2 (u) = 6uu

[
1 +

∞∑
n=1,2...

a
∥(⊥)
2n C

3/2
2n (2u− 1)

]
, (234)

which are general expressions for ϕ
∥
2(u) and ϕ⊥2 (u) . In computations we use DAs with only one nonzero

coefficients a∥(⊥)
2 ̸= 0 . Analytic forms of higher twist DAs of the ϕ meson are borrowed from Refs. [99, 211],

where one can find also parameters of these functions (see Tables 1 and 2 in Ref. [99]).
The sum rule for GY ϕf depends on various condensates, and on mass of s quark presented already in

Eq. (18). The masses and decay constants (couplings) of the particles Ỹ , ϕ , and f0(980) are input information

of computations as well. The spectroscopic parameters of Ỹ have been evaluated in the previous subsection.
For mass and decay constant of the ϕ meson, we employ experimental data mϕ = (1019.461± 0.019) MeV and
fϕ = (215 ± 5) MeV . The mass of the meson f0(980) is known from measurements, whereas the coupling Ff

of the meson f0(980) is taken from Ref. [3]

Ff ≡ FH = (1.35± 0.34)× 10−3 GeV4. (235)

Let us remind that in Ref. [3] the meson f0(980) was considered as a scalar diquark-antidiquark state. The
sum rule depends also on the Borel and continuum threshold parameters M2 and s0 . We fix working windows
for the M2 and s0

M2 ∈ [2.4, 3.4] GeV2, s0 ∈ [6, 6.5] GeV2, (236)

which satisfy constraints of sum rule computations.
For the strong coupling GY ϕf our computations yield

GY ϕf = (1.62± 0.41) GeV−1. (237)
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The width of the decay Ỹ → ϕf0(980) is found by employing Eq. (36), in which one has to make the substitutions
gZψπ , mψ , λ (mZ , mψ,mπ) → GY ϕf , mϕ , λ(mY ,mϕ,mf ) .

For the partial width of the decay Ỹ → ϕf0(980) , we get

Γ(Ỹ → ϕf) = (49.2± 17.6) MeV. (238)

The result for Γ(Ỹ → ϕf) is the principal output of this subsection, and we are going to use it to evaluate the

full width of the tetraquark Ỹ .

8.3. The decays Ỹ → ϕη and Ỹ → ϕη′

The decay modes Ỹ → ϕη and Ỹ → ϕη′ are next two processes which will be analyzed in this section. We are
going to concentrate here on the channel Ỹ → ϕη , and provide final predictions for the process Ỹ → ϕη′ .

In the context of the LCSR method the vertex Ỹ ϕη can be examined using the correlation function

Πµν(p, q) = i

∫
d4xeipx⟨η(q)|T {Jϕµ (x)JY †

ν (0)}|0⟩, (239)

where Jϕµ (x) is the interpolating current for the vector ϕ meson (202).
The phenomenological side of the required sum rule for the strong coupling gY ϕη is equal to

ΠPhys
µν (p, q) = gY ϕη

fϕmϕfYmY(
p2 −m2

ϕ

)
(p′2 −m2

Y )
εµναβp

αqβ + · · · . (240)

In deriving Eq. (240), we have introduced the vertex

⟨ϕ (p) η(q)|Y (p′)⟩ = gY ϕηεµναβp
µqνϵ∗αϵ′β , (241)

with ϵ′β being the polarization vector of the tetraquark Ỹ .
It is evident that the correlation function ΠPhys

µν (p, q) has a simple Lorentz structure. The invariant

amplitude ΠPhys(p′2, p2) , which is necessary to obtain the sum rule for gY ϕη , can be extracted from Eq. (240)
by factoring out the structure εµναβpαqβ .

