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Abstract: Velocity/energy-dependent potential to a parent nonlocal interaction is constructed for all partial waves by
Taylor series expansion method and the related s and p-wave phase shifts for N-N and α -N systems are computed by
application of modified phase equation. Our phase shifts are in good agreement with standard data.
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1. Introduction

Several attempts were made to construct phase equivalent potentials [1–9] from knowledge of the scattering
phase shifts. Also, the formalism of supersymmetric (SUSY) quantum mechanics has been employed by a
number of workers [10–14] to produce phase equivalent potentials. At high energies the validity of the potential
theory is itself questionable, because the multiparticle production and relativistic effects cannot be accounted
for in a static potential approach. In general, the short-range part of the interaction is originated because of
multiple pion exchange where the recoil of the nucleons cannot be ignored. Under the situation N-N interaction
cannot be defined by one radial variable s, i.e. the relative separation of 2 interacting particles. It also depends
on the immediate vicinity of the 2 interacting nucleons to account for the effects of the recoil. Thus, the N-N
interaction should be represented by V(s,s ′ ) which depends on 2 variables s and s ′ . Thus the local potential
V(s) δ (s- s ′ ) is a limiting form of a general nonlocal potential.

The use of separable nonlocal interactions for different angular momentum states is well established in
nucleon-nucleon and nucleon-nucleus scattering. Several methods [6–9] for generating phase equivalent local
potentials to nonlocal separable interactions exist in the literature. These methods make a comparative study
between the phase shifts of parent nonlocal potentials and the energy-dependent equivalent local potentials.
Talukdar et al. [9] constructed a phase equivalent potential to Yamaguchi [15] one by Taylor series expansion
of the nonlocal wave function involved in the integro-differential equation. The present work is an extension of
this work for all partial waves to study the nucleon-nucleus system.

In section 2, we develop our method for constructing phase equivalent velocity-dependent local potential
to a nonlocal one. Results and discussions are presented in section 3. Finally, conclusion is given in section 4.
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2. Phase equivalent local potential

At a positive energyE = k2 , the Schrödinger equation for a nonlocal potential Vℓ(s, s
′) in the framework of all

partial wave analysis is given by

[
d2

ds2
+ k2 − ℓ(ℓ+ 1)

s2

]
ϕℓ(k, s) =

∞∫
0

Vℓ(s, s
′)ϕℓ(k, s

′) ds′. (1)

Expanding the radial wave function ϕℓ(k, s
′)about s using Taylor’s series one can able to obtain

ϕℓ(k, s
′) =

∞∑
λ+0

(s′ − s)
λ

λ!

dλ

dsλ
ϕℓ(k, s) . (2)

Substitution of Eq. (2) in Eq. (1) leads to

[
d2

ds2
+ k2 − ℓ(ℓ+ 1)

s2

]
ϕℓ(k, s) =

∞∑
λ=0

dλ

dsλ
ϕℓ(k, , s)

∞∫
0

(s′ − s)
λ

λ!
Vℓ(s, s

′) ds′. (3)

Considering the terms up to λ = 2 one obtains

[
d2

ds2
+ k2 − ℓ(ℓ+ 1)

s2

]
ϕℓ(k, s) = ϕℓ(k, s)T

(0)
ℓ (s) + ϕ′

ℓ(k, s)T
(1)
ℓ (s) + ϕ′′

ℓ (k, s)T
(2)
ℓ (s) (4)

with

T
(0)
ℓ (s) =

∞∫
0

Vℓ(s, s
′) ds′ , (5)

T
(1)
ℓ (s) =

∞∫
0

(s′ − s)Vℓ(s, s
′) ds′ (6)

and

T
(2)
ℓ (s) =

∞∫
0

(s′ − s)2

2!
Vℓ(s, s

′) ds′. (7)

With the help of some mathematical rearrangement Eq. (4) yields

[
d2

ds2
+ k2 − ℓ(ℓ+ 1)

s2

]
ϕℓ(k, s) = V a

ℓ (k, s)ϕℓ(k, s) + V b
ℓ (k, s)ϕ

′
ℓ(k, s). (8)

The quantities V a
ℓ (k, s) and V b

ℓ (k, s) used in the above expression are given by

V a
ℓ (k, s) =

T
(0)
ℓ (s)− k2T

(2)
ℓ (s) + ℓ(ℓ+1)

s2 T
(2)
ℓ (s)

1− T
(2)
ℓ (s)

(9)
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and

V b
ℓ (k, s) =

T
(1)
ℓ (s)

