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Abstract: We propose a quantum Otto cycle in a two spin-1/2 anisotropic XY model in a transverse external magnetic
field. We first characterize the parameter regime that the working medium operates as an engine in the adiabatic
regime. Then, we consider finite-time behavior of the engine with and without utilizing a shortcut to adiabaticity (STA)
technique. STA schemes guarantee that the dynamics of a system follows the adiabatic path, at the expense of introducing
an external control. We compare the performance of the nonadiabatic and STA engines for a fixed adiabatic efficiency
but different parameters of the working medium. We observe that, for certain parameter regimes, the irreversibility, as
measured by the efficiency lags, due to finite-time driving is so low that nonadiabatic engine performs quite close to
the adiabatic engine, leaving the STA engine only marginally better than the nonadiabatic one. This suggests that by
designing the working medium Hamiltonian one may spare the difficulty of dealing with an external control protocol.
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1. Introduction
Recent years have witnessed an ever increasing interest and a rapid development in the quest to understand
the thermodynamics of out-of-equilibrium quantum systems [1–3]. This field of research, widely known as the
quantum thermodynamics, blends various branches of physics such as quantum information science, quantum
optics, condensed matter physics and quantum control, to name a few. In addition to its contribution to our
fundamental understanding of how the concepts of classical thermodynamics can be generalized to quantum do-
main, quantum thermodynamics also significantly contributes in the development of new quantum technologies
that take advantage of quantum systems by actively manipulating them [4, 5].

One of the major problems within the realm of quantum thermodynamics stems from this active ma-
nipulation. Traditionally, thermodynamic transformations are made quasi-statically, such that they are slow
enough so that the subject system is kept at equilibrium at all times. An arbitrary finite time transformation
would then require some thermodynamic control [6], so that one could avoid any form of irreversibility (such
as entropy production) originating from fast manipulation of the system [7, 8]. Techniques of shortcuts to
adiabaticity (STA) are perfectly suitable for such control purposes which make sure that the subject system
ends up at the adiabatic final state of the desired transformation at a finite time [9]. Among various STA tech-
niques, counterdiabatic driving (CD) is probably the one that attracted the highest attention [10, 11]. CD not
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only ensures that the system ends up at the adiabatic final state but also ensures that it follows the adiabatic
eigenstates at all times, by introducing an external control Hamiltonian. Nevertheless, this property makes CD
the STA method that is energetically most costly [12].

One particular subfield in quantum thermodynamics that quantum control proves to be useful is quantum
heat engines, which are generalizations of the corresponding classical engine cycles to cases that have quantum
systems as their working mediums [13–18]. In addition to theoretical proposals of possible implementations [19–
21], there are actual experiments demonstrating operational quantum heat engines [22–25]. However, presence
of adiabatic processes in the engine cycle forces them to be performed slowly, resulting in a vanishingly small
power output. STA techniques have shown to be quite useful in speeding up these adiabatic processes [26?
–33], however they come at the expense of a certain energetic cost (see also [8, 18] for an alternative view).
In this work, we consider a quantum Otto engine that has two coupled spins as a working medium. Following
its characterization in the adiabatic limit, we investigate its finite time behavior with and without utilizing a
specific STA scheme, and compare their performances in different parameter regimes. We observe that, for
a fixed adiabatic efficiency, it is possible to find a set of parameters for which the engine cycle without any
external control perform very close to the one with STA. We then argue that such increase in the performance
is due to the reduced irreversibility due to finite time driving, as quantified by the efficiency lags (based on
nonequilibrium lags) [7, 23], in these parameter regimes.

This paper is organized as follows: In Section 2 we introduce the concepts that are central to this work
such as the CD scheme, details of the quantum Otto cycle and how to characterize its performance with and
without the presence of a STA scheme. We present our model for the working substance of our Otto engine
in Section 3, which is two-spin anisotropic XY model in transverse magnetic field. We continue this section
by identifying the parameter region in which the working substance operates as an engine and compare its
performance in adiabatic, nonadiabatic and STA cases. We conclude in Section 4.

