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Abstract: The field-free quantum-spin-1/2 XXZ model is studied in three-dimensions using renormalization group
theory. We obtain global phase diagrams and critical properties. We identify zero-temperature quantum phase transitions
at isotropic points, as well as long-range order below critical temperatures at all anisotropies. We show that the excitation
spectrum is gapless in XY-like, and gapped in Ising-like anisotropy regimes. Besides, internal energy density, specific
heat, nearest-neighbor entanglement measures and spin-spin correlations are obtained globally at all temperatures. Our
numerical results cover the global range of anisotropy parameter, for both ferromagnetic and antiferromagnetic cases.
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1. XXZ model
Quantum magnetic models attract interest, basically due to the possibility of their realizations in information
processing systems [1–4], due to their capability of modeling superfluidity [5, 6], and due to the interplay of
quantum magnetism and superconductivity [7]. A particular model is the XXZ model, in which the exchange
interactions between neighboring spins are uniaxially anisotropic, as defined by the dimensionless Hamiltonian
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where k is the Boltzmann constant, T is the absolute temperature, and the sum is over nearest-neighboring
lattice sites. The site-i local operators are equal to one-half the usual Pauli spin operators, sui ≡ 1

2σ
u
i , where u

denotes the spin component x , y , or z . The XXZ Hamiltonian operator (1) has the same spectrum for Jx and
−Jx [8], which allows us to consider only the Jx ⩾ 0 case. Furthermore, the XXZ Hamiltonian operator (1) is
symmetric under x ↔ y , which allows us to omit the direction-y , since all physical observables in y -direction
are the same as in x -direction, e.g.,

〈
syi s

y
j

〉
=

〈
sxi s

x
j

〉
for the nearest-neighbor spin-spin component correlations.

We define a dimensionless temperature as T
T̃
= 3

2Jx+|Jz| , and a uniaxial anisotropy parameter as ∆ = Jz

Jx
.

The model turns into the classical Ising model for ∆ → ±∞ , into the isotropic quantum XXX model for ∆ = ±1 ,
and into the quantum XY model for ∆ = 0 . These models are ferromagnetic (antiferromagnetic) for ∆ > 0

(∆ < 0). The |∆| > 1 ( |∆| < 1) regime is called the Ising-like (XY-like) regime.
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2. Methods
We use an approximate renormalization group (RG) method developed for quantum models by Suzuki and
Takano (ST) [9, 10]. The same ST RG method has been applied to quantum lattice gas model [11, 12],
Hubbard model [13–16], t -J model [17–20] and Falicov-Kimball model [21]. For the XXZ model, although this
approach works best at high temperatures in Ising limits (T ≫ T̃ , |∆| ≫ 1), previously we demonstrated that
even in the opposite zero-temperature XY limit (T = 0 , ∆ = 0), ST RG results obtained for d = 1 and d = 2 ,
compare well with other approximate results, or with exact results if available. [22, 23] In those work, the
details and limitations of the method are discussed elaborately for the XXZ model. In this work, we employ ST
RG approach for the hierarchical lattice of real-space rescaling factor b = 2 and fractal dimensionality d = 3

(see Figure 1). Our results for the FM and AFM Ising models are exact on this hierarchical lattice.
For the XXZ model (1), we consider RG flows in JxJz -space (see Figure 2), where distinct phases are

determined by flows to distinct sink fixed points (see Table 1), and each phase transition is characterized by
a critical fixed point (see Table 2). These critical fixed points control the critical exponents and hence the
universality class of the transitions.

