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Abstract: We compute the one-loop quantum corrections to the kink energies of the sinh-deformed 𝜙4 and 𝜑6 models in one space and one 
time dimensions. These models are constructed from the well-known polynomial 𝜙4 and 𝜑6 models by a deformation procedure. We also 
compute the vacuum polarization energy to the nonpolynomial function 𝑈(𝜙) = 1

4
(1− sinh2𝜙)2. This potential approaches the 𝜙4 model in 

the limit of small values of the scalar function. These energies are extracted from scattering data for fluctuations about the kink solutions. We 
show that for certain topological sectors with nonequivalent vacua the kink solutions of the sinh-deformed models are destabilized.  
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1.  Introduction 
 
Kinks are classical solutions to the nonlinear field equations in one space and one time dimensions [1]. An important property 
of the kink model is that in the classical picture it resembles an extended particle. Thus, it possesses localized energy densities. 
The kink solutions from these nonlinear models behave particle like when subjected to extended forces and have been applied in 
many branches of physics: in cosmology [34, 35] the kink solutions describe the cosmic domain walls [21, 36], in condensed 
matter physics [37] they are used to study Bose–Einstein condensates [38] and ferromagnets [39], as well as particle physics [4]. 

These kinks are referred to as topological kinks because they are characterized by a topological index which is related to their 
behavior at spatial infinity. A typical example is the Skyrmion a model for the baryon  [2, 3, 4]. In this regime, the topological 
index becomes a conserved quantum number called the baryon number. In one space and one time dimensions, kink solutions 
interpolate neighboring vacua at negative and positive spatial infinity, where the masses of the quantum fluctuations about the 
degenerate vacua differ. In this project, we investigate field theories, whose classical solutions connect vacua with different masses 
of quantum fluctuations. 

In the Skyrme model, the integral of the energy density is inversely proportional to its coupling constant and is identified as 
the mass of the particle. This mass overestimates the actual mass of the particle on the grounds that, quantum corrections are 
ignored  [10, 11, 12]. This is not a problem when investigating the properties of a single particle. In computations of the binding 
energies of compound objects such as hypernuclear atoms [5], the quantum corrections may become important when comparing 
configurations with different particle numbers. The vacuum polarization energies (VPE) are the leading quantum correction to 
the kink energies and are the renormalized sum of the shifts of zero points energies of the quantum fluctuations due to their 
interactions with the (classical) background potential. We compute the VPE of the kink of sinh-deformed potentials using the 
spectral methods [6]. 

The VPE has been investigated by several researchers, for example, the kinks in the 𝜙4 [7], and sine-Gordon models [8, 9], 
and cosmic strings in the standard model [6, 13]. Recent studies in the 𝜑6 model [14, 15] revealed that the VPE destabilized the 
kink as the kink produces different curvatures for the quantum fluctuations at both positive and negative spatial infinity. These 
instabilities of the kink have also been observed in the 𝜙8 model [16]. 

The nonpolynomial models are another aspect where kink has played a major role. In Refs. [17, 18], the authors observed a 
pattern of kink-antikink scattering of the sinh-deformed models which was consistent with the observation in polynomial models 
of the same order [19, 20, 21, 22, 23]. The study of this pattern amounts to numerically solving the equations of motion for time 
and space dependent fields with specific initial conditions: in the distant past, the kink and antikink are well separated and do 
not interact. When boosted with a prescribed velocity, the kink and antikink approach each other and interact at a later stage. 
This velocity is referred to as relative velocity between the kink and antikink. The patterns are observed for certain values of the 
relative velocity below a specific critical velocity. The remarkable physical phenomenon observed in their scattering analysis 
makes it interesting to further investigate other physical properties of it. 
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In this paper, we consider the nonpolynomial hyperbolic potential of the 𝜙4 and 𝜑6 types. We compute the VPE of the kink 
potentials in one space and one time dimensions for these models. These models have kink solutions similar to the polynomial 
𝜙4 and 𝜑6 models with spontaneous symmetry breaking. For this reason, we will compare the VPE results to the polynomial 𝜙4 
and 𝜑6 models to highlight their differences. The authors in Ref. [18] numerically studied the kink structures of the potential 
𝑈(𝜙) = 1

4
(1− sinh2𝜙)2. This potential mimic the 𝜙4 potential in the limit as the scalar function becomes small. We numerically 

compute the quantum corrections for this model and compare them to its polynomial counterpart. 
We organized our work as follows: In the next section, we briefly review the general properties of static kinks with finite 

energy in one space and one time dimensions. We will review the method of computing the VPE in Section 3. In Section 4 we 
introduce the models we consider and present the numerical results in Section 5. We conclude in Section 6. 

