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Abstract: In this paper, the modified Hawking temperature of a static Riemann space-time is studied using the
generalized Klein—Gordon equation and the generalized Dirac equation. Applying the Kerner-Mann quantum tunneling
method, the modified Hawking temperatures for scalar particles and fermions that cross the event horizon of the black
hole have been derived. We observe that the quantum gravity effects reduce the rise of thermal radiation temperature
of the black hole.
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1. Introduction
The thermodynamics of black holes has been constructed successfully [1] since the discovery of Hawking radiation
using quantum field theory in curved space-time [2, 3]. The relationship between the entropy of black hole and
the horizon area was established in [4]. Since then, different authors proposed different methods for studying
the Hawking radiation. Damour and Ruffini [5] and Sannan [6] studied the Hawking radiation using tortoise
coordinate transformation. Chandrasekhar [7] and Bonner and Vaidya [8] showed that the Dirac equation
and Maxwell’s electromagnetic equations can be separated for stationary space-time. However, using tortoise
coordinate transformation, the Dirac equation and Maxwell’s electromagnetic field equations can be separated
for stationary and nonstationary black holes. Following this method, many studies have been conducted [9-14].

Parikh and Wilczek [15] studied the Hawking radiation as a quantum tunneling process and this method
is known as the null geodesic method. The Hawking radiation as a tunneling of particles was also studied using
the Hamilton—Jacobi method [16]. The Hawking temperatures using Hamilton-Jacobi method and Parikh—
Wilezek tunneling approach for different black holes have also been investigated in the literature [17, 18].
When outgoing particles tunnel across the barrier, the imaginary part of the action can be derived by applying
Feynman prescription and WKB approximation. The authors in [19, 20] investigated the Hawking radiation in
more complicated black holes by applying the Hamilton—Jacobi method. They showed that the spectrum was
no longer thermal.

Kerner and Mann [21] investigated the tunneling of Dirac particles across the event horizon of Rindler
black hole and the general rotating black hole. In this method, appropriate Gamma matrices were chosen
and wave functions were inserted into the Dirac equation, the action which is related to Boltzmann factor of

emission at Hawking temperature according to semiclassical WKB approximate can be obtained. Using this

*Correspondence: yumkendy@gmail.com

373

[GO) This work is licensed under a Creative Commons Attribution 4.0 International License.



https://orcid.org/0000-0002-1536-6000
https://orcid.org/0000-0002-2568-0343
https://orcid.org/0000-0001-7420-7774

MEITEI et al./Turk J Phys

method, the Hawking radiation in different complicated black holes can be studied [22-25]. Kruglov [26, 27]
proposed the thermal radiation from a black hole by using Hamilton—Jacobi ansatz to Proca equation, WKB
approximation and Feynman prescription. For the Rindler black hole, the emission temperature is in agreement
with the Unruh temperature and for the Schwarzschild space-time, the emission temperature coincides with the
Hawking temperature of scalar particle. The Hawking radiation from the transverse Lorentzian warmholes in
3+1 dimensions was discussed using Proca equation and the negative Hawking temperature was also investigated

in [28]. Tunneling of vector particle in different black holes has been discussed in [29-35].

The existence of a minimal length [36-40] was shown by theories of quantum gravity such as string theory,
loop quantum gravity, and quantum geometry. This minimal length can be achieved by using the generalized
uncertainty principle (GUP) through modified commutation relation. Modifying the fundamental commutation
relation [41, 42] [z;, p;] = ihd;;[1 + Bp?], the inequality of GUP is obtained as AzAp > h/2[1 + B(Ap)?], where
8= 0o /Mg M, is the Plank mass and fy is the dimensionless parameter of order unity. The position, z; and

momentum, p;, satisfying the standard commutation relation [zg;, po;] = ihd;;, can be defined as x; = zq; and

77
pi = poi(1+pE;), respectively. Das et al. [43, 44] investigated the GUP based on doubly special relativity. The
Unruh effect has also been studied by Majhi and Vagenas [45] based on a modified form of GUP. The radiation of
massless scalar field in the Schwarzschild black hole has been investigated in [46] by taking quantum gravity into

account influenced by DSR-GUP and Parikh and Wilczek tunneling method. It is observed that the remnant of

black hole evaporation is > % Following their studies, many interesting results have been derived in [47-57].