Besides the phase diagram (see Figure 3) and the critical properties, the main output of an RG method is
the expectation values for the operators appearing in the model Hamiltonian, i.e., the nearest-neighbor spin-spin
correlations ⟨sxi sxj ⟩ = ⟨syi s

y
j ⟩ and ⟨szi szj ⟩ for the XXZ model (1). [22, 23] Measures for long-range order and

quantum entanglement, as well as internal energy per bond, and thus, heat capacity per bond, can be obtained
from the nearest-neighbor spin-spin correlations as follows:

Long-range-order in spin-spin correlations can be identified by using the measure [24–27]

Γ =


√∣∣2∆ ⟨szi szj ⟩

∣∣ , |∆| ⩾ 1
2 ⟨sxi s

x
j ⟩√

⟨sxi sxj ⟩+|∆ ⟨szi szj ⟩|
, |∆| ⩽ 1

. (2)

If this measure is greater than a threshold hd , then spin-spin correlations possess long-range-order. For d = 3 ,
a lower bound for h3 is calculated as Γ3 ≈ 0.350 . [24, 25]

The entanglement of formation E can be obtained from spin-spin correlations as [28, 29]

E = −g [f (C)]− g [1− f (C)] , (3)

where f (C) = 1
2

(
1 +

√
1− C2

)
, g [f ] = f log2 f , and the concurrence, being an entanglement monotone, is

[29, 30]
C = max

[
0 , 4

∣∣⟨sxi sxj ⟩∣∣− 1
2

∣∣1 + 4⟨szi szj ⟩
∣∣] . (4)

Figure 1. Building step-by-step the d = 3 hierarchical lattice suitable for RG of b = 2 rescaling factor. At every step,
each bond is substituted by four parallel lines (bd−1 = 4), each containing two bonds (b = 2). Repeating such a step
infinitely many times, gives a hierarchical lattice, on which our renormalization approach works exact in Ising limits.
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The quantum discord D is another measure of quantum correlations, which can be obtained from nearest-
neighbor spin-spin correlations as [29, 31]

D =
1
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where g± = g
(
1± 4max
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.

We calculate the dimensionless internal energy per bond U/J̃ as

U
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=
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=
−3
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)
, (6)

and the dimensionless heat capacity per bond C/k as

C

k
=

1

k

∂U

∂T
=

∂(U/J̃)

∂(T/T̃ )
, (7)

where we introduced an energy scale J̃ = kT̃ .

3. Results and discussion
3.1. Renormalization group flows, critical points and sinks
RG flows calculated for spatial rescaling factor b = 2 and spatial dimensions d = 3 is shown in Figure 2, which
is in accord with the results of a different RG approximation [32]. For simplicity, we show flows only for Jz > 0

and Jx > 0 . One does not need to consider Jx < 0 subspace, due to the symmetry Jx ↔ −Jx mentioned
above. A point in the Jz < 0 subspace is renormalized to a point in the Jz > 0 subspace in a single RG step,
and hence not shown in Figure 2.

Figure 2. RG flows in the ferromagnetic interactions subspace. In both panels, flow directions are indicated by
arrows. Panel (a): RG flow field in detail. Flow speed,

√
(J ′

x − Jx)2 + (J ′
z − Jz)2 , from fast to slow is coded by

colors from yellow to purple. (Primes denote renormalized parameters.) Flows become slower (faster) near (away from)
the critical lines. Panel (b): Phases, critical fixed points and critical lines. Paramagnetic (PM, white) phase has
the infinite-temperature sink at Jx = 0 , Jz = 0 ; ferromagnetic (FM, yellow) phase has the zero-temperature sink at
Jx = 0 , Jz → ∞ ; and Kosterlitz-Thouless (KT, green) phase has the zero-temperature sink at Jx → ∞ , Jz → ∞ (see
Table 1). Shown by star-markers are the XXX, XY and Ising critical fixed points (from top to bottom), which control
the universality of phase transitions (see Table 2).
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Table 1. Phase sink characteristics: interactions Ju , runaway ratios J ′
u/Ju and associated densities ⟨sui suj ⟩ at sinks.

Sinks Jz Jx J ′
z/Jz J ′

x/Jx ⟨szi szj ⟩ ⟨sxi sxj ⟩
PM 0 0 0 0 0 0

(A)FM ∞ 0 4 0 1/4 0

KT ∞ ∞ 2 2 1/4 0

Table 2. Critical fixed point characteristics: universality classes, interactions J∗
u , and critical exponents in relevant

directions yT at the XXX, XY and Ising critical points, shown in Figure 2(b) as star-markers.

