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Abstract: A nonminimal coupling of Weyl curvatures to electromagnetic fields is considered in Brans-Dicke-Maxwell
theory. The gravitational field equations are formulated in a Riemannian spacetime where the spacetime torsion is
constrained to zero by the method of Lagrange multipliers in the language of exterior differential forms. The significance
and ramifications of nonminimal couplings to gravity are examined in a pp-wave spacetime.
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1. Introduction
Einstein’s theory of general relativity is a theory of gravitation determined by the Riemannian geometry of
a 4-dimensional spacetime. Brans-Dicke theory [1–3] on the other hand, provides a modification through the
inclusion of a massless scalar field, in order to incorporate Mach’s principle into Einstein’s initial framework.
The coupled field equations of the theory may be obtained by field variational principle from an action. It is
well known that the second order principle where the metric variations of the Levi-Civita connections are taken
into account; and the first order (Palatini) where independent variations of the action relative to the metric and
connection yield, in these cases, the same set of field equations [4].The fact that the connection is Levi-Civita
may be imposed by the method of Lagrange multipliers.

Electromagnetic fields can be coupled minimally to gravitation simply by incorporating the Maxwell
Lagrangian density 4-form into the total action; and taking independent variations of the electromagnetic fields.
Here we consider nonminimal couplings of gravity and electromagnetic fields in the Lagrangian density. Such
nonminimal considerations for the Einstein-Maxwell couplings may be justified in extreme conditions where
there are intense gravitational and electromagnetic fields at high temperatures, pressures and density [5–8].

We will use in what follows a first order Palatini type variational principle where the Levi-Civita
connection is forced by zero-torsion constraint using the method of Lagrange multipliers [9, 10]. In a similar
way, we may avoid the use of an electromagnetic potential 1-form A such that F = dA by imposing the
closedness of F , dF = 0 , by the same method and varying F directly. We have previously discussed in the
nonminimal coupling context, static, spherically symmetric field configurations where electromagnetic charges
will be screened by gravitational fields[11]. We have also investigated pp-wave spacetimes in Brinkmann
coordinates [12] for one simple case of RF 2 couplings which induced possible modifications to the metric
functions[13]. Here we consider nonminimal couplings of RF 2 type to the Brans-Dicke scalar-tensor theory of
gravity.
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The Brans-Dicke-Maxwell Lagrangian

L0 =
ϕ

2
Rab ∧ ∗(ea ∧ eb)− ω

2ϕ
dϕ ∧ ∗dϕ− 1

2
F ∧ ∗F (1)

is locally scale invariant under

g → e2σ, ϕ → e−2σϕ, F → F, (2)

in the special case ω = − 3
2 . The nonminimal RF 2 coupling of curvature to electromagnetic fields that will be

considered here is

L1 =
γ

2ϕ
Cab ∧ F ab ∗ F, (3)

where

Cab = Rab −
1

2
(ea ∧Rb − eb ∧Ra) +

R

6
eab (4)

are the Weyl conformal curvature 2-forms and γ is an arbitrary dimensionless coupling constant. L1 is also
locally scale invariant.

2. Field equations
In a 4-dimensional spacetime manifold, the field equations will be derived by infinitesimal variations of the
action I[ea, ωa

b, ϕ, F, λa, µ] =
∫
M
(L+ LC), where the Lagrangian density 4-form

L =
ϕ

2
Rab ∧ ∗(ea ∧ eb)− ω

2ϕ
dϕ ∧ ∗dϕ− 1

2
F ∧ ∗F

+
c1
2ϕ

RabF
ab ∧ ∗F +

c2
2ϕ

Fa ∧Ra ∧ ∗F +
c3
2ϕ

RF ∧ ∗F. (5)