Sakalli et al. [58] studied the modified Hawking temperature and entropy coorection of rotating acoustic black
hole using the generalized Klein-Gordon equation. Ablu et al. [59] discussed the tunneling of scalar particle
for BTZ black hole using the generalized Klein—Gordon equation based on GUP and the entropy correction at
the black hole event horizon has been recovered. Recently, another method has been used to study Hawking
radiation. In this method, Hawking radiation is considered a topological effect and Hawking temperature can
be calculated for spherically symmetric topology [60].

The aim of this paper is to investigate the correction of Hawking temperature of scalar particles and
fermions crossing the black hole horizon of a Riemann space-time by taking quantum gravity into account.
Applying generalized Klein—-Gordon equation and generalized Dirac equation based on GUP, the corrected
Hawking temperature has been recovered.

The paper is organized as follows. In Section 2, the Klein—Gordon equation and the Dirac equation based
on GUP have been revisited. In Section 3, the correction of Hawking temperature for Riemann space-time
is investigated by applying generalized Klein—Gordon equation and WKB approximation. In Section 4, the
tunneling of fermions across in the Riemann space-time is investigated by using generalized Dirac equation and

WKB approximation. In Section 5, some conclusions are given.

2. Revisiting the generalized Klein—Gordon equation and Dirac equation

The Klein—Gordon equation of scalar particle having mass mg in four dimensional space without an electro-

magnetic field is given by
i 2
—D Pi = Mmy. (1)
To study quantum gravity effect, the above field equation can be written as
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—(ih)20'0, = (ih)20'0; + m2.
The modified expression of energy in quantum theory of gravity can be expressed as [61, 62]
E=E(1-BE?) = B[l - 5(p* +mp)], ()

where E = ihd; and E? — p?> = m2 are the energy operator and energy mass shell, respectively. Inserting

modified momentum operators and the dispersion relation into the above equation, the generalized Klein—

Gordon equation [52] can be written as
(4)

—(ih)20'0pp = {(—ih)?0'0; + mZ}[1 — 28{(—ih)?0"0; + mZ}]p.

The Dirac equation in four dimensional curved space-time is given by [63]

Bt QT =0, 0y = Ll @
where w’® is the spin coefficients and ¥ will satisfy the following conditions
She = 31577 D1 2} =20 (©)
The square of momentum operator is
p? = pip’ ~ —h?[0'0; — 2Bh*(0'0;)(0"D;)]. (7)
To obtain generalized Dirac equation based on GUP in curved space-time, Eq. (5) can be written as
(8)

4 m
=00 = (i7'9; + i7" + I,
where ¢ = 1,2, 3 indicates the spatial coordinates. Using Egs. (3) and (7) in Eq. (8), we obtain generalized

form of Dirac equation as,
[i’yoao + i’)/i(l — ﬂmoz)&- + z'yzﬂhz(ajaj)& —+ %(1 — 6m02 + 67128j8j)

+iy"Qu(1 = Bmi + Bh?0;07)]v = 0,
where v is a Dirac spinner wave function.

3. Hawking temperature of Riemann space-time for scalar particle
The line element of static Riemann space-time in four dimensional space-time (¢, ,y, z) can be written [64] as
ds? = —a%dt® + v?da® + Ady? + d*d2?, (10)
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where a,b,c, and d are the functions of (x,y,z). Eq. (10) has an event horizon at © = . According to [65],

the contravariant and covariant components of Riemann space-time can be written as
goo = —¢*(x — &) = —a®, g"" = p*(x,y,2)(z — &) = 5, 97 =0, 4" = . (11)

The position of event horizon is z = &, and ¢?, p?,0, ¢ are arbitrary nonzero and nonsingular functions at the

event horizon. The surface gravity x is [65]

1 | g'"dgoo _ 1
-1 Y - 12
f= o T e o~ 2P(©)4) (12)
and the temperature of the black hole is given by
7 = 2O )
T