Phase transitions Universality classes J∗
z J∗

x yT

(A)FM-PM Quantum XXX 0.34388 0.34388 0.71516

KT-PM Quantum XY 0.01706 0.27691 0.86027

(A)FM-PM Classical Ising ±0.26107 0 0.93913

Characteristics at sink fixed points are presented in Table 1. Each sink identifies a distinct phase:
the disordered paramagnetic (PM) phase at high temperatures, and ordered (anti)ferromagnetic ((A)FM) and
Kosterlitz-Thouless (KT) phases at low temperatures. The three stars in Figure 2b denote the critical fixed
points, which characterize the phase transitions between different phases. In Table 2, we present the universal
characteristics of these critical fixed points. Here, yT is the relevant scaling exponent at the critical fixed point.
[23]

The exponent yT for the XXX critical point is smaller than the exponent for the XY critical point, and
the latter is smaller than the critical exponent for the Ising model as expected [33]. Our calculated values for
yT are to be compared with the values 0.855 , 0.917 and 1.15 obtained by Mariz et al. [32], and with 1.39

[34], 1.49 [35] and 1.59 [36] obtained by series expansion, respectively for XXX, XY and Ising critical points
in d = 3 . We note that our results hold for the hierarchical lattice in Figure 1, and that the critical exponents
strongly depend on the lattice type.

The critical interaction parameters J∗
u in Table 2 qualitatively agree with the results of Mariz et al.:

J∗
z = J∗

x = 0.239 for the XXX fixed point, J∗
z = 0.046 and J∗

x = 0.215 for the XY fixed point, and J∗
z = 0.183

and J∗
x = 0 for the Ising fixed point [32]. The series expansion results (J∗

z , J
∗
x) for XXX, XY and Ising fixed

points are respectively (0.300, 0.300) [34], (0, 0.250) [35] and (0.220, 0) [36].

3.2. Phase diagrams

From the RG flows (see Figure 2), we obtain the global phase diagram in JzJx -space as presented in Figure 3a,
and in anisotropy-temperature space as in Figure 3b. For the whole range of anisotropy parameter ∆ , there
exists phase transitions from the high-temperature disordered paramagnetic PM phase to low-temperature
ordered phases: to ferromagnetic FM phase (antiferromagnetic AFM phase) for the Ising-like regime including
the isotropic XXX point ∆ ⩾ 1 (∆ ⩽ −1), and to a Kosterlitz-Thouless KT phase for the XY-like regime
|∆| < 1 . Hence in d = 3 dimensions, order-disorder transitions exist at finite-temperatures for the whole range
of ∆ . We note that this is not the case in d = 2 dimensions, where there is no finite-temperature transition for
the XXX models at |∆| = 1 [23]; and in d = 1 dimensions, where there is no finite-temperature transition at
all [22].
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Figure 3. Phase diagrams for the d = 3 quantum-spin- 1
2

XXZ model in dimensionless interactions space (a) and in
scaled temperature vs. anisotropy space (b). The horizontal axis in panel (b) is chosen as ∆ in the XY-like regime, and
as 1/∆ in the Ising-like regimes. Dashed lines in both panels are only guides pointing out the isotropic XXX models.

Table 3 shows the critical temperatures T
(∆)
c for XXX, XY, and Ising models, which involve three-, two-,

and one-dimensional spins, respectively. The critical temperature Tc is expected to increase with decreasing
spin dimensionality, since it requires less energy kTc to unsettle the order between higher dimensional spins.

We obtain the expected order in critical temperatures, i.e., T (±1)
c < T

(0)
c < T

(±∞)
c . In addition, from Figure 3b,

we see that T
(∆)
c falls off as absolute anisotropy |∆| is scanned either from Ising models (1d spins) or from

XY model (2d spins) to XXX models (3d spins). These expected trends were also obtained by other RG
approximations for cubic lattices [32, 37–40], with qualitative agreement to our phase diagrams of Figure 3.