1− T
(2)
ℓ (s)

. (10)

Rank-one separable potentials with its simplest mathematical form are used in different areas of physics. The
rank one separable potential considered here reads as

Vℓ(s, s
′) = λℓ vℓ(s) vℓ(s

′) (11)

where
vℓ(s) = 2−ℓ (ℓ!)−1sℓ e−βℓs. (12)

Substituting Eqs. (11) and (12) in Eqs. (5), (6), and (7) lead to

T
(0)
ℓ (s) =

[
2−ℓ (ℓ!)−1

]2
sℓ e−βℓs λℓ

∞∫
0

s′ℓ e−βℓs
′
ds′, (13)

T
(1)
ℓ (s) =

[
2−ℓ (ℓ!)−1

]2
sℓ e−βℓs λℓ

∞∫
0

(s′ − s) s′ℓ e−βℓs
′
ds′, (14)

and

T
(2)
ℓ (s) =

[
2−ℓ (ℓ!)−1

]2
sℓ e−βℓs

λℓ

2!

∞∫
0

(s′ − s)2 s′ℓ e−βℓs
′
ds′. (15)

For the partial waves ℓ = 0& 1 Eqs. (13), (14) and (15) are given by

T
(0)
0 (s) =

λ0

β0
e−β0s, (16)

T
(0)
1 (s) =

λ1s

4β2
1

e−β1 s, (17)

T
(1)
0 (s) =

λ0(1− sβ0)

β2
0

e−β0s, (18)

T
(1)
1 (s) =

λ1s (2− sβ1)

4β3
1

e−β1s, (19)

T
(2)
0 (s) =

λ0e
−β0s

2β3
0

(
2 + s2β2

0 − 2sβ0

)
(20)

and

T
(2)
1 (s) =

λ1 s e−β1s

8β4
1

(
6 + s2β2

1 − 4sβ1

)
. (21)
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Using Eqs. (16) –(21) the Eqs. (9) and (10) can be written for the partial waves ℓ = 0& 1 as

V a
0 (k, s) = λ0

2β2
0 − k2

(
2 + s2β2

0 − 2sβ0

)
2β3

0 − λ0e−β0s (2 + s2β2
0 − 2sβ0)

e−β0s, (22)

V b
0 (k, s) =

2λ0 β0(1− sβ0) e
−β0s

2β3
0 − λ0e−β0s (2 + s2β2

0 − 2sβ0)
, (23)

V a
1 (k, s) = λ1s

2β2
1 −

(
k2 − 2/s2

) (
6 + s2β2

1 − 4sβ1

)
8β4

1 − λ1se−β1s (6 + s2β2
1 − 4sβ1)

e−β1s (24)

and

V b
1 (k, s) =

2λ1 β1s (2− sβ1) e
−β1s

8β4
1 − λ1se−β1s (6 + s2β2

1 − 4sβ1)
. (25)

The regular solution uℓ(k, s)of Eq. (8) can be written as

ϕℓ(k, s) = αℓ(k, s) sin

(
ks+

ℓπ

2
+ δℓ(k, s)

)
.

(26)

The quantities δℓ(k, s) and αℓ(k, s) represent the phase and amplitude functions, respectively.
The regular Green function appropriate to Eq. (8) is [16]

G
(R)
ℓ (s, s′) =

{
−(ĵℓ(ks)η̂ℓ(ks

′)−η̂ℓ(ks)ĵℓ(ks
′))

k for s′ < s
0 for s′ > s

. (27)

In view of Eq. (27) the general solution of Eq. (8) reads as

ϕℓ(k, s) = αℓ(k, s)
[
ĵℓ(ks) cos δℓ(k, s) −η̂ℓ(ks) sin δℓ(k, s)] (28)

with
αℓ(k, s) cos δℓ(k, s) = 1− k−1

[∫ s

0
η̂ℓ(ks

′)V a
ℓ (k, s

′)ϕℓ(k, s
′)ds′

+
∫ s

0
η̂ℓ(ks

′)V b
ℓ (k, s

′)ϕ′
ℓ(k, s

′)ds′
] (29)

and

αℓ(k, s) sin δℓ(k, s) = −k−1
[∫ s

0
ĵℓ(ks

′)V a
ℓ (k, s

′)ϕℓ(k, s
′)ds′ +

∫ s

0
ĵℓ(ks

′)V b
ℓ (k, s

′)ϕ′
ℓ(k, s

′)ds′
]
. (30)