We calculate the invariant amplitude ΠOPE(p′2, p2) from the correlation function ΠOPE
µν (p, q) . In our

case ΠOPE
µν (p, q) is determined by the formula

ΠOPE
µν (p, q) = −i

∫
d4xeipx

[
γ5S̃

ib
s (x)γµS̃

bi
s (−x)γ5γν + γνγ5S̃

ib
s (x)γµS̃

bi
s (−x)γ5

]
αβ

×⟨η(q)|uaα(0)uaβ(0)|0⟩. (242)

The correlation function ΠOPE
µν (p, q) is expressed using s quark propagators and local matrix elements

of the η meson. The local matrix elements ⟨η(q)|uaαuaβ |0⟩ should be transformed in accordance with Eq. (26).

Our analysis proves that ΠOPE
µν (p, q) receives a contribution from the matrix element ⟨η(q)|uγµγ5u|0⟩ of the η

meson

⟨η(q)|uγµγ5u|0⟩ = −i
fqη√
2
qµ, (243)
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where fqη is the decay constant of the η meson’s q component. Here, some comments are in order concerning
the matrix element (243). It differs from matrix elements of other pseudoscalar mesons, and this is related to
the mixing in the η − η′ system. Relevant problems have been discussed in Sec. 7, where one can find further
details.

Using Eqs. (242) and (243), we find the invariant amplitude ΠOPE(p′2, p2) . This amplitude has to be
equated to ΠPhys(p′2, p2) which allows us to extract the sum rule for the strong coupling gY ϕη .

Because the correlation function ΠOPE
µν (p, q) depends on local matrix elements of the η meson, we apply

technical tools of the soft-meson approximation. In the soft limit p′ = p , and for the strong coupling gY ϕη we
get the sum rule

gY ϕη =
1

fϕmϕfYmY
P(M2,m2)ΠOPE

(
M2, s0

)
, (244)

where ΠOPE(M2, s0) is the invariant amplitude ΠOPE(p2) after the Borel transformation and subtraction
procedures. The amplitude ΠOPE

(
M2, s0

)
computed by including into analysis nonperturbative terms up to

dimension-5 is

ΠOPE
(
M2, s0

)
=

fqηms

8
√
2π2

∫ s0

4m2
s

dse−s/M
2

+
fqηm

2
s

6
√
2M2

⟨ss⟩+
fqη

12
√
2M2

⟨sgsσGs⟩. (245)

The width of the process Ỹ → ϕη is determined by the formula

Γ(Ỹ → ϕη) =
g2Y ϕηλ

3(mY ,mϕ,mη)

12π
. (246)

For the strong coupling gY ϕη and width of the decay Ỹ → ϕη numerical computations yield

gY ϕη = (1.85± 0.38) GeV−1, Γ(Ỹ → ϕη) = (35.8± 10.4) MeV. (247)

Let us note that in calculations of gY ϕη , we have varied M2 and s0 within the intervals

M2 ∈ [1.3, 1.8] GeV2, s0 ∈ [6, 6.5] GeV2. (248)

The partial width of the decay Ỹ → ϕη′ can be found by using expressions obtained for the first process.
To this end, we take into account the mass of the η′ meson, the new coupling fqη′ , and function λ(mY ,mϕ,mη′)

fqη′ = fq sinφ, λ→ λ(mY ,mϕ,mη′), (249)

which can be easily implemented into analysis. For the parameters of the second decay channel, we get

gY ϕη′ = (1.59± 0.31) GeV−1, Γ(Ỹ → ϕη′) = (6.1± 1.7) MeV. (250)

Saturating the full width of the Ỹ resonance by three decay channels analyzed in the present section, we
find

Γfull = (91.1± 20.5) MeV. (251)
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The result for the mass mY obtained in this section by treating Ỹ as the vector tetraquark Ỹ = [su][su]

agrees with the BaBar data, but is consistent with BESIII measurements as well. The full width Γfull has some
overlapping region with Γ = (58± 16± 20) MeV extracted in Ref. [187], but agreement with data of BESIII is
considerably better.