Table 3. Dimensionless critical temperatures, T
(∆)
c / T̃ = 3/(2Jc

x + |Jc
z |) , and dimensionless interactions, Jc

u , for XXX,
XY and Ising models. Critical temperature increases with decreasing spin dimensionality as expected.

Models Spin dimensions Critical temperatures Critical interactions
FM XXX (∆ = 1, Jx = Jz) 3 T

(1)
c / T̃ = 2.907958 Jc

x = Jc
z = 0.343884

AFM XXX (∆ = −1, Jx = |Jz|) 3 T
(−1)
c / T̃ = 3.541227 Jc

x = −Jc
z = 0.282388

XY (∆ = 0, Jz = 0) 2 T
(0)
c / T̃ = 5.444572 Jc

x = 0.275504

(A)FM Ising (|∆| → ∞, Jx = 0) 1 T
(±∞)
c / T̃ = 11.491383 |Jc

z | = 0.261065
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We also note a quantum mechanically induced asymmetry between critical temperatures of AFM-PM

and FM-PM transitions, i.e., T (−∆)
c / T

(∆)
c > 1 for positive ∆ , as plotted in Figure 4. The critical temperatures

ratio, T
(−∆)
c / T

(∆)
c , is unity only for XY and Ising models, but is maximal for the XXX model. Our result for

the peak, T (−1)
c / T

(1)
c = 1.21777 , compares well with the results 1.48 [41], 1.22 [16, 17], 1.13 [42], 1.12 [43–45],

1.11 [46], 1.10 and 1.08 [47] obtained for d = 3 by various methods.

3.3. Long-range-order measure

Figure 5 shows our results for the long-range-order measure Γ [see equation (2)] in anisotropy-temperature
space. The contour plot is clipped at Γ = 2.2 , for Γ growing fast close to Ising models at low temperatures.
We have a region of Γ > Γ3 at low temperatures for all ∆ , where Γ3 ≈ 0.350 is the estimated long-range-order
threshold lower bound. [24, 25]

Figure 4. The ratio of AFM critical temperature T
(−∆)
c to FM critical temperature T

(∆)
c with the same absolute

anisotropy, plotted as a function of ∆ and 1/∆ in XY-like and Ising-like regimes respectively.

Figure 5. Contour plot of long-range-order measure Γ in anisotropy-temperature space. The horizontal axis is chosen
as ∆ (1/∆) in XY-like (Ising-like) regime. Solid red contour marks the estimated long-range-order threshold lower
bound, Γ3 ≈ 0.350 . Order-disorder phase transition lines (see Figure 3(b)) are superimposed as the orange dotted line.
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In the same Figure 5, we also superpose the order-disorder phase transition lines (orange dotted lines,
see Figure 3b). We observe that the approximate critical temperature of long-range order obtained from

Γ(∆, T
(∆)
c ) = Γ3 overestimates the real critical temperature for the whole range of anisotropy. Nonetheless, we

can qualitatively conclude that the low-temperature ordered (A)FM and KT phases exhibit log-range order.

3.4. Excitation spectrum gap at low-temperatures

In Appendix, we present global results for spin-spin correlations (⟨sxi sxj ⟩ and ⟨szi szj ⟩) as well as other thermo-
dynamic functions obtained from the spin-spin correlations. These functions are entanglement of formation
(E ), quantum discord (D ), dimensionless internal energy per bond (U/J̃ ), and dimensionless heat capacity per
bond (C/k ). We observe that low-temperature behavior of specific heat is different in XY-like and Ising-like
regimes, see Figure 10d.