2. Preliminaries
2.1. Counterdiabatic driving

Assume that we have a system that is described by a time-dependent Hamiltonian H0(t) . In order for this
system to follow the adiabatic eigenstates of its bare Hamiltonian, any change in H0(t) must be made very
slowly, in a scale set by the energy gap of the Hamiltonian. Any fast driving will induce transitions between its
energy levels, resulting in the deviation from the adiabatic path. Utilizing the CD scheme [10, 11], it is possible
to mimic the adiabatic evolution at a finite time by introducing an additional Hamiltonian, HCD(t) , such that
the system evolving with H(t) = H0(t) +HCD(t) follows the adiabatic eigenstates at all times. Exact form of
this Hamiltonian is given as [11]

HCD(t) = iℏ
∑
n

(∂t|n(t)⟩⟨n(t)| − ⟨n(t)|∂tn(t)⟩|n(t)⟩⟨n(t)|) , (2.1)

where |n(t)⟩ is the nth eigenstate of the bare Hamiltonian H0(t) . The necessity to diagonalize H0(t) to
determine the HCD(t) is a demanding task for systems with large Hilbert space. Therefore, alternative
approaches such as the ones that do not require the knowledge of full spectrum [35, 36] or approximate driving
schemes [37] have been developed and utilized in many-body systems [38].
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Figure 1. Schematic representation of an ideal quantum Otto cycle in entropy (S) vs. volume (V) plane. Compression
and expansion strokes are realized by changing the control parameter in the Hamiltonian of the working medium λ .
When performed adiabatically, the entropy remains constant during these processes, as depicted by constant populations
of the energy levels. The working medium is put in contact with a hot and cold bath during heating and cooling strokes,
respectively, resulting a change in the populations, and hence in the entropy. Further details of each stroke are explained
in the text.

2.2. Quantum Otto cycle

The quantum Otto cycle is a four-stroke process, which is simply generalization of the corresponding classical
cycle to quantum systems [13–17]. Two out of the four-strokes are adiabatic compression and expansion
branches and performed by varying a control parameter, λt , in the Hamiltonian of the working substance,
H(λt) . Remaining two are isochoric heating and cooling branches which involves thermalization of the working
substance to the corresponding bath temperature. The cycle is schematically depicted in Figure 1, and below
we briefly present the details of each stroke of the cycle:

1. Compression: The working substance is in a thermal state at the temperature of the cold bath ρβ1
=

exp(−β1H(λ1))/Z(β1, λ1) , where Z(β1, λ1) is the partition function with β1 = 1/kBT1 , and completely
isolated from any heat bath. The time-dependent parameter in its Hamiltonian is increased from λ1

to λ2 in a time interval of τ1 , resulting an increase in the internal energy of the system. During this
stroke the time evolution of the working substance is unitary and ideally assumed to be slow enough so
that there are no unwanted transitions between the energy levels of the system so that their populations,
therefore the entropy, remain constant, in accordance with the quantum adiabatic theorem. Such an
evolution guarantees that all the internal energy change of the working substance is due to the work done
on it, ⟨W1⟩ = tr[H(λ2)ρcom −H(λ1)ρβ1 ] , where ρcom denotes the state of the system at the end of the
compression stroke.
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2. Heating: The working substance is brought in contact with a hot bath at temperature β2 = 1/kBT2 during
a time interval τ2 that is sufficient for the system to thermalize to the bath temperature. No work is done
in this branch and the change in the internal energy of the working substance is only due to the heat ab-
sorbed throughout the process, ⟨Q2⟩ = tr[H(λ2)ρβ2−H(λ2)ρcom] , where ρβ2 = exp(−β2H(λ2))/Z(β2, λ2)

with Z(β2, λ2) being the partition function.

3. Expansion: The working substance is again isolated from any bath and and the time-dependent pa-
rameter in its Hamiltonian is now decreased from λ2 to λ1 in a time interval of τ3 , resulting an de-
crease in the internal energy of the system. Similar to the compression stroke, the evolution during this
stroke is unitary and again should be performed slow enough to make sure the process remains adia-
batic and entropy remains constant. The decrease in the working substance energy is extracted as work,
⟨W3⟩ = tr[H(λ1)ρexp−H(λ2)ρβ2

] , where ρexp is the state of the system at the end of the expansion stroke.

4. Cooling: In this final branch of the cycle, the working substance is brought in contact with a cold bath at
temperature β1 = 1/kBT1 during a time interval τ4 that is sufficient for the system to thermalize to the
bath temperature. No work is done in this branch and the change in the internal energy of the working
substance is only due to the released heat throughout the process, ⟨Q4⟩ = tr[H(λ1)ρβ1

−H(λ1)ρexp] .

