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Abstract: Using molecular dynamics simulations and scaling arguments, we analyzed the interactions between two
identical molten polymer brushes intermediately and strongly compressed towards each other at melt conditions. The
width of the overlap region, in which monomers of the linear chains composing the two brushes interact, increases as
the polymer-grafted surfaces are brought closer. If two-brush coated surfaces are as close as the characteristics size of
the grafted chains, the overlap region is directly controlled by intersurface distance. At intermediate compression, the
width of the overlap region scales with the end-to-end size of chain sections within the overlap region. This result is
consistent with the scaling regimes in the literature. As the intersurface distance is decreased, the number fraction of
chains (chains with their free ends in the overlap region) decreases with a power law. Our results could be useful for
studies on tribological behavior of polymer-grafted surfaces as well as for the self-assembly of polymer coated colloids.
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1. Introduction
Polymer brushes are monolayers of stretched polymer chains. They form when polymers are grafted on flat
or curved surfaces by at least one of their monomers via physical or chemical bonds (Figure 1) [1]. While
polymer brushes have been a subject of active researh for more than 30 years, the recent progress in radical
polymerization methods [2, 3] have made them essential components of advance materials with unconventional
properties [5, 6]. Some of these technological applications include control of self-assembly of brush-coated
colloidal particles [7, 8], surface coatings for biomedical implants [9], molecular sensors [10, 11], temperature
sensitive surfaces [12], smart drugs [13], antibacterial surfaces [14], and responsive materials [15, 16], etc.

Structures reminiscent of polymer brushes are also often encountered in nature. Particularly, surface
parts of tissues that have to come into physical contact with each other at relatively high speeds are covered
with layers of high-molecular weight polymers [17]. For example, the brush-like mucin layers that cover the inner
parts of the eyelids and retinal surfaces function to prevent erosion that occurs during blinking [18, 19]. The
cartilage tissue, which is located at the joining ends of the bones and prevents bone wear, also resembles polymer
brushes [20, 21]. In general, brush-like structures are thought to function as protective layers minimizing the
damage and wear during the relative movements of biological tissues.

One key point for above mentioned brush-based systems, whether they are biological or synthetic in
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nature, is that these brush-coated surfaces interact with each other by their grafted chains. Ultimately, the
strength of these molecular-level interactions determines all macroscopic properties of the corresponding systems
(i.e. whether brush-coated colloids would form aggregates, or the frictional forces between two brush-coated
surfaces would be reduced by grafted chains). Thus, inevitably, in order to further advance in nanotechnological
fields and design bioinspired systems, the interactions between the chains of brush-coated surfaces must be
understood at the molecular scale.

The first pioneering study on polymer-grafted surface dates back to the Alexander–de Gennes (AG)
model [22, 23]. In the AG model, the height of a brushlayer scales linearly with the polymerization degree of
the polymers, N , predicting highly strecthed chains. The AG model assumes that all the grafted chains have
identical heights, thus, the concentration profile of the chemical monomers in the direction perpendicular to the
surface is a step function. Consequently, when two such brushes are brought to physical contact, no overlap
occurs between the two brushes. Later studies corrected this model by assuming a parabolic profile for the
density of monomers and obtained expressions for the thickness of the overlap region (OR, see Figure 1) [24–
28]. These studies relate the polymerization degree N and the grafting density of chains ρg to the thickness of
the overlap region via various scaling arguments. There is a vast literature of the computer simulations focusing
on the equilibrium structure of interacting polymer brushes and confirming these scaling artuments [29–35] (also
see Ref [36] for a recent review by Kreer). These studies focus on various regimes from semidilute to melt and
show that two brushes indeed interdigitate one another under compression (Figure 1). These studies implicitly
assume that chains can enter the OR partially (i.e. a single chain occupies the OR on average less than N

monomers) and not all grafted grafted chains can be found inside the OR at any given time (as opposed to
the AG model). To best of our knowledge, no study has systematically investigated statistics of chain sections
inside the OR along with the fraction of chains that can coexist in the OR.
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Figure 1. Illustration of formation of polymer brushes. Chains are grafted by one of their free ends onto a surface with
a grafting density ρg . Densely grafted chains form a polymer brush. If two brushes are brought to physical contact face
to face, two brushes would interact via an overlap region (OR, shaded area between the brushes) with a thickness of δ .
At any instant, some chains are outside of the OR (gray chains). If a grafted chain enters the OR, it can occupy the OR
with g < N monomers on average. The Gaussian size of the g -mer sections determine the width of the OR.

