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Abstract: By using the Parikh-Wilczek (PW) quantum tunneling method, the Hawking radiation of black holes in
massive gravity is investigated, the emission rate of particles and the black hole entropy are calculated. It is shown
that the emission spectrum is not purely thermal, depends on the increment of the black hole entropy, consists with an
accurate unitary theory and supports the standpoint of information conservation. Unlike other modified gravities, the
entropy of the massive gravity black hole unexpectedly conforms to the area law just as that of Einstein gravity black
hole.
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1. Introduction
Black hole is a mysterious object. Because of its big density and strong gravity, any objects (including light)
close to it will be swallowed up. As a result, it cannot be directly observed by the naked eye or optical equipment.
Taking black hole as a thermodynamic system, the study of the thermodynamic properties of black holes has
always been one of the frontiers of physics. As early as the 1970s, the Hawking radiation was discovered [1] as an
accurate thermal spectrum. Since then, a series of studies had been done to prove that the radiation spectra are
purely thermal [2–6]. However, the purely thermal property of the black hole radiation is inconsistent with both
the property of time inversion and the underlying unitary theory in quantum mechanics. This result reveals
the incompatibility between general relativity and quantum mechanics and leads to the ”information paradox”.
The information paradox of black hole has been listed as one of the top 10 physics problems of the century. But
the physicists always insist that information is never lost. More than two decades later, Parikh and Wilczek
suggested that Hawking radiation should be treated as a quantum tunnelling effect and thought that the barrier
is determined by the energy of the emitting particle itself so that the energy conservation is satisfied when a
particle radiates from a black hole. They used the method to calculate the modified radiation spectra of particles
emitted from the Schwarzschild black hole and the Reissner–Nordstrom one [7–9], and found that the spectra
are not purely thermal and satisfy an accurate unitary theory which supports the conclusion of information
conservation. Not long after then, in 2004, Hawking changed his view at the 17th conference of general relativity
and gravity and accepted the idea that information of black holes cannot be lost. Subsequently, the PW method
was used to calculate the corrected radiation spectra of various Einstein gravity black holes [11–23]. Later, the
method was also used to calculate the radiation spectra of black holes in various modified gravities including
f (R), Gauss–Bonnet, Lovelock–Born–Infeld, Hořava–Lifshitz and conformal anomaly [24–28]. Not only were
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the impurely thermal spectra were given, but also the various forms of the Bekenstein–Hawking (BH) entropy
were displayed. It was also shown that the area law of the entropy was broken as a result of the existence
logarithmic correction terms and other terms or factors [24–28]. Of course, a few especial cases were proven to
exist, for which the PW method cannot convert isothermal Hawking radiation resulting from the emission of the
uncharged particles of the linear dilaton black hole to a nonthermal one unless the quantum gravity corrections
are considered [29–32].

A graviton is defined as a zero mass particle in the theory of Einstein gravity known as general relativity.
One can ask whether a self-consistent gravity theory may be established if the mass of the graviton is not
zero. It turns out that it is not easy. But, researchers have been trying hard so that a series of research
results were made and some strange properties of this modified gravity theory were discovered [33–39]. Among
them, a class of nonlinear massive gravity is the most representative one proposed by Rham, Gabadadze and
Tolley [33–34]. Within this framework, a black hole solution with negative cosmological constant was proven
to exist in the massive gravity theory [35–36]. The study of the thermodynamic properties of massive gravity
black holes has attracted the attention of many researchers [36–41]. In this paper, we extend the PW method
to a four-dimensional massive gravity black hole to investigate the emission rate of a particle from the event
horizon. Not only will the impurely thermal property of Hawking radiation be verified but also the effect of the
graviton mass on the black hole radiation and on its thermodynamic quantities such as quantum entropy will
be discussed.

2. Radial emission equation of particles

From Ref. [36], the line element of a four-dimensional spherically symmetric and static space-time in massive
gravity can be written as follows:

ds2 = −f(r)dt2 + f−1(r)dr2 + r2(dθ2 + sin2 θdϕ2),

f(r) = 1− Λr2

3 − 2M
r + 4Q2

r2 + c1m
2r

2 + c2m
2,

(1)

whereΛ is the cosmological constant, m is the graviton mass,c1 , c2 are constants corresponding to the first and
second massive potentials, and M , Q are the mass and charge of the black hole.