The unitary evolution in the compression and expansion strokes are governed by the von Neumann equation
ρ̇(t) = − i

ℏ [H(λt), ρ(t)] . Note that negative (positive) values of work or heat correspond to the case of these
quantities being extracted from (absorbed by) the system. Therefore, in the engine cycle described above we have
⟨W1⟩, ⟨Q2⟩ > 0 and ⟨W3⟩, ⟨Q4⟩ < 0 , such that the total work in the adiabatic case ⟨WA⟩ = ⟨W1⟩ + ⟨W3⟩ < 0

implying that we have net extracted work from the working medium.
We would like to highlight that the highest performance out of the above cycle in terms of the work output

and efficiency, can only be obtained if the compression and expansion strokes are performed adiabatically, as
described. However, this condition can only be met if λt is varied extremely slowly, which in turn results in
a vanishing power output from the engine due to very long cycle times. One central aim of this manuscript is
to present a way to overcome this difficulty by introducing a STA scheme, so that one can mimic the adiabatic
dynamics of the working substance at a finite time, and thus yielding finite power. Furthermore, we will
also consider finite-time driving without any control applied on the system, which will result in nonadiabatic
excitations between energy levels, leading to a irreversible loss in the work output of the working substance.

2.3. Performance of the engine
Here, we would like to present the figures of merit of the engine and how we account for the energetic cost of
applying the STA together with how we include them into these figures of merit. Considering a true adiabatic
cycle, efficiency and power of an Otto engine are given by the usual expressions

ηA = −⟨W1⟩+ ⟨W3⟩
⟨Q2⟩

, PA = −⟨W1⟩+ ⟨W3⟩
τcycle

. (2.2)

On the other hand, if an STA scheme is employed to fasten the adiabatic strokes of the Otto cycle, due
to the energetic cost of the external control, the efficiency and power of the engine are modified as follows [28–
30, 32]:

ηSTA = − ⟨W STA
1 ⟩+ ⟨W STA

3 ⟩
⟨Q2⟩+ V CD

1 + V CD
3

(2.3)
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and

PSTA =
⟨W STA

1 ⟩+ ⟨W STA
3 ⟩ − V CD

1 − V CD
3

τcycle
, (2.4)

where τcycle is the total cycle time of the engine and we characterize the cost as [31]

V CD
i =

∫ τ

0

⟨ḢCD(t)⟩idt (2.5)

with i=1, 3 , which is the sum of the average of the time derivative of the CD Hamiltonian over the driving
time and the expectation value is calculated using the state of the system driven by the bare Hamiltonian of the
system. The reasoning and the details of the derivation of Eq. 2.5 can be found in [31] (especially Appendix A
of the mentioned reference). We would like to note that the debate on quantifying the costs of STA schemes is
still an ongoing one and the above definition is not unique [28–30, 39–41] (see [9] for a comprehensive review).

Since the STA scheme enables us to mimic the adiabatic evolution, the total work output in these
equations is equal to that of the adiabatic cycle ⟨WA⟩ = ⟨W STA

1 ⟩ + ⟨W STA
3 ⟩ . Therefore, in the absence of the

CD Hamiltonian and the adiabatic evolution of the system, ηSTA reduces to ηA . As it is in general done in
the literature [30], we assume that the thermalization times are shorter than the times spent in the adiabatic
strokes, and thus the total cycle time τcycle = τ1 + τ3 = 2τ for equal compression and expansion stroke times.

3. Two-spin engine
There are a number of efforts in the literature that considers coupled spin systems as working mediums of a
quantum Otto engine or refrigerator [42–46]. However, there are only a few works considering a STA scheme
in working substances with such composite spin systems [31, 38, 47]. In what follows, we will first identify the
parameter regions for which our system operates as a quantum Otto engine and then apply a STA protocol
using the parameter set for which we have the maximum work output. Our working medium is composed of
two-spin-1/2 particles and their self-Hamiltonian is characterized by an anisotropic XY model in transverse
magnetic field Hamiltonian given as