2.  Kink concept 

We consider a single scalar field 𝜙(𝑥, 𝑡) in one space (𝑥) and one time (𝑡) dimensions, whose dynamics is defined by the 
Lagrangian density  

 ℒ = 1
2
(𝜙!)2 −

1
2
(𝜙")2 −𝑈(𝜙), (1) 

where the subscripts, 𝑥, 𝑡, denote differentiation with respect to 𝑥 and 𝑡, respectively. Here, 𝑈(𝜙) is the quantum field potential 
with two or more degenerate minima. The corresponding field equation for the Lagrangian is  
 

 𝜙!! − 𝜙"" = − d#
d$
. (2) 

For static configuration, 𝜙! = 0 and Eq. (2) reduces to  
 
 𝜙"" =

d#
d$
. (3) 

For finite energy, Eq. (3) transforms into a first-order differential equation  
 
 d$

d"
= ±.2𝑈(𝜙). (4) 

In this case, the kink mass (classical energy) is given by  
 
 𝐸[𝜙] = ∫ .2𝑈(𝜙)d𝜙,   (5) 

where the integration boundaries are two neighboring potential minima. 
To analyse the linear stability of the kink, we call the kink solution to the field equation 𝜙% and parametrize the field  
 
 𝜙(𝑥, 𝑡) = 𝜙%(𝑥) + 𝜂(𝑥, 𝑡). 

By considering linear terms in 𝜂 we get a Schrödinger-like equation in one dimension  
 
 [−𝜕"2 + 𝑢(𝑥)]𝜂(𝑥) = 𝜔2𝜂(𝑥), (6) 

where 𝜂(𝑥) and 𝜔 are eigenfunctions and eigenvalues of the Schrödinger operator 𝐻:= −𝜕"2 + 𝑢(𝑥) and  
 

 𝑢(𝑥) = d2#
d$2:

$!(")
 (7) 

is the scattering potential which is generated by the background kink. At positive and negative spatial infinity for nonequivalent 
vacua, 𝑢(𝑥) approaches a constant (so-called meson masses), i.e lim"→)∞𝑢(𝑥) = 𝑚*

2  and lim"→+∞𝑢(𝑥) = 𝑚,
2 . For 

nonequivalent vacua we take 𝑚, ≤ 𝑚*. The analyses of the scattering potential sheds light on the scattering structure of the kink. 
The sinh-deformed models are obtained from the known potentials 𝑈(𝜙) to another potential 𝑉(𝜙) by a deforming function 

𝑔(𝜙) = sinh𝜙 [24, 25, 26, 27, 28],  
 
 𝑉(𝜙) = #(-($))

.-′($)/2
. (8) 

The static solutions for the new potential 𝑉(𝜙) is given by 
  
 𝜙%

(012)(𝑥) = 𝑔+1?𝜙%
(345)(𝑥)@, (9) 

where 𝜙%
(345)(𝑥) is the static solution for the known potential 𝑈(𝜙). 
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3.  Vacuum polarization energy 

The VPE, 𝐸v67 is the leading quantum correction to the classical kink energy. It is the renormalized sum of the shifts of the zero-
point energies of the quantum fluctuations due to their interaction with the background configuration generated by the kink. 
Formally the VPE reads 
  

 𝐸v67 =
1
2
∑b.9
: 𝜔: +

1
2∫

∞
0 d𝑘	𝜔;Δ𝜌(𝑘) + 𝐸c! , (10) 

where the first term on the right hand side of Eq. (10) is the contribution from the discrete bound states (b. 𝑠) 𝜔 = 𝜔: with 
|𝜔:| ≤ 𝑚, and the second term, is the continuum contribution weighted by the change in the density of states, Δ𝜌(𝑘). The third 
term on the right hand side of Eq. (10), 𝐸c! is contribution from the counterterms that yields a finite results at one-loop level. 
Here 𝜔; = .𝑘2 +𝑚,

2  are the energies of the scattering states where 𝑘 is the momentum and 𝑚, is the mass of the mesons. 
The modified density states Δ𝜌(𝑘), is measured by the derivative of the scattering eigen-phase shifts, extracted from the 

scattering matrix 𝑆(𝑘)  
 
 Δ𝜌(𝑘) = 1

<
d
d;
𝛿(𝑘),				𝛿(𝑘) = − i

2
ln[det𝑆(𝑘)]. (11) 

We compute 𝑆(𝑘) by introducing a pseudo-potential 
  
 𝑢=(𝑥) = 𝑢(𝑥) −𝑚,

2 + (𝑚,
2 −𝑚*

2 )Θ(𝑥 − 𝑥>) (12) 

which vanishes at positive and negative spatial infinity. Here, Θ(𝑥) is the step function and 𝑥> is an arbitrary matching point. 
Then the wave-equation becomes  