In this study, in order to investigate the relationship between the amount of brush overlap and chain
statistics inside the OR for two molten polymer brushes strongly pressed to each other as shown in Figure 1, we
conduct large scale coarse-grained molecular dynamics (MD) simulations. We analyze simulation trajectories
by using in-house codes and compare our results to the scaling arguments to verify their validity for a range
of polymerization degrees between N = 30, 240 and two grafting densities ρg . While our MD simulations are
in excellent agreement with previous theoretical arguments for nonentangled polymer brushes, they also reveal
that the chain section inside the OR are indeed Gaussian, and at intermediate compression levels, only a small
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fraction of grafted chains can be found inside the OR.
The rest of the paper is organized as follows. First we present an overview of the scaling arguments for

the overlap region and the conformation of chain section inside the OR from the literature along with additional
scaling analyses. We then summarize our simulation methodology and compare our MD-simulation results with
the scaling arguments. We discuss the importance of our results together with short future perspective in the
conclusion section.

2. Theoretical overview
Consider that Nch linear polymer chains of N monomers each are grafted on a planar surface by one of their
ends as shown in Figure 1. There is no attraction between the polymer monomers and the surface, but there
is steric repulsion between them. The grafting density of the polymers is defined as ρg = Nch/A , where the
area of the planar surface is A . A critical grafting density is defined as ρ∗g ≡ 1/R2

0 , where R0 = N1/2b is
the Gaussian size of a single chain. Here b is the Kuhn-segment size, in which all the chemical details of the
polymer monomer is embedded. If ρg < ρ∗g , the surface is carpeted by sparsely placed (noninteracting ) chains,
which is also known as mushroom regime. If ρg > ρ∗g , the grafted chains are close enough to sterically interact
with each other and stretched in the direction perpendicular to the surface (Figure 1). As a result, the grafted
polymer form a brush layer composed of stretched chains. In this study, we only consider this brush regime.

If two identical polymer brushes are brought into physical contact by bringing the grafting surfaces to a
surface separation of D , as shown in Figure 1, the chains of one brush diffuse through the other brush layer.
The end sections of grafted chains can only interdigitate throughout the other brush up to a certain depth of
δ (Figure 1). Note that only inside this overlap region (OR) the monomers of the two brushes can interact. If
the separation distance between the two surfaces is small (i.e. high compression, D ≤ R0 ), there is a complete
overlap between the brushes. In this case, the thickness of the OR, δ , is determined solely by the separation
distance,

δ = D ≈ Nρg
ϕ

for D ≤ R0 (1)

after using the expression ϕ ≈ NNch/(AD) ≈ Nρg/D for the number density of monomers. Here, and
throughout the paper, the ≈ signs denote scaling relations, for which the numerical prefactors on the order of
unity are dropped. When D ≤ R0 , all N monomers of each grafted chain are found inside the OR.

For larger separations, D > R0 , the overlap between the two brushes is relatively less strong. This will
bring the thickness of the OR to a size δ < D . The equilibrium width of the OR, δ , under weak interdigitation
was predicted by assuming a parabolic concentration profile as [24, 26, 40].