H0(t) = [1 + γ(t)]σa
xσ

b
x + [1− γ(t)]σa

yσ
b
y + h(t)(σa

z + σb
z), (3.1)

where γ(t) ∈ [0, 1] is the anisotropy parameter, h(t) ∈ [0, 1] is the external magnetic field, {σx, σy, σz} are the
usual Pauli matrices and superscripts a and b are the labels for two spins. In what follows, we will suppress
the explicit time-dependence of γ and h for the sake of the simplicity of the notation. The energy spectrum

of Eq. 3.1 is given as
{
−2,−2

√
h2 + γ2, 2

√
h2 + γ2, 2

}
. The internal energy change in the adiabatic branches

of the cycle is only due to the change of the two energy levels in the middle of the spectrum. It is possible
to analytically calculate the work output and the efficiency of the two-spin engine in the adiabatic regime as
follows [31]:

⟨WA⟩ = − (⟨W1⟩+ ⟨W3⟩) =
2C (λ1 − λ2)[

cosh
(

2λ1

T1

)
+ cosh

(
2
T1

)] [
cosh

(
2λ2

T2

)
+ cosh

(
2
T2

)] , (3.2)

ηA =
C (λ1 − λ2)

Cλ2 + sinh
(

2
T2

)
cosh

(
2λ1

T1

)
− sinh

(
2
T1

)
cosh

(
2λ2

T2

)
+ sinh

(
2
T2

− 2
T1

) , (3.3)
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Figure 2. The net work output (a) and the efficiency (b) of the two-spin engine with anisotropic XY interaction in
transverse magnetic field operating between the bath temperatures T1 = 1 and T2 = 10 . Solid blue lines denote the
boundaries of the operating regimes of the engine, namely λ1 = λ2 and λ1 = 0.23λ2 . The ”⋆” signs in both figures
denote the maximum work output and the efficiency which is obtained at λ1 = 0.6 and λ2 = 1 .

where C =
{

sinh
(

2λ2

T2

) [
cosh

(
2λ1

T1

)
+ cosh

(
2
T1

)]
− sinh

(
2λ1

T1

) [
cosh

(
2λ2

T2

)
+ cosh

(
2
T2

)]}
, λx =

√
hx + γx

with x = 1, 2 denoting the initial and final values of the anisotropy parameter and/or the external field in
steps (i) and (iii) of the cycle described in Section 2.2, T1 is the temperature of the cold bath and T2 is
the temperature of the hot bath. It is important to note that both the extracted work and efficiency is not
individually dependent on h of γ , but a combination of them

√
h2 + γ2 . In Figure 2, we plot these quantities

as a function of λ1 and λ2 and observe that it is only possible to get a working quantum Otto engine for
a specific parameter regime. Naturally, one has to have λ1 < λ2 so that we increase the internal energy in
the compression stroke and, together with the energy absorbed during the heating, extract it in the expansion
stroke. Interestingly however, there is also a lower bound to λ1 . Below the line λ1 ≈ 0.23λ2 , marked by the
lower thick blue line in Figure 2, the working substance again ceases to operate as an Otto engine, i.e. do not
generate a net work output. Within the region that one has an operating engine, the maximum work output,
and the corresponding efficiency η = 0.095 , is obtained for λ1 = 0.6 and λ2 = 1 , which is marked with a ”⋆”
in Figures 2a and 2b.

3.1. Finite-time operation with and without CD

We will now attempt to accelerate adiabatic cycle with maximum work output and efficiency utilizing a STA
scheme, specifically through a CD, and see if and how much we can improve the power output of the engine.
For comparison, we will also analyze the performance of the engine without any control, i.e. its true finite-time,
nonadiabatic behavior. Our aim in making this comparison is to see, despite the STA costs, is it meaningful, and
if so, how much advantageous it is to apply a CD scheme to mimic adiabatic dynamics at finite-time considering
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the performance of the nonadiabatic engine.
Our analysis will be focused around the system parameters that generate the maximum efficiency, i.e. we

will fix λ1 = 0.6 and λ2 = 1 . We mainly have three different options in driving λ between these values: (i)
changing h while keeping γ constant, (ii) changing γ while keeping h constant, (iii) changing both h and γ .
We would like to note that the results obtained in cases (i) and (ii) have no significant qualitative difference
from each other, therefore we continue with case (i) considering that varying the external field is simpler than
controlling the interactions between the qubits. In addition, our results on case (i) below will prove that with
the appropriate choice of system parameters it is possible operate near the highest efficiency even without any
STA. As a result, we leave case (iii) aside since it presents an unnecessarily complicated scenario that requires
simultaneous driving in both interactions and external field.