Substituting covariant and contravariant components of Eq. (10) into generalized Klein—-Gordon equation given

in Eq. (4), we have

h2 9% ,,10%  10% 1 0% L1 02
2or - "eaetaag tEe) "W e
1 02 102 ,10% 10% 1 0%
ot 2o Row T @ap @ o)
1 92 192 1 9?
+48mo> R ( v v ¢)+m02(1—2ﬂm02)¢. (14)

b2 922 " 2 0y2 | d? 922

To investigate the correction of Hawking temperature of Riemann space-time based on the GUP, the wave
function is chosen as

P = Aet S22 (15)

Using Eq. (15) in Eq. (14), the following relation is obtained as

<[1-28{ (G + 5GP+ (G +ma)]. (16)
Using the separation of variables of the form
S =—wt+ R(z) + Wy, z), (17)

where w denotes the energy of the emitted scalar particle. We know that the Hawking radiation takes place
along the radial direction, then we take

105, 1 .08,
g(@) +ﬁ(a) = u. (18)
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The value of u is taken as a constant and can be put zero. Using Eqs. (17) and (18) in Eq. (16), a biquadratic

equation is obtained as follows

AR, + B(R,)" +C =0, (19)

where

20 1 w?

A= -2 Bk, O =i -2l -

Eq. (19) has four roots of which only two roots have physical meaning and these are given by

b
Ry =+ / a\/wQ —ma? + 2Bmga?(1 + 26m3)dz, (20)

where R, indicates the scalar particle moving away from the black hole and R_ corresponds to scalar particle
approaching toward the black hole. Using Eq. (11) and completing the integral of Eq. (20), the imaginary part

of radiant action is given by

27w
ImRy = +———— (1 + 28m?). 21
@@ ) ey
The tunneling probability of the scalar particle that has crossed the black hole event horizon is
_ Prob(emission)  exp(—ImR; — ImW)
~ Prob(absorption)  exp(—ImR_ — ImW)
4w
exp (7 1+ 28m2 ) 22
GG )

The corrected Hawking temperature is given by

p(&)q(§)

= 0N Ty(1—28m2), 23
where Tp = % is the actual thermal radiation temperature of Riemann space-time. Thus, the correction to

the Hawking temperature due to quantum gravity effects has been obtained. It is observed that the correction
to the Hawking temperature of Riemann space-time depends on the mass of the emitted scalar particle. From
Egs. (13) and (23), it is observed that the quantum gravity effects can lower the rise of Hawking temperature of
Riemann space-time. When 8 = 0, the original Hawking temperature is recovered. If we ignore a small term,

2,8m%a2
o2

in the roots of Eq. (19), then

Ry = = / g\/oﬂ —m2a? + 2Bmia2[l + B(mi + z—j)]dx,
2w 3mg 5 p(€)d'(€) +a(©p'(E)
Sea! T T T gee (24

where p/(§) = %b:g and ¢'(§) = %\@.:5. The corrected Hawking temperature of Riemann space-time is

T

T =

POIE ) gy (25)
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2 ’ /
where y = 3% — w%%). In this case, the quantum gravity effects lower the rise of Hawking

temperature in Riemann space-time and the Hawking temperature depends on the mass and energy of the

emitted particle and also on arbitrary nonzero and nonsingular functions

4. Dirac equation
To investigate the fermion tunneling across the event horizon of Riemann space-time, our aim is to find the
imaginary part of the radiant action. For the Riemann space-time, v* matrices in (¢, x,y, z) coordinates system

are chosen as

i 0 0 0 0 0 1 0
. 1lo i 0 o . 1[o 0 0o =1
T = 2loo = oo 7Tl 1 0 0 0 |
00 0 —i 0 -1 0 0
00 0 1 0 0 0 —i
1{oo01 0 1{o o i o
vy o = T
T = clo1oo0 |7 0 —i 0 (26)
100 0 i 0 0 0

The tunneling of Dirac particle from the Riemann space-time can be investigated by taking the modified wave

function as

A(t,z,y,2)
0
B(t,z,y,2z) |’
0

7

W (27)

¥ = exp(+S(t 2.y, 2))

where A(t,x,y,2) and B(t,x,y,2) are arbitrary functions and S(¢,x,y, z) is the action of the radiant particle.