δ ≈
(
N2b4

D

)1/3

∼ N2/3D−1/3 for D > R0. (2)

The above expression leads to δ = R0 at D = R0 . If D < R0 , the width of the OR is given by Eq. 1. If we use
the expression ϕ ≈ Nρg/D , Eq. 2 can also be written as a function of the grafting density and N as

δ ≈ b

(
ϕNb

ρg

)1/3

∼ ρ−1/3
g N1/3 for D > R0, (3)

which indicates that with increasing grafting density, the overlap between two brushes decreases.
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From an experimental point of view, a relation between δ and D could more useful. By combining Eqs. 1
and 2, the width of the OR can be written as a function of the surface separation as

δ

D
≈
{

1 for D ≤ R0

(D/R0)
−4/3 for D > R0 ,

(4)

Next, we will consider the conformation of chain sections inside the OR. A grafted chain with its one end
free diffuses in and out of the OR. Yet, when D < R0 , a single chain is completly inside the OR since δ = D .
However, when D > R0 , only a certain number of monomers, g < N , is able to diffuse through the OR (see
Figure 1). It is these monomers that can interact with the monomers of the opposite brush. A relation between
g and δ can be established as follows: In the brush limit, grafted chains are not stretched uniformly [26]; while
the chain sections near the grafting surface are highly stretched, the chain sections near the free ends are weakly
stretched or not stretched at all. This implies that the elastic energy of the end section of g monomers can
be assumed to be on the order of the thermal energy kBT , where kB is the Boltzmann constant and T is the
absolute temperature. In this case, the chain segments inside the OR perform a random walk, which leads to

δ ≈ g1/2b. (5)

While Eq. 5 clarifies the conformation of the chain segments inside the OR, it does not provide a
relationship between the macroscopic parameters of interest, namely D and N , both of which can be controlled
experimentally [39]. By combining Eq. 5 with Eqs. 2 and 3, we can obtain an expression for the number of
monomers per chain segment within the OR as

g ≈ N

(
R0

D

)2/3

≈
(
ϕNb

ρg

)2/3

∼ ρ−2/3
g N2/3 for D > R0. (6)

Eq. 6 leads to g = N at D = R0 . Consequently, for any D > R0 , g/N < 1 .
Eqs. 3 and 6 have some important consequences for moderate separation distances between the grafting

surfaces; for D ≥ R0 , the probability of finding a grafted chain (its free end) inside the OR is Ψ = 1 (i.e. Ψ is
the number fraction of chain inside the OR), and thus, g = N as shown above (i.e. a chain occupies the OR
with all of its monomers). As the separation is increased to D > R0 and the thickness of the OR decreases, at
any time, some chains have to stay outside of the OR (see the gray chains in Figure 1). This, on average, leads
to a Ψ < 1 . Recall that chains constantly diffuse in and out of the OR, so individual chains inside the OR may
change. Assuming a homogeneous monomer density in between the surfaces, the number of monomers inside
the OR is n ≈ δϕA . In terms of Ψ , the same number can also be written as n ≈ gNchΨ since each chain enters
the OR with g monomers on average . Equating these two expressions of n leads to,

Ψ ≈
(
ϕb2

δρg

)
≈ g

N
for D > R0, (7)

after making use of Eq. 3. Eq. 7 indicates that for g ≪ N , not all but a small number of grafted chains can
enter the OR and interact with the opposing brush. If we combine Eqs. 5 and 7, the probability of finding a
chain inside the OR is

Ψ ≈
{

1 for D ≤ R0

(D/R0)
−2/3 for D > R0

(8)
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indicating that the probability of finding a tagged chain inside the OR is unity when surfaces are too close and
decreases below unity as the brushes are separated from each other. In the next section, we will discuss how the
chain conformation and overlap between two brushes predicted by the scaling arguments above compare with
MD simulations for molten brushes.

3. Molecular dynamics simulations

3.1. Simulation model
To construct computational models for our polymer brushes, we use coarse-grained (CG) Kremer–Grest bead-
spring chains [41] (Figure 2). In this model, all chemical details of the polymer chains are taken care by
bonded and nonbonded interaction potentials. Nonbonded steric interactions between beads are represented by
a repulsive shifted-truncated Lennard–Jones (LJ) potential

U(rij) =

 4ϵ

[(
σ
rij

)12
−
(

σ
rij

)6
+ 1

4

]
for rij < rc

0 for rij > rc,
(9)

where σ is the LJ bead size, rij is the distance between ith and j th beads, the cut-off distance is rc = 21/6σ ,
and the strength of the LJ potential.