The CD term that generates the STA for the bare system Hamiltonian given in Eq. 3.1 has the following
general form [48]

HCD(t) =
hγ̇ − ḣγ

4(h2 + γ2)
(σa

xσ
b
y + σa

yσ
b
x). (3.4)

Natural implication of case (i) is γ̇ = 0 , which is important in identifying the form of Eq. 3.4. We also require
the CD driving term to vanish at the beginning and the end of the driving, i.e. HCD(t = 0, τ) = 0 so that our
system is described by its original Hamiltonian at these points. It is possible to ensure this by assuming various
polynomial forms for the driven system parameter [29, 31, 35, 36, 49, 50] depending on the desired smoothness
of the driving. However, we have not seen any significant difference between them for our purposes in this
work, and therefore continue with the simple choice below which ensures continuous first time derivatives at
the boundaries

h = h1 − 6(h1 − h2)
t2

τ2

(
1

2
− t

3τ

)
, (3.5)

where h1 and h2 are the initial and final external field strengths in the compression stroke.

Since λ =
√
h2 + γ2 and we are operating between λ1 = 0.6 and λ2 = 1 to achieve highest possible

efficiency, the external field is varied between the following interval h1 =
√
0.62 − γ2 and h2 =

√
1− γ2 . Note

also that the value of the parameter λ1 = 0.6 constrains the value of γ ≥ 0.6 to operate within physical h

values, but otherwise we are free to chose γ in the closed interval [0, 0.6] while keeping the efficiency same.
Such freedom allows us to investigate different working medium Hamiltonians.

Even though we have fixed the adiabatic efficiency, the short and intermediate time performance of
the engine does depend on the choice of γ and the interval within which the external field is varied through
unitary performing the adiabatic branches. In addition to the change in the entropy of the working medium
in the thermalization strokes, it is known that finite-time driving of a closed quantum system in the adiabatic
branches results in an irreversibility in the system that cannot be traced back to heat exchange and lead to the
introduction of irreversible work, Wirr [51–55] (especially see [7] for a comprehensive review). In the context
of quantum heat engines any deviation from adiabaticity in the compression and expansion strokes results in
the loss of useful work and thus called inner friction [53–57]. In order to quantify the overall effect entropy
production throughout the cycle, including those due to finite-time, nonequilibrium operation, on the efficiency
of our engine, we will adopt the so-called efficiency lags [23], defined through the relation η = ηCarnot −L , and
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Figure 3. Efficiency (a) and power (b) of the two-spin engine with anisotropic XY interaction in transverse magnetic
field operating between the bath temperatures T1 = 1 and T2 = 10 with γ = 0.6 , h1 = 0 and h2 = 0.8 . (c) and (d)
as for the previous panels but with γ = 0.3 , h1 = 0.52 to h2 = 0.95 . The inset in panel (d) displays a zoom into the
curves for a better display of the differences between the presented cases. Dashed horizontal lines in (a) and (c) marks
the adiabatic efficiency.

the explicit form of the lag is given as

L =
D (ρexp(t)||ρβ2

) +D (ρcom(t)||ρβ1
)

β2⟨Q1⟩
, (3.6)

where D(ρ||σ) = tr[ρ ln ρ− ρ lnσ] is the relative entropy and ηCarnot = 1−T1/T2 . In fact, each term appearing
in the numerator of Eq. 3.6 are also called as nonequilibrium lags and actually equal to the βWirr in the
compression and expansion processes, respectively. We would like to direct the interested reader to Ref. [7],
especially Section III-F. A similar approach have been taken in quantifying the deviation from reversibility using
efficiency lags in an irreversible quantum Carnot cycle [58].

We are now ready to compare the performances of the nonadiabatic and CD engines for two different
values of γ , namely γ = 0.6 and γ = 0.3 . While the former results in changing h1 = 0 to h2 = 0.8 , the latter
implies variation from h1 = 0.52 to h2 = 0.95 . Note that for γ = 0.3 we are required to sweep a smaller range
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Figure 4. Efficiency lag (a) and total STA cost (b) of the two-spin engine with anisotropic XY interaction in transverse
magnetic field operating between the bath temperatures T1=1 and T2=10 with γ = 0.6 (thick black), γ = 0.3 (dashed
orange).

of the external field as compared to the case of γ = 0.6 , which will prove to be important in the finite-time
behavior of the engine.