Substituting Eqgs. (26) and (27) in Eq. (9) and neglecting the first order term of %, we get the following four

equations
= G + molL = Bmd) — mo{ 5 (G0 + (5 + (5P
G+ B (G + (G — (L= (B =0, (28)
S5+ 55+ (5% - (L= Bmdl(G A
LS+ mo(l = fud) — moB {5 (507 + (5 + (GHHB =o. (29)
o B G + (G + (5 = (L= fmd)
L SHBG (5P + (507 + (507 — (L= pmdHA =0, (30)

Ao G + (G4 (G - (- i)
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iol, 1,01 1 oI 1 oI,

<b72(87x)2+072(87y)2+ﬁ($) ) = (1= Bmg)}B = 0. (31)

The Riemann space-time has a time like Killing vector %. The separation of variables of Eqgs. (28,29,30,31)

would be difficult, because the radiant action I is a functions of ¢,z,y, and z . In order to separate the

variables, the action I can be expressed as
I=—-wt+Z(x)+ W(y,=2), (32)

where w is the energy of the emitted fermion. Eliminating A and B from Egs. (30) and (31), the identical

equations can be obtained as

(o BB GE + SG  aG) - (emi) 0

From Eq. (33), the second factor inside the square brackets will not be equal to zero. Then we have
10W i oW
- — = 0. 34
c Oy + d 0z (34)
The solution of the above equation is a complex function of W . It can be neglected because this solution does
not yield any contribution to the tunneling rate. Then we can take 0’2%—"; +d=22% = (. Next, we have to solve
the Eqgs. (28) and (29) by using Eqgs. (32) and (34) to obtain the Hawking radiation of a Riemann space-time at
the event horizon. The nontrivial solution of Egs. (28) and (29) would be obtained only when the determinant

of coefficient matrix of A(t,x,y,z) and B(t,x,y, z) is equal to zero and neglecting the higher-order terms of 3,

a biquadratic equation is obtained as:

26
bt

(2 @)~ 557 @) + (55 +md(1+28m3)} =0. (3)

The required two roots having physical meaning of the above equation are given by

b 2
Z(x)x = i/ E\/ (w2 +m3a?)[1 + B(ms + %)]dm
2miw 3mj 3p(§)d'(§) + a(§)p'(§)
oo T T T e Y 0
The tunneling probability of the fermion crossing the event horizon is
I = exp(— (14 pI0)) (37)
=exp(— ;
p(&)a(§)
where II = % —wi (% (f)'i((g;%g)p &) ). The corrected Hawking temperature is given by
7= "1 gy = 11 - ), (33)
where Ty = % is the standard Hawking temperature of the Riemann space-time. From the above equation,

we can conclude that the corrected Hawking temperature is not only related to the mass of black hole but also
the energy and mass of the emitted particle. If 5 = 0, the corrected Hawking temperature becomes standard

Hawking temperature.
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5. Conclusion

We have investigated the tunneling of scalar particles and fermions across the horizon of a static Riemann space-
time by using the generalized Klein—-Gordon equation and the generalized Dirac equation, respectively. For the
tunneling of a scalar particle, the actual calculation shows that the modified Hawking temperature depends on

4 2
the mass of the emitted particle. If we ignore a small term 28 :'}zoa in the roots of a biquadratic equation having

physical meaning, the modified Hawking temperature of a Riemann space-time is found to depend not only on
mass of the emitted particle but also on the energy of the emitted particle. For the fermion tunneling across the
event horizon of Riemann space-time, the actual calculation indicates that the modified Hawking temperature
depends not only on mass of the emitted particle, but also on the energy of the emitted particle.

For fermion tunneling, it is observed that

o If 22‘;2’ =3P (5)‘11;((55));;‘%2%)” © , the effect of GUP has been cancelled and standard Hawking temperature of

Riemann space-time is recovered.

o If % > 32 (5)’2((8;%25))17 (&) , the effect of GUP will reduce the rise of Hawking temperature of Riemann

space-time.

< 3p(8)q’ (§)+4(9p' (&)
p(£)q3(€)

2
o Lastly if 375’3

5 , the effect of GUP will rise the Hawking temperature of Riemann

space-time.
Similar conclusion can be drawn for scalar particles. It is worth mentioning that the presence of GUP will

reduce the rise of Hawking temperature in black holes.
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