In both the AFM and FM phases of the Ising-like regime, there exist a gap between the ground-state and
the thermally excited states. This exication gap results in exponential specific heat vs. temperature behavior at
low-T . On the other hand, the KT phase of the XY-like regime is a spin-liquid phase, and the excitations from
the ground-states are gapless, resulting in a specific heat that is linear in temperature at low-T : C = γ0 T ,
where γ0 is the Sommerfeld coefficient. [22, 23]

In Figure 6a, we plot the dimensionless heat capacity per bond as a function of temperature at low-T ,
for a variety of anisotropies in the range −1 ≤ ∆ ≤ 1 . We observe the expected linear behavior. Here, we
define a dimensionless Sommerfeld coefficient as

γ0

k/T̃
= lim

T→0

C/k

T/T̃
, (8)

and plot the results for it in Figure 6b, where we observe that the dimensionless Sommerfeld coefficient is zero
for AFM XXX model; increases with increasing anisotropy parameter; and falls discontinuously to zero at FM
XXX model. The Sommerfeld coefficient persists at zero in both AFM and FM Ising-like regimes. Hence, we
resolve that the low-temperature excitations in the XY-like regime are gapless, while in the Ising-like regimes
an excitation gap exists.

Figure 6. Panel (a): Scaled specific heat C/k plotted as a function of scaled temperature T/T̃ , for various ∆ in the
XY-like regime as indicated in the legend. Note the factor of 10−6 for the vertical axis. Panel (b): Scaled Sommerfeld
coefficient γ0 T̃ /k plotted as a function of anisotropy parameter ∆ in the XY-like regime, −1 ⩽ ∆ ⩽ 1 .

294



SARIYER/Turk J Phys

3.5. Quantum phase transitions at zero-temperature

To identify the quantum phase transitions between ordered KT and (A)FM phases (see Figure 2), we calcu-
lated the thermodynamic and entanglement functions at zero-temperature: spin-spin correlations ⟨sxi sxj ⟩0 and

⟨szi szj ⟩0 , scaled internal energy per bond U0/J̃ , and entanglement functions C0 , E0 and D0 , which are plotted
as functions of anisotropy in Figure 7. Here, the 0 -subscripts are used to denote T = 0 .

The cusp peak in U0/J̃ , and the jumps in ⟨sxi sxj ⟩0 , ⟨szi szj ⟩0 , C0 , E0 and D0 , are due to the discontinuous

KT-FM quantum phase transition at ∆ = 1 , while the local maxima in U0/J̃ , C0 and E0 are due to the
continuous AFM-KT quantum phase transition at ∆ = −1 . [22, 23, 30, 48, 49]

Figure 7. Thermodynamic and entanglement functions at zero-temperature as functions of anisotropy parameter. Panel
(a): spin-spin correlations ⟨szi szj ⟩0 (solid yellow) and ⟨sxi sxj ⟩0 (dashed purple). Panel (b): scaled internal energy per
bond U/J̃ (solid green). Panel (c): concurrence C0 (dashed purple), entanglement of formation E0 (solid yellow), and
quantum discord D0 (dotted green). Thin vertical lines are guides to show isotropic XXX points, ∆ = ±1 .
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Appendix
Here we provide global numerical results for various thermodynamic and entanglement functions: nearest-
neighbor spin-spin correlations ⟨szi szj ⟩ and ⟨sxi sxj ⟩ in Figure 8, quantum entanglement measures E and D in

Figure 9, and finally, thermodynamic functions U/J̃ and C/k in Figure 10. In all these Figures, in panels (a)
and (b), we show contour plots for these physical quantities as functions of anisotropy parameter and scaled
temperature, and in panels (c) and (d) we plot them as functions of temperature for a variety of anisotropy
parameters covering the global range from AFM to FM Ising limits, as indicated in the legends. The horizontal
axes in panels (a) and (b) are chosen as ∆ in the XY-like regime, and as 1/∆ in the Ising-like regimes. We
note that these functions show the same qualitative behavior (e.g., same discontinuous jumps, cusps, maxima,
peaks and double peaks), as in one- and two-dimensional models discussed in detail previously. [22, 23]
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Figure 8. Nearest-neighbor spin-spin correlations ⟨szi szj ⟩ (a)(c) and ⟨sxi sxj ⟩ (b)(d).
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Figure 9. Entanglement of formation E (a)(c) and quantum discord D (b)(d).
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Figure 10. Dimensionless internal energy per bond U/J̃ (a)(c) and dimensionless heat capacity per bond C/k (b)(d).
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