Encouraging is also our prediction for the ratio

Γ(Ỹ → ϕη)

Γ(Ỹ → ϕf)
≈ 0.73, (252)

which is almost identical to its experimental value ≈ 0.74 . The latter has been obtained from analysis of
experimental information on the ratios

Γ(Ỹ → ϕη)× Γ(Ỹ → e+e−)

Γtotal
= 1.7± 0.7± 1.3, (253)

and
Γ(Ỹ → ϕf)× Γ(Ỹ → e+e−)

Γtotal
= 2.3± 0.3± 0.3, (254)

from Ref. [96] [ Ỹ is denoted there ϕ(2170) ].

In calculations of Γfull , we have included into analysis only three strong decays of the resonance Ỹ . Decay
channels Ỹ → ϕππ, K+K−π+π−, K∗(892)0K

∗
(892)0 of Ỹ (observed in experiments and/or theoretically

allowed) and other possible modes have not been taken into account. Partial width of these decays may
improve our prediction for Γfull . Theoretical analyses of these channels, as well as their detailed experimental
investigations can help to answer open questions about the structure of the resonance Y (2175) .

9. Concluding notes
In this article, we have reviewed our works devoted to investigations of resonances observed by different collab-
orations, and which are considered as candidates to exotic four-quark mesons. As usual, experimental measure-
ments provide valuable information on masses, widths and quantum numbers of these states. Corresponding
theoretical studies start from interpretations of observed resonances as ground-state or excited conventional
mesons, from assumptions on their dynamical or exotic nature. These suggestions should be supported by
successful confrontation of theoretical predictions for their spectroscopic parameters and decay widths with ex-
perimental data. It is worth noting that existing theoretical computations use all diversity of available methods
and schemes.

In our articles, we studied the resonances Zc(3900) , Zc(4430) , Z−
c (4100) , X(4140) , X(4274) , a1(1420) ,

Y (4660) , X(2100) , X(2239) , and Y (2175) by assuming that they are exotic four-quark mesons with diquark-
antidiquark structures. We constructed relevant interpolating currents for these states and calculated their
masses and couplings. All resonances considered here are strong-interaction unstable particles, and decay to a
pair of ordinary mesons. We computed partial widths of their dominant decay modes. Obtained results allowed
us to interpret these resonances as diquark-antidiquark states with different spin-parities and quark contents or
pose additional questions on their nature.

Some of our predictions deserves to be mentioned here. Thus, we interpreted the resonance Zc(4430)

as the radial excitation of Zc(3900) , and computed the masses and couplings, as well as estimated full widths

160



AGAEV et al./Turk J Phys

of these states. It seems experimental data do not contradict to this assumption, and resonances Zc(3900)

and Zc(4430) are the ground-state and radial excitation of the same tetraquark. Another interesting result
is connected with an assumption about quark content of Y (2175) . In fact, despite widespread 4s picture of
Y (2175) , we argued that this vector resonance may have a content [sq][sq] . Predictions for parameters of this
tetraquark agree with available measurements. Interesting was also our suggestion about different internal color
structures of the axial-vector resonances X(4140) and X(4274) . We interpreted them as tetraquarks with
identical quark contents and spin-parities, but built of color-triplet and -sextet diquarks, respectively. While
results for masses of these states confirm our assignments, prediction for the full width of X(4274) overshoots
experimental data considerably. Alternative ideas on the structure X(4274) seem may be helpful to solve this
problem.

In our calculations, we used the QCD sum rules approach, which is a powerful tool to explore features not
only of conventional, but also exotic hadrons. The spectral parameters of four-quark states were computed by
employing two-point correlation functions, and sum rules extracted from their analysis. To explore numerous
strong decays of particles under discussion, we applied either three-point or light-cone sum rule methods. From
these sum rules it is possible to extract numerical values of strong couplings corresponding to vertices of involved
particles. The three-point sum rule method is effective for computations in the case of heavy final-state mesons.
The light-cone sum rules are applicable to situations when at least one of final mesons is a particle with well-
known distribution amplitudes or local matrix elements. Let us note that tetraquark-tetraquark-meson vertices
can be explored by means of standard methods of LCSRs, whereas treatment of tetraquark-meson-meson vertices
requires additionally a soft-meson technique.