In order to model covalent bonds, two beads are connected via the finite extensible nonlinear elastic
(FENE) potential

UFENE(r) = −1

2
kr20 ln

(
1− r2

r20

)
for r < r0, (10)

where r is the distance between the bonded beads, the spring constant is k = 30ϵ/σ2 , and the maximum bond
length is r0 = 1.5σ . Eqs. 9 and 10 together provide that b ≈ 1σ .

The polymer chains with N = 30, 60, 120, 240 beads are attached by one of their free ends onto planar
surfaces with square-lattice pattern composed of fixed 40× 36 beads. The vertical distance D between the two
opposing plates is determined by D = 2Nρg/ϕ in order to obtain a number density of ϕ ≈ 0.85σ−3 for grafting
densities of ρg = 1/9σ−2 and 1/4σ−2 . The surface and the chain bead also interact via Eq. 9. but the LJ
cut-off between the surface and anchored chain beads is increased to rc = 2× 21/6σ to avoid excess stretching
of the tethered bonds.

The starting configurations of opposing brushes are constructed in three steps. First, two single brushes
are built without physical contact as mirror images. After a short relaxation process, the top brush is brought
to the prescribed interplate distance at z = D while the bottom brush is fixed at z = 0 to obtain the desired
volume fraction (Fig. 2). The overlapped brushed are relaxed for a time of minimum 4τR , where τR ≃ N2τ0 is
the Rouse relaxation time for a single free linear chain in melt conditions with τ0 ≃ 200 MD steps [30].

All simulations are run using LAMMPS MD package [42]. The Verlet algorithm is employed within
constant volume V and temperature T . The temperature T is kept constant at T = 1.0ϵ/kB by using a
Langevin thermostat with a damping constant Γ = 0.5τ−1

LJ . Periodic boundary conditions are introduced in

lateral, i.e. x̂ and ŷ , directions. Simulations are run with a time step of ∆t = 0.005τLJ . Here τLJ = σ
√
m/ϵ ≃

τ0 represents the LJ time unit, where LJ mass m is set to unity for all monomers.
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Figure 2. Left panel shows the perspective view of a simulation box with dimensions 40× 36× 120σ3 for N = 120 and
ρg = 1/4σ−2 . Different colors are used to indicate top and bottom brushes, otherwise both brushes are identical. Right
panel shows two arbitrary selected chains from each brush. The gray shaded area shows the overlap region (OR). The
snapshots are obtained with VMD [43].

3.2. Comparison of MD results with scaling theories
In order to directly compare our course-grained simulations to the scaling expressions, the main challenge is
to extract the thickness of OR for our brush systems with various N and ρg parameters. To achieve this,
we make use of the monomer concentration profiles of the top ρtop(z) and bottom ρbott(z) brushes in the ẑ

direction (Figure 3). The two concentration profiles overlap in the middle of the surfaces (i.e. z = D/2), around
which the beads of both brushes interact. Accordingly, the thickness of the overlap region could be numerically
calculated from MD trajectories via

δ ≡ 2

∫ D

0

z′2ω(z)dz −

(∫ D

0

zω(z)dz

)2
 , (11)

where we define the cross product of the two concentrations as ω(z) ≡ ρtop(z)ρbott(z) [37]. In Figure 3, we show
a representative case of the density profiles for two pressed brushes with N = 60 and ρg = 1/4σ−2 . A density
peak (red curve) indicates the OR, in which two brushes can interact sterically via their chain sections.