Our results on efficiency and power delivered by the quantum Otto engine for γ = 0.6 and γ = 0.3 are
presented in Figure 3a–3b and 3c–3d, respectively, as a function of the driving time. To begin with, we observe
a clear difference between the efficiencies of the engines. The nonadiabatic case for γ = 0.6 fails to operate as
an engine below certain driving times since it is unable to deliver work due to the irreversible excitations in the
working medium induced by the fast driving. On the other hand, as displayed in Figure 3b, the nonadiabatic
engine for γ = 0.3 operates with an efficiency fairly close to that of the adiabatic engine in driving times as
short as τ = 0.001 . In both cases CD engines work with better efficiency as compared to the nonadiabatic
engines since the additional term HCD(t) ensures that the working medium evolution is adiabatic regardless
of the driving time, suppressing irreversible entropy production originating from unwanted transitions between
the energy levels. The deviation of ηSTA from the adiabatic efficiency, ηA , stems from the energetic cost of
applying the CD term that we presented in Section 2.3. Note that the STA costs are higher in the case of
γ = 0.6 as compared to γ = 0.3 , which is related to the better performance of the latter even when there is not
external control is applied. We discuss the reason behind this increased performance in detail below, in relation
to our results presented in Figure 4. Finally, despite the considerable differences in the efficiencies, we do not
observe much difference between the nonadiabatic and CD engines for both γ , but much higher power values
obtained in the case of γ = 0.3 . Note that the inset in Figure 3d displays how tiny the difference is between
the CD engine and the nonadiabatic one for the mentioned case, and together they are also very close to the
power output of a hypothetical engine that achieves an adiabatic work output at a finite time with no cost.

We now would like to elaborate on the superior nonadiabatic performance of the γ = 0.3 case. This
better performance is in fact interesting bearing in mind that the change in the energy spectrum, i.e. the change
in the energy gaps of the working medium, is the same in both cases. In general, the probability of inducing
unwanted excitations due to finite time driving decreases with increasing energy gap, which is clearly not the
case here. However, we believe that the reason behind the better performance of the nonadiabatic engine with
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Figure 5. Efficiency as a function of the anisotropy parameter of the two-spin engine with anisotropic XY interaction in
transverse magnetic field operating between the bath temperatures T1=1 and T2=10 at driving time τ = 0.5 . Dashed
horizontal line marks the adiabatic efficiency.

γ = 0.3 as compared to γ = 0.6 is due to the smaller variation in the external field in the former case. In
Figure 4a, we calculate the efficiency lag given in Eq. 3.6 as a function of the driving time and clearly observe
that L is much smaller for γ = 0.3 , which is in accordance with the difference in the performance between the
two. The minimum of L = ηCarnot − ηA , which is denoted by the faint horizontal line in the figure, originates
from the distance between the true adiabatic states at the end of expansion and compression strokes to the hot
and cold baths, respectively. Therefore, any increase in L above this value is due to the irreversible entropy
production, which results in irreversible work, caused by the fast driving of the system. Note that L remains
very close to this minimum value for γ = 0.3 suggesting that the Wirr generated in the unitary branches due
to deviations from adiabatic evolution is quite small. Similarly, the minimum driving time required for γ = 0.6

nonadiabatic engine to acquire a nonzero efficiency can be understood from this plot. The Carnot efficiency
for the cycle presented here is ηCarnot = 0.9 which implies one must have L < 0.9 that requires driving times
larger than τ ≈ 1.4 , in accordance with both Figures 3a and 4a. In fact, any point in Figures3a and 3b for the
nonadiabatic engine can be generated by using ηCarnot and Figure 4a as pointed out above Eq. 3.6.