Differentiating Eqs. (29) and (30) with respected to s one obtains

α′
ℓ(k, s) cos δℓ(k, s) − αℓ(k, s) δ

′
ℓ(k, s) sin δℓ(k, s)

= −k−1η̂ℓ(ks)
[
V a
ℓ (k, s)ϕℓ(k, s) + V b

ℓ (k, s)ϕ
′
ℓ(k, s)

] (31)

and
α′
ℓ(k, s) sin δℓ(k, s) + αℓ(k, s) δ

′
ℓ(k, s) cos δℓ(k, s)

= −k−1ĵℓ(ks)
[
V a
ℓ (k, s)ϕℓ(k, s) + V b

ℓ (k, s)ϕ
′
ℓ(k, s)

]
.

(32)
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Multiplying Eq. (31) by cos δℓ(k, s) and Eq. (32) by sin δℓ(k, s) and adding them we get

α′
ℓ(k, s) = −k−1

[
V a
ℓ (k, s)ϕℓ(k, s) + V b

ℓ (k, s)ϕ
′
ℓ(k, s)

] [
η̂ℓ(ks) cos δℓ(k, s) + ĵℓ(ks) sin δℓ(k, s)

]
. (33)

Similarly, Eq. (32) multiplied by cos δℓ(k, s) when subtracted from Eq. (31) multiplied by sin δℓ(k, s)results
in

αℓ(k, s) δ
′
ℓ(k, s) = −k−1 [V a

ℓ (k, s)ϕℓ(k, s)+ V b
ℓ (k, s)ϕ

′
ℓ(k, s)

]
×

[
η̂ℓ(ks) sin δℓ(k, s) − ĵℓ(ks) cos δℓ(k, s)

]
.

(34)

Differentiating Eq. (28) with respect to s and use of Eqs. (33) and (34) in the result along with some
mathematical simplification leads to

ϕ′
ℓ(k, s) = αℓ(k, s)

[
ĵ′ℓ(ks) cos δℓ(k, s) − η̂′ℓ(ks) sin δℓ(k, s)] . (35)

Substitution of Eqs. (28) and (35) in Eq. (34) yields

δ′ℓ(k, s) = k−1
[
V b
ℓ (k, s)

{
ĵ′ℓ(ks) cos δℓ(k, s) −η̂′ℓ(ks) sin δℓ(k, s)} − V a

ℓ (k, s)]

×
[
η̂ℓ(ks) sin δℓ(k, s) − ĵℓ(ks) cos δℓ(k, s)

]
.

(36)

To calculate the values of quantum mechanical scattering phase shifts for different nuclear systems, one can
easily rely on an efficient as well as a simplest method popularly known as the Phase function method (PFM)
[17–20]. In this method the wave function of the radial Schrödinger equation is separated into 2 parts viz. the
amplitude part and phase part. For a local potential the phase function obeys a nonlinear differential equation.
However, the situation differs in case of nonlocal potential. The nonlocal potential couples the wave function
at one point with its value at all neighbouring points. Thereby the accumulation of the phase will depend on
the values of the wave function for all values of s . For common nonlocal potential the phase equation possesses
a complicated structure. However, it becomes somehow easier when one deals with the separable nonlocal
potential.

3. Results and discussions
Using Eq. (36) along with the parameters [7,21,22] given in Table 1 the scattering phase shifts for different
systems are computed for different values of laboratory energy and are depicted in Figures 1–5.

In general, the 3 s1 -state scattering phase shifts for n-p system, portrayed in figure 1, reproduce the data
which are comparable with the standard results [23,24] with both sets of parameters under consideration up
to 100 MeV. However, the scattering phase shifts for pure nonlocal interaction with Arnold-MacKeller (AM)
[7] parameters slightly differ from the standard data both in intermediate and high energy range. While those
with Laha-Bhoi (LB) [21] parameters are in exact agreement with refs [23] up to 150 Mev and beyond that they
discern gradually from standard data [23,24]. On the other hand, the 3 s1 scattering phase shifts for equivalent
local potential with AM and LB [7, 21] parameters change their sign at laboratory energies 230 MeV and 347
MeV, respectively whereas the same change their signs at laboratory energies 375 MeV [23] and 350 MeV [24],
respectively. The scattering phase shifts for this state computed with LB [21] parameters are in exact agreement
with standard result up to laboratory energy of 400 MeV.
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Table . List of potential parameters.