By solving the equationf(r) = 0 , the event horizon radius of the black holer+ can be obtained. Then,
the mass and Hawking temperature of the black hole can be expressed as follows:
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There are two key points to calculate the black hole emissivity by using the PW method. One is that the
particle-black hole system satisfy the energy conservation during the process of tunneling radiation. The other
is that a good coordinate system needs to be selected to make the singularity of the metric at the event horizon
not to exist. We make a coordinate transformation as follows:

dt = dT − f−1(r)

√
r+
r

dr. (4)
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Then, the line element (1) becomes

ds2 = −f(r)dT 2 + 2

√
r+
r

dTdr +
(
1− r+

r

)
f−1(r)dr2 + r2(dθ2 + sin2 θdϕ2). (5)

Formula (5) is called Painleve–Gullstrand line element, which is well-behaved at the event horizon and has at
least the following properties: (a) space-time is steady; (b) all constant-time slices are just flat Euclidean space;
(c) the metric (5) satisfies Landau’s condition of coordinate clock synchronization, which is given by:

∂

∂xj
(− g0i

g00
) =

∂

∂xi
(−g0j

g00
), (i, j = 1, 2, 3). (6)

Since the tunnelling of particles is an instantaneous process in quantum mechanics, the condition (6) is very
necessary [12].

From (5), it is easy to get the radial light-like geodesic equation at the event horizon, that is, the motion
equation of the outgoing particles

ṙ =
dr
dT = f(r)

(
1 +

√
r+
r

)−1

. (7)

3. Eemission rate and BH entropy
The total energy of a stationary space-time should be conserved in the course of the radiation of a particle
outward from a black hole. When a particle of energy ω is emitted, the black hole mass will be reduced
toM − ω , and the horizon radius, Hawking temperature and so on all will be changed. Therefore, when
the equations related with M are used, M should be replaced by M − ω . Since the metric is spherically
symmetric, the outgoing particle can be regarded as a spherical energy layer, that is, as a de Broglie spherical
wave. According to the WKB approximation approach, the relationship between the tunneling probability and
the the action is [42]

Γ ∼ exp (−2ImZ) . (8)

During the process of a particle passing through the barrier, the horizon radius of the black hole changes from
the initial value ri (corresponding to the mass M) to the final value rf (corresponding to the mass M − ω) ,
and the imaginary part of the action reads

ImZ = Im

∫ rf
ri

prdr = Im

∫ rf
ri

∫ pr

0

dprdr, (9)

where pr is the canonical momentum conjugate to r . Utilizing the Hamiltonian equation ṙ = dH

dpr

∣∣∣
r
= dM

dpr

and substituting Eq. (7) into Eq. (9), we have
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dr
ṙ
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(
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√
r+
r

)
f−1(r)drdM , (10)

where Mi = M ;Mf = M − ω . It is obvious that the integrand diverges at r = r+ . Therefore, we must make
use of the integral method of complex variable function to calculate the r integral in Eq. (10). By deforming
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the contour around the single pole, we evaluate the r integral and obtain

ImZ = −2π

∫ Mf
Mi

1

f ′(r+)
dM. (11)

From Eq. (2), we have

dM

dr+
=

1

2

(
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r2+
+ (c1r+ + c2)m

2

)
. (12)

Substituting Eqs. (3) and (12) into Eq. (11), we can easily finish the integral and get

ImZ =
π

2

(
r2i − r2f

)
. (13)

According to Eq. (8), the emission probability of the particle and the emission spectrum can be obtained

Γ ∼ exp
[
π
(
r2f − r2i

)]
= exp

(
∆SBH

)
, (14)

where ∆SBH = π
(
r2f − r2i

)
is the increment of the black hole entropy before and after the particle radiation.

Obviously, the emission spectrum is no longer a pure thermal one and satisfies an accurate unitary theory, it
has the same functional form as that of black holes in Einstein gravity and other modified gravities. Since the
horizon area of the black hole is A = 4πr2+ , the BH entropy given by this quantum tunneling method can be
expressed as follows:

SBH = πr2+ =
A

4
. (15)

Compared with the results of other modified gravity black holes [28–32], the entropy of the massive gravity
black hole satisfies unexpectedly the area formula.

Further, we expand ∆S = S(M)− S(M − ω) in terms of ω , namely

∆S = a1ω +O(ω), (16)

where

a1 =
d(∆S)

dω

∣∣∣∣
ω=0

. (17)

It is not difficult to demonstrate that −a1 = β = 1
TH

is the inverse of the Hawking temperature. Therefore,

the spectrum (14) can be written as follows:

Γ ∼ exp(∆S) = exp(−βω +O(ω)). (18)

In (18), the leading-order term is the thermal Boltzmann factor e−βω for the emitting radiation, the others are
the corrections due to the response of the background geometry to the particle radiation, which describes the
reaction of the quantum radiation and the deviation of the emission spectrum from the purely thermal one.
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4. Conclusion
We took energy conservation into account and considered the radiation particle as a de Broglie spherical wave,
made use of the PW quantum tunnelling method to investigate the tunnelling Hawking radiation of black holes
in massive gravity. The corrected emission rate and quantum entropy were obtained and the universality was
proved again that the radiation spectrum is not purely thermal. It was shown that the modified spectrum keeps
the completely same form as that of existing results [7–28] and is further illustrated that other information than
temperature can be carried in the process of black hole radiation. Surprisingly, the BH entropy of the massive
gravity black hole is equal to a quarter of the horizon area and satisfies the area law. The result differs from
that of other modified gravities [28–32].
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