As for the STA costs presented in Figure 4b, we again see that it is significantly reduced for γ = 0.3 from
that of γ = 0.6 in full agreement with our efficiency and power calculations in both cases. With the help of
L , it is possible to better understand this behavior. As mentioned many times before, the CD scheme aims to
suppress any unwanted transitions as one changes λt away from the adiabatic limit, i.e. suppress irreversible
entropy production along the unitary strokes. The higher this irreversible entropy production the higher would
the costs of applying the CD become. From Figure4a, we know that working medium is driven farther away
from the adiabatic track in case of fast changes in h for γ = 0.6 as compared to γ = 0.3 , and thus, we have
higher STA cost. The main difference between these two cases is the range within which we change the external
field which gets smaller as γ is reduced. Therefore, this lead us to conclude that the enhanced performance in
the latter case stems from such restricted variation in h , which is in accordance with previous works [31]. Note
again that we are able to achieve the same adiabatic efficiency with a smaller change in h for small γ is by
exploiting the dependence of the energy spectrum of the working medium to these two parameters.

68



ÇAKMAK/Turk J Phys

Finally, we would like to take a closer look on the dependence of the efficiency in case of the nonadiabatic
engine on the anisotropy parameter γ . To that end, we fix the driving time to be τ = 0.5 which is clearly
away from the adiabatic limit and short enough to highlight the improved performance we obtain as we lower
γ . Our result is presented in Figure 5 and we observe that as γ is increased, efficiency at the aforementioned
driving time is quickly reduced due to irreversible entropy production caused by the fast driving. An interesting
feature visible in this plot is the fact that the nonadiabatic engine efficiency converges to the adiabatic efficiency
as γ → 0 , which is the isotropic limit of the model. In fact, right in this limit the CD Hamiltonian given in
Eq. 3.4 goes to zero, and the total driving Hamiltonian becomes equal to the bare Hamiltonian, H(t) = H0(t) .
Therefore, time evolution of the system governed by the von Neumann equation actually follows the adiabatic
state and one can drive the system at an arbitrary speed without any additional control. This is called a fixed-
point condition in [48] and shown to be trivial in case of a single spin but can have nontrivial consequences in
more complicated systems such as the one considered in this work. In [31], the authors introduced the anisotropy
parameter to avoid this fixed-point, in order to make a solid analysis of the STA engine of two-spins. However,
here we show that it is in fact possible to exploit this fixed-point condition in a quantum heat engine cycle to
avoid irreversibility without going through the complications of the STA scheme.

4. Conclusion
We consider a quantum Otto cycle with a working medium described by the two spin-1/2 anisotropic XY

model in a transverse magnetic field. Following the full characterization of the parameter regime for which the
coupled spin system operates as an engine in the adiabatic limit and identifying the maximum efficiency, we
focus on the finite-time behavior of the engine. To mimic adiabatic dynamics at a finite-time we apply a STA
scheme through CD taking the energetic cost of it fully into account in the evaluation of the performance of
the engine. In addition, we analyze the actual finite-time dynamics of the engine without utilizing any external
control protocol and compare it with the STA performance. We observe that when we fix the efficiency of the
engine to be maximal, as the anisotropy parameter is decreased the irreversibility of the nonadiabatic engine due
to finite-time driving of the external field, as measured by the efficiency lags, becomes very small. This results
in a significant increase in both efficiency and power of the nonadiabatic engine as compared to higher γ , which
makes its performance closer to that of the STA engine. Our results suggest that for certain parameters of the
Hamiltonian describing the working medium, implementing a STA scheme is not necessary and the nonadiabatic
engine can operate with a similar performance due to reduced irreversibility.

Our results may have the potential to contribute to the quest of designing energy efficient quantum
thermal machines. Even though STA methods are to be perfectly suitable to fasten the adiabatic strokes in a
quantum heat engine cycle, they are in general resource intensive (especially CD) both on the control side and
energetically [12]. An alternative approach was put forward in [59] in which the authors consider a two-level
quantum Otto engine and refrigerator without any external control, and focus on identifying the efficiency
and power of the machine by optimizing the ecological function that takes the trade-off between increased
power output and entropy production into account. Building on our results that demonstrate the presence of
reduced irreversibility in certain parameter regimes for two-spin quantum Otto engines, it is possible to make a
more systematic analysis based on the approach of [59], which we leave as a future work. Another interesting
direction could be to utilize the machine learning methods in improving the performance of quantum thermal
machines. Recently in [60], a reinforcement learning technique is introduced to reduce the entropy production
in a closed quantum system due to a finite-time driving. Such an approach is perfectly suitable to be utilized
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in the work strokes of a quantum heat engine cycle. Specifically in the model that we have considered, one can
take advantage of this method and systematically study the whole parameter landscape searching for regions of
reduced entropy production.
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