System State λ (fm−2ℓ−3) β (fm−1)

Nucleon-
nucleon

3s1(n-p)
1s0(n-p/p-p)
3p0(n-p/p-p)
3p2(n-p/p-p)

–7.533 (AM)
–3.901(LB)
–2.405
–20.5
–500.0

1.4054(AM)
1.1 (LB)
1.1 (VH)
1.45
2.625

α− n 1/2+
1/2−
3/2−

–9.995
–25.28
–36.50

1.2
1.2
1.2

α− p 1/2+
1/2−
3/2−

–21.56
–37.28
–76.20

1.3
1.3
1.4

Figure 1. Phase shifts (3 s1 -State) for n-p system as a function of ELab .

Looking closely into Figure 2 it is observed that the 1 s0 scattering phase shifts for both n-p and p-p
systems with equivalent local interaction, computed using the parameters given in Table 1, are in close agreement
with the standard data [23,24]. The phase shifts for 1 s0 state for n-p and p-p systems as computed by us attain
maxima of 61.340 and 50.090 at laboratory energies of 5 MeV and 10 MeV, respectively. Our peak values for
the phase shifts fall below the standard results [23] by approximately 30 . The phase shifts values for n-p and
p-p systems for this state change their signs at ELab = 239 MeV and ELab = 229 MeV, respectively which
match exactly with the standard data [23,24] whereas for pure nonlocal interaction, both n-p and p-p phases
are comparable to refs. [23,24] up to 125 MeV and then diverge from standard results. This is obvious because
a one term nonlocal potential cannot account for the change in sign of the phase shifts.
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Figure 2. Phase shifts (1 s0 -State) for n-p and p-p systems as a function of ELab .

Figure 3. Phase shifts (3 p0 & 3 p2 States) for n-p and p-p systems as a function of ELab .

The scattering phase shifts for 3p0 and 3p2 states for both n-p and p-p systems as a function of laboratory
energy are shown in the Figure 3. For 3p0 state of n-p and p-p systems the phase shifts increase with energy,
attain a maximum then gradually decrease and change their signs. Our results for n-p system with equivalent
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Figure 4. Phase shifts (1/2+ , 1/2− & 3/2− States) for α− n system as a function of ELab .

Figure 5. Phase shifts (1/2+ , 1/2− & 3/2− States) for α− p system as a function of ELab .

local potential are in good agreement with Arndt et al. [23] but slightly higher than Gross and Stadler [24].
For p-p system the results for phase shifts are lower than ref. [24] but retrace the correct trend. Our n-p phase
shifts for 3p0 states change their sign at proper place while p-p phases differ by few MeV. Both n-p and p-p
phases for nonlocal potential are well matched with standard results up to 100 MeV and beyond that give poor
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fitting with refs. [23,24] as the potential has one term of attractive nature. For 3p2 state our data are in better
agreement than 3p0 state with Arndt et al. [23] and Gross-Stadler [24]. However, our equivalent potential data
are superior to its nonlocal counterpart.

To explore this method to many nucleon systems we extend our work for α−nucleon systems. For α−n

and α − psystems we have calculated the phase shifts for the partial wave states ℓ = 0 & 1 and match our
results with those of Satchler et al. [25]. These results shown in figure 4 and figure 5 match quite well with the
ref [25]. For nonlocal separable potential the scattering phase shifts for ½− state are in close agreement with
Ahmed et al. [26]. It is noticed that results for equivalent local potentials are in better agreement with Satchler
et al. [25] than pure nonlocal interaction.

4. Conclusion
We have extended the method of Talukdar et al. [9] to all partial waves and obtained good agreement in phase
shift values for nucleon-nucleon and alpha-nucleon systems. Also, we have developed the phase equation of
MacKellar and May [17] for all partial waves. For ℓ > 1 , however, we have verified that this method does not
work satisfactorily. This may arise due to the strong centrifugal repulsion in effective interaction. As our parent
nonlocal potential is a one term attractive type potential it has no ability to reproduce phase shifts for those
states which give negative phase values. To that end we have considered those states which give positive phase
shifts. A one term attractive nonlocal potential obviously has no ability to produce sign change in phase shift
values for s-wave and thus the 1 s0 and 3 s1 n-p/p-p phase shifts have positive values. However, the equivalent
local potential for the same nonlocal one contains 2 terms, 1 energy-dependent and the other 1 is independent.
Thus, this equivalent interaction has the quality to develop correct nature and values of s-wave n-p/p-p phases.
Our method can easily be extended for nucleus-nucleus systems and for the nonlocal potential of higher rank.
It is concluded by noting that our energy-dependent local potentials reproduce better results than its parent
nonlocal interactions.
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