There are a lot of results left beyond the scope of the present review. Thus, we did not consider our
papers on the structure of the resonance X(5568) and its charmed partner, which presumably are particles
made of four quarks of different flavors [212–215]. Very interesting investigations of tetraquarks stable against
strong and electromagnetic decays were not included into this review as well. Because stable tetraquarks can
dissociate to conventional mesons only through weak transformations, lifetimes of these states are approximately
10−12 − 10−13 s and significantly longer than that of unstable tetraquarks. The famous member of this class
is the axial-vector tetraquark T−

bb;ud
which is one of candidates to stable heavy exotic mesons [216–218]. We

calculated the full width of T−
bb;ud

through its semileptonic decays [219]. It is remarkable that family of stable

exotic mesons is wider than one might suppose: some of these states were studied in our articles [220–223].
Problems of the resonance X(5568) , in general tetraquarks built of four quarks of different flavors, and stable
heavy tetraquarks deserve detailed investigations and separate reviews.
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Appendix
10. The quark propagators
The light and heavy quark propagators are necessary to find QCD side of the different correlation functions. In
the present work, we use the light quark propagator Sabq (x) which is given by the following formula

Sabq (x) = iδab
/x

2π2x4
− δab

mq

4π2x2
− δab

⟨qq⟩
12

+ iδab
/xmq⟨qq⟩

48
− δab

x2

192
⟨qgsσGq⟩

+iδab
x2/xmq

1152
⟨qgsσGq⟩ − i

gsG
αβ
ab

32π2x2
[/xσαβ + σαβ/x]− iδab

x2/xg2s⟨qq⟩2

7776

−δab
x4⟨qq⟩⟨g2sG2⟩

27648
+ · · · . (J.255)

For the heavy quarks Q we utilize the propagator SabQ (x)

SabQ (x) = i

∫
d4k

(2π)4
e−ikx

{
δab (/k +mQ)

k2 −m2
Q

−
gsG

αβ
ab

4

σαβ (/k +mQ) + (/k +mQ)σαβ
(k2 −m2

Q)
2

+
g2sG

2

12
δabmQ

k2 +mQ/k

(k2 −m2
Q)

4
+
g3sG

3

48
δab

(/k +mQ)

(k2 −m2
Q)

6

[
/k
(
k2 − 3m2

Q

)
+ 2mQ

(
2k2 −m2

Q

)]
(/k +mQ) + · · ·

}
.

(J.256)

The light-cone propagator of the light quark is given by the expression

Sabq (x) =
i/x

2π2x4
δab −

mq

4π2x2
δab −

⟨qq⟩
12

(
1− i

mq

4
/x
)
δab −

x2

192
⟨qgsσGq⟩

(
1− i

mq

6
/x
)
δab

−igs
∫ 1

0

du

{
/x

16π2x2
Gµνab (ux)σµν −

iuxµ
4π2x2

Gµνab (ux)γν −
imq

32π2
Gµνab (ux)σµν

[
ln

(
−x2Λ2

4

)
+ 2γE

]}
,
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For the heavy Q quark’s light-cone propagator we have

SabQ (x) =
m2
Q

4π2

K1

(
mQ

√
−x2

)
√
−x2

δab + i
m2
Q

4π2

/xK2

(
mQ

√
−x2

)(√
−x2

)2 δab

−gsmQ

16π2

∫ 1

0

dvGµνab (vx)

[
(σµν/x+ /xσµν)

K1

(
mQ

√
−x2

)
√
−x2

+ 2σµνK0

(
mQ

√
−x2

)]
. (J.258)

In the expressions above

Gαβab = GαβA tAab, G2 = GAαβG
A
αβ , G3 = fABCGAµνG

B
νδG

C
δµ, (J.259)

where a, b = 1, 2, 3 are color indices and A,B,C = 1, 2 . . . 8 . Here tA = λA/2 , where λA are the Gell-Mann
matrices, and the gluon field strength tensor is fixed at x = 0 , i.e., GAαβ ≡ GAαβ(0) . In Eq. (J.258) Kν(z) are
Bessel functions of the second kind.
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