In Figure 4, the thickness of OR, δ , is shown for various chain sizes and grafting densities. For each case,
the values of g are calculated by counting the monomers of a grafted chain if the z-coordinate of its terminal
monomer is within the OR as illustrated in Figure 2. The data in Figure 4 indicate that the size of the chain
sections within the OR can be described by our scaling expression in Eq. 5 within the error bars, which confirms
that chain sections obey the Gaussian statistics. Particularly, the average end-to-end distance of the chain
segments with g monomers, ree , follows the random walk statistics (i.e. ree ∼ g1/2 ). Thus, the thickness of
the OR zone is related to the characteristic size of the chain section in the OR (i.e. ree ≈ δ ). Note that for
larger values of g , the scaling prediction desribes the data more accurately since the scaling models are ideally
for the thermodynamic limit of long chains.

Figure 5 shows the OR thickness rescaled by the interplate distance and the grafting density according
to Eqs. 2 and 3, respectively, as a function of polymerization degree of the grafted brushes, N . In Figure 5,
the data for two different grafting densities overlap well within the error tolerance (the size of the error bars is
roughly the size of the markers) indicating that both system are in the brush regime. The scaling relations in
Eqs. 2 and 3 describe the data well (dotted lines in the figure) particularly for brushes composed of long chains
(i.e. N > 60). We attribute the discrepancy between simulations and theory for short chains to the smaller
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Figure 3. The monomeric density profiles of bottom and top brushes for two interacting brushes each with N = 60
and ρg = 1/4σ−2 as a function of the rescaled intersurface distance z/D . The red curve is the cross product of the
two density profiles and amplified by a factor of 8 to guide the eye. The width of the cross-product corresponds to the
thickness of the overlap region (OR) via Eq. 11.

number of beads per chain wihin OR. In addition, since the height of a single brushes scales as H ∼ Nσ
1/2
g , it

is possible that the free ends of the chain interact with the opposing plate in the brushes of short chains (i.e.
H ≈ D ). These interactions in turn can distort the random walks of the segments in the OR.
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Figure 4. Left panel: the thickness of the OR for various brush systems for two different grafting densities. Right panel:
the average end-to-end size of the chain section within the OR as a function of the average number of Kuhn segments
per chain in the OR (refer to Figure 1). The dashed lines have the slopes of 0.5 from Eq. 5.

To reveal the change in δ as two brushes approach each other, we plot the thickness of the OR rescaled
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Figure 5. Left panel: the thickness of the OR scaled by the cubic root of the interplate distance is shown as a function
of polymerization degree for two different grafting densities. The dashed line has the slope from Eq. 2. Right panel: the
thickness of OR rescaled by the grafting density. The dashed line has the slope from Eq. 3.

by interplate distance D as a function of D/R0 . Note that each system has its own D and R0 values (Table 1)
since for various brushes with different values of ρg and N , the surface separation D is set to obtain a number
density of ϕ = 0.85σ−3 . Figure 6 shows that the thickness of OR increases as the surfaces are brought closer
in accord with Eq. 4. At very strong compression, we expect δ → D . Since our brush system are within the
regime of D > R0 , they only capture the regime in which OR increases with compression but does not reach
the limit of δ = D . If we fit the data points with a function f(x) ∼ xα , we obtain α ≈ −1.4 , which is in good
agreement with the exponent of –4/3 given in Eq. 4.

Table . Summary of parameters and findings for various brush system used in this study. The number of Kuhn segments
per grafted chain N , grafting density ρg , interplate distance D ,the thickness of OR δ , the number of Kuhn segments
per chain g in the OR (with free end inside the overlap region), and the probability of finding a chain in OR, Ψ , whose
at least its free end is in the OR.

N ρg [σ−2] D[σ] δ[σ] g Ψ

30 0.11 11 3.2 13 0.64
30 0.25 21 2.6 7.4 0.44
60 0.11 19 4.9 23 0.55
60 0.25 40 3.6 12 0.38
120 0.11 35 7.2 41 0.50
120 0.25 71 5.1 23 0.33
240 0.11 68 8.7 64 0.38
240 0.25 143 6.3 32 0.26
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Figure 6. Left panel: The width of the OR rescaled by the interplate distance as a function of the interplate distance
rescaled by the Gaussian size of the free chains with N monomers for all brushes. The dashed line is the slope of –4/3
from Eq. 3. Right panel: The fraction of chains entering the OR with their free ends as a function of the interplate
distance rescaled by the Gaussian size of the free chains with N monomers for all brushes. This approach ignores the
loops but ensures that the end sections of the chains, which determines δ , are inside the OR. The dashed line has the
slope of –2/3 from Eq. 8, and the solid line is a fit with a slope of –0.63. Inset shows the same fraction but as a function
of monomer per chain within the OR. The line has the slope of unity (Eq. 7).