{ea} ’s are the co-frame 1-forms in terms of which the space-time metric g = ηabe
a ⊗ eb with ηab =

diag(− + ++) . ∗ denotes the Hodge map. The orientation is given by ∗1 = e0 ∧ e1 ∧ e2 ∧ e3 . We denote the
Brans-Dicke scalar field by ϕ with its parameter ω and the electromagnetic field 2-form by F . The nonminimal
dimensionless coupling constants are c1, c2 and c3 . {ωa

b} are the connection 1-forms that satisfy the Cartan
structure equations

dea + ωa
b ∧ eb = T a (6)

with the torsion 2-forms T a and

dωa
b + ωa

c ∧ ωc
b = Ra

b (7)

with the curvature 2-forms Ra
b of spacetime. The field equations are retrieved by independent variations of

the action with respect to ea , ωa
b , ϕ and F . In order to implement the method of Lagrange multipliers, we

add to the Lagrangian density above the constraint terms

LC = (dea + ωa
b ∧ eb) ∧ λa + dF ∧ µ. (8)
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We impose the connection to be, through constrained variations, the unique metric compatible, torsion-free
Levi-Civita connection. Constrained by the Lagrange multiplier 2-form µ , the homogeneous Maxwell equations
dF = 0 are satisfied by the electromagnetic 2-form F = 1

2Fabe
a ∧ eb . The infinitesimal variations of the total

Lagrangian density with respect to the co-frames ea , the scalar field ϕ , the electromagnetic field F and the
connection 1-forms ωa

b give, respectively, the following equations

ϕ

2
Rbc ∧ ∗eabc +

1

2
(ιaF ∧ ∗F − F ∧ ιa ∗ F ) +

ω

2ϕ
(ιadϕ ∧ ∗dϕ+ dϕ ∧ ιa ∗ dϕ) +Dλa

− c1
4ϕ

[
− 4FacFb ∧ ∗Rcb + ιaRbc ∧ F bc ∗ F −RbcF

bc ∧ ιa ∗ F + F bcFa ∧ ∗Rbc − F bcF ∧ ιa ∗Rbc

]
+

c2
4ϕ

[
− FacR

c ∧ ∗F + 2RFa ∧ ∗F − ιaR
cFc ∧ ∗F + 2ιaR

cbFcb ∧ ∗F − 2ιaR
cb ∧ Fc ∧ ιb ∗ F

−Fa ∧ ∗(Fc ∧Rc)− 2Fa ∧Rc ∧ ιc ∗ F + Fc ∧Rc ∧ ιa ∗ F + F ∧ ιa ∗ (Fc ∧Rc)
]

+
c3
2ϕ

[
− 2ιaR

bFb ∧ ∗F − 2ιaR
bF ∧ ιb ∗ F −RFa ∧ ∗F +RF ∧ ιa ∗ F

]
= 0, (9)

1

2
Rab ∧ ∗eab − 1

2ϕ2
(c1RabF

ab ∧ ∗F + c2Fa ∧Ra ∧ ∗F + c3RF ∧ ∗F )

+
ω

2ϕ2
dϕ ∧ ∗dϕ+ ωd(∗dϕ

ϕ
) = 0, (10)

1

ϕ

[
c1F

ab ∗Rab +
c2
2
(Ra ∧ ιa ∗ F −R ∗ F + ∗(Fa ∧Ra)) + c3R ∗ F

]
− ∗F − dµ = 0,

(11)

1

2
D
[
ϕ ∗ eab + c1(

Fab ∗ F
ϕ

) + c2(−
Fab ∗ F

ϕ
+

1

2ϕ
Fa ∧ ιb ∗ F − 1

2ϕ
Fb ∧ ιa ∗ F )

+
c3
ϕ
ιbιa(F ∧ ∗F )

]
+

1

2
(eb ∧ λa − ea ∧ λb) = 0. (12)

D denotes the covariant exterior derivative with respect to the Levi-Civita connection and ιa are the interior
products that satisfies ιae

b = δba . Variations of the Lagrange multiplier 2-forms λa impose the zero-torsion
condition T a = 0 .

The field equation from the variation of the constraint 1-form µ gives the homogeneous Maxwell equations
dF = 0 . Equivalently by the Poincaré Lemma, F = dA for some unique potential A . We read the
electromagnetic field equation from (11) by taking its exterior derivative

d ∗ F = d
[ 1
ϕ

(
c1F

ab ∗Rab +
c2
2
(Ra ∧ ιa ∗ F −R ∗ F + ∗(Fa ∧Ra)) + c3R ∗ F

)]
. (13)

Multiplying equation (10) we obtained from the ϕ variations by 2ϕ and subtracting it from the trace of
the co-frame ea variation equation (9), we simplify the scalar field equation to the form

2ωd(∗dϕ)− ea ∧Dλa = 0. (14)
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λa ’s are Lagrange multiplier 2-forms to be solved from the connection variation equations (12) that is
written as

(ea ∧ λb − eb ∧ λa) = dϕ ∧ ∗eab +Kab, (15)

where

Kab = D(
1

ϕ
Σab) (16)

and

Σab = c1Fab ∗ F + c2(−Fab ∗ F +
1

2
Fa ∧ ιb ∗ F − 1

2
Fb ∧ ιa ∗ F ) + c3ιbιa(F ∧ ∗F ). (17)

Then we obtain the following expression for the Lagrange multipliers

λa = ιa(∗dϕ) + ιbK
b
a −

ea
4

∧ ιcιbK
bc. (18)

The Einstein 3-forms are given by Ga = − 1
2R

bc ∧ ∗eabc , so that the Einstein field equations can be written as
follows:

ϕGa =

1

2
(ιaF ∧ ∗F − F ∧ ιa ∗ F ) +

ω

2ϕ
(ιadϕ ∧ ∗dϕ+ dϕ ∧ ιa ∗ dϕ) +D(ιa ∗ dϕ)

− c1
4ϕ

[
− 4FacFb ∧ ∗Rcb + ιaRbc ∧ F bc ∗ F −RbcF

bc ∧ ιa ∗ F + F bcFa ∧ ∗Rbc − F bcF ∧ ιa ∗Rbc

]
+

c2
4ϕ

[
− FacR

c ∧ ∗F + 2RFa ∧ ∗F − ιaR
cFc ∧ ∗F + 2ιaR

cbFcb ∧ ∗F − 2ιaR
cb ∧ Fc ∧ ιb ∗ F

−Fa ∧ ∗(Fc ∧Rc)− 2Fa ∧Rc ∧ ιc ∗ F + Fc ∧Rc ∧ ιa ∗ F + F ∧ ιa ∗ (Fc ∧Rc)
]

+
c3
2ϕ

[
− 2ιaR

bFb ∧ ∗F − 2ιaR
bF ∧ ιb ∗ F −RFa ∧ ∗F +RF ∧ ιa ∗ F

]
+D(ιbK

b
a) +

ea
4

∧D(ιcιbK
bc). (19)

We have to solve them together with the scalar field equation

(2ω + 3)d(∗dϕ) = d(ιbK
b
a ∧ ea), (20)

and the inhomogeneous Maxwell equations

d ∗ F = d
[ 1
ϕ

(
c1F

ab ∗Rab +
c2
2
(Ra ∧ ιa ∗ F −R ∗ F + ∗(Fa ∧Ra)) + c3R ∗ F

)]
. (21)

3. PP-wave solutions
We wish to explore solutions that characterize plane fronted waves with parallel rays. In Ehlers-Kundt form,
we write the metric

g = 2dudv + 2H(u, ζ, ζ̄)du2 + 2dζdζ̄, (22)
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where

u =
z − t√

2
, v =

z + t√
2
, ζ =

x+ iy√
2

(23)

in terms of the Cartesian coordinates (t, x, y, z) . H is a smooth function which will be determined by Einstein
field equations. We take next an electromagnetic potential 1-form given by A = f(u, ζ, ζ̄)du , and the scalar
field ϕ = ϕ(u) only.