Next, by using our simulation trajectories, we calculate the probability of finding a chain within the OR
region, Ψ . To calculate this parameter, we accept a rule to determine any chain inside the OR. Accordingly, if
the end monomer of a chain is inside the OR at a given time step, then we count this chain ”in the OR”. We
do not count loops unless the end monomer is outside of the OR. We show our results in Figure 6 for various
N and ρg values. The scaling prediction in Eq. 8 describes the data well, indicating the participation of chains
with increasing compression (or decreasing D ). In the inset of Figure 6, we also show the same data but as
a function of g/N ; As g → N , indeed Ψ → 1 as predicted in Eq. 7, since all chains would be in the OR at
D ≤ R0 .

Overall, the scaling theories and equilibrium MD simulations of polymer brushes are in well agreement,
particularly if the grafted chains are long. Deviation for short grafted chains arise due to finite size effects and
increasing confinement of the chains between the surfaces.

4. Conclusion
In this work, using MD simulations and scaling arguments, we study the equilibrium properties of two identical
molten polymer brushes strongly compressed to each other. We demonstrate that the size of the overlap region,
through which the end sections of the grafted chains interdigitate and two polymer brushes intact, increases as
the grafting surfaces are brought closer. In parallel, more chains enter this region as the surfaces are pressed
closer (otherwise on average only finite number of chains is found in the overlap region). Since the interplate
distance is a controllable experimental parameter, along with the polymerization degree, our results could be
used to determine the grafting density of brushes by the surface force apparatus (SFA) [39]. Additionally,
in the self-assembly of polymer-grafted colloids, the interaction between grafted polymers, thus the amount of
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overlap, could change the phase behavior [44, 45]. In that sense, by controlling density of colloids, c , hence,
the interplate distance (i.e. D ∼ c−1/3 ), one can change the average interaction strength between the colloids,
thus, the final phases. Further, our study could provide insights into medical applications, design of artificial
joints, and industrial lubricants with low friction.

There are several issues that we have not considered in this study but can affect the interactions between
two brushes. First of them is the polydispersity. While here we only consider the overlapping brushes of
identical chains, the polydispersity will be encountered in the synthesis of polymer brushes in practice. In
polydisperse brushes, we indeed expect certain changes in the conformations of grafted polymers; The field-
theoretical calculations predicted that in a highly-polydisperse brush, while short chains stay compressed near
the surface (constrained by longer ones), longer chains can adapt a ” flower-stem” configuration, where the
chain sections near the surface are more stretched as compared to the section near the free ends [46]. As a
result, the polydispersity can be expected to decrease the number fraction of chains in the OR and increase the
thickness of the OR by promoting brush-brush interdigitation [47]. Further, the recent theoretical calculations
predict that excessive polydispersity can significantly change the density profile of brushes and even lead to an
increase in the OR thickness as the compressed brushes are separated [48]. Nevertheless, the experimentally
observed interaction energies between the two brushes are qualitatively well described by equilibrium theories,
at least for values of polydispersity index around unity [35]. Along with the polydispersity, brushes with no ends,
such as those composed of ring polymers, could also affect the amount of interdigitation between overlapping
brushes [37] in a grafted-density and polymerization-degree dependent way. Lastly, in the situations where
the polymer-coated surfaces move relative to each other at shear rates comparable or higher than the chain
relaxation times, the width of the OR and all the related parameters would change in a shear-rate dependent
manner [37, 38]. This dependence can be quite different for entangled polymers. We plan to challenge some of
these questions in our future studies.
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