Introducing null tetrads to the formalism developed in Ref[12] we have

l = du, n = dv +Hdu, m = dζ. (24)

The following notation used for the connection and curvature forms have been previously introduced in [14, 15];
then using the Cartan structure equations, we determine the connection 1-forms

ω+ = 0, ω− = iHζ l, ω0 = 0, (25)

the curvature 2-forms

R+ = 0, R− = −iHζζ l ∧m− iHζ̄ζ̄ l ∧ m̄, R0 = 0, (26)

and the Einstein 3-forms

G3 +G0√
2

= 2iHζζ̄ l ∧m ∧ m̄,
G3 −G0√

2
= 0,

G1 + iG2√
2

= 0. (27)

Furthermore the electromagnetic field 2-form becomes

F = dA = −fζ l ∧m− fζ̄ l ∧ m̄. (28)

Regardless of the choice of the nonminimal coupling constants c1, c2 and c3 , in this particular geometry the
right hand sides of both (20) and (21) vanish. The scalar field equation is then identically satisfied d(∗dϕ) = 0 .

The Einstein equations after a long calculation reduce to

Hζζ̄ = −
fζfζ̄
ϕ

− ω
ϕ2
u

2ϕ2
− ϕuu

2ϕ
+ (c1 − c2)

fζζfζ̄ζ̄
ϕ2

+
c3
ϕ2

f2
ζζ̄

+
(c2 − 2c3)

ϕ2
(fζζ̄ζ̄fζ + 2f2

ζζ̄ + fζζζ̄fζ̄). (29)

From the Maxwell equations dF = 0 and d ∗ F = 0 we get

fζζ̄ = 0. (30)

Consequently the field equations reduce to

Hζζ̄ = −
fζfζ̄
ϕ

− (ω
ϕ2
u

2ϕ2
+

ϕuu

2ϕ
) + (c1 − c2)

fζζfζ̄ζ̄
ϕ2

. (31)

An exact solution of the of the above equation is

H(u, ζ, ζ̄) = H0 −
1

2ϕ
f2 − (ω

ϕ2
u

2ϕ2
+

ϕuu

2ϕ
)ζζ̄ + (c1 − c2)

fζfζ̄
ϕ2

, (32)

where (H0)ζζ̄ = 0 .
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4. Conclusion
It is remarkable that for an arbitrary choice of the coupling constants c1, c2 and c3 , the right hand side of
both the Maxwell and scalar field equations identically vanish in the pp-wave geometry. Then the scalar and
vector fields ϕ and F configurations of the nonminimal Brans-Dicke equations are still solutions. However, the
Einstein field equations (29) are modified on its right hand side by nonminimal couplings.

The previous case studied in [13] corresponds to the choice c1 ̸= 0 and c2 = c3 = 0 which give a
nontrivial contribution in the metric function when integrated. We note the emergence of the scalar field
coupling to the electromagnetic potential on the right hand side of the Einstein equations, which in turn leads
to an exact solution that differs due to the conformal coupling. It may be interesting to include in future works
a cosmological constant with a generalization of pp-waves in AdS or dS .

Here with the choice c1 = c2 = γ and c3 = γ
3 we see that all nonminimal contributions drop out

on-shell, i.e. provided the Maxwell equation fζζ̄ = 0 is satisfied. This is a manifestation of the fact that
the nonminimal coupling we study here is locally scale invariant. The non-minimal couplings that we have
considered here polarize spacetime and the presence of a dark matter distribution around a black hole will be
affected for c1 ̸= c2 , which could provide dominant signs of the peculiar quality of dark matter[16]. Further
studies[17] shows that the effects of cold dark matter on primordial gravitational waves; a frequency dependent
modification, detectable but small, on the propagation speed. Consequently nonminimal couplings of RF 2 type
may be of essence also in understanding the effects of magnetization and polarization on a binary inspiral.
Remarkably, it has been pointed out recently that dark matter overdensities around black holes inescapably
reshape the motion of binary mergers[18].
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