 I−𝜕"2 + 𝑢=(𝑥)J𝜂(𝑥) = K
𝑘2𝜂(𝑥), 				for				𝑥 ≤ 𝑥>
𝑞2𝜂(𝑥), 				for				𝑥 ≥ 𝑥>

 (13) 

where 𝑞 = .𝜔2 −𝑚*
2 . Above threshold 𝑞 is real so we take 𝑘 ≥ .𝑚*

2 −𝑚,
2  and formulate a variable phase approach [29] by 

parametrizing  
 𝑥 ≤ 𝑥>: 𝜂(𝑥) = 𝐴(𝑥)𝑒i;" ,				𝐴′′(𝑥) = −2i𝑘𝐴′(𝑥) + 𝑢=(𝑥)𝐴(𝑥) 
 𝑥 ≥ 𝑥>: 𝜂(𝑥) = 𝐵(𝑥)𝑒i?" ,				𝐵′′(𝑥) = −2i𝑞𝐵′(𝑥) + 𝑢=(𝑥)𝐵(𝑥) (14) 

where a prime denotes a derivative with respect to 𝑥. The boundary condition 𝐵(∞) = 𝐴(−∞) = 1 and 𝐵′(∞) = 𝐴′(−∞) = 0 
solve Eq.(14) yielding the scattering matrix  
 

 𝑆(𝑘) = Qe+@?"" 0
0 e@;""

	S Q 𝐵 −𝐴∗
𝑖𝑞𝐵 + 𝐵′ 𝑖𝑘𝐴∗ − 𝐴′∗	S

+1
Q 𝐴 −𝐵∗
𝑖𝑘𝐴 + 𝐴′ 𝑖𝑞𝐵∗ − 𝐵′∗	S Q

e@;"" 0
0 e+@?""

	S	, (15) 

where 𝐴 = 𝐴(𝑥>), etc. are the coefficient functions at the matching point. Below the threshold, i.e 𝑘 ≤ .𝑚*
2 −𝑚,

2 , 𝑞 = i𝜅 
becomes imaginary with 𝜅 = .𝑚*

2 −𝑚,
2 − 𝑘2 ≥ 0. We parametrize the wave equation for 𝑥 ≥ 𝑥> as 𝜂(𝑥) = 𝐵(𝑥)𝑒+iB". This 

yields an ordinary differential equation  
 𝐵′′(𝑥) = 𝜅𝐵′(𝑥) + 𝑢=(𝑥)𝐵(𝑥). 
We then extract the reflection coefficient via  

 𝑆(𝑘) = − C.D′/D+B+i;/+C′

C∗.D′/D+B)i;/+C′∗
𝑒2i;"" 	. (16) 

The right hand side of Eq. (16) have a negative sign which agrees with the statement of Levinson’s theorem [40]. This theorem 
relates the phase shifts of the scattered wave at infinity energy and zero energy, and it states that 𝛿(0) is an odd multiple of <

2
. It 

is given by  
 𝛿(0) = 𝜋 W𝑛 − 1

2
Y, (17) 

where 𝑛 counts the total number of bound states. 
Adopting the no-tadpole renormalization scheme [15], the counterterm contribution in Eq. (10) subtracts exactly the Born 

approximation 𝛿(1) from the phase shift [6]. For nonequivalent vacua with different mesons masses, there is a direct contribution 
from the pseudo-potential as well as from the step function potential 

  
 𝛿(1)(𝑘) = − 1

2; ∫
∞
+∞𝑑𝑥	𝑢=(𝑥)|"" +

""
2;
(𝑚*

2 −𝑚,
2) = − 1

2; ∫
∞
+∞𝑑𝑥	𝑢=(𝑥)|0	, (18) 

where the subscript defines the position of the step in the pseudopotential 𝑢=(𝑥). In the end, the Born approximation does not 
depend on 𝑥>, even though 𝑢=(𝑥) was initially defined in terms of 𝑥>. We then obtain the total VPE as  
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 𝐸v67 =

1
2
∑: ?𝜔: −𝑚,@ −

1
2< ∫

∞
0 d𝑘	 ;

F;2)>$
2
?𝛿(𝑘) − 𝛿(1)(𝑘)@	. (19) 

For reflection symmetric background potentials, the VPE is equivalently calculated by making use of analytic properties of 
scattering data and yields [6]  

 
 𝐸v67G = ∫∞>$

d!
2<

!

F!2+>$
2
[ln{𝑔(0, 𝑡)(𝑔(0, 𝑡) − 1

!
𝑔′(0, 𝑡))}]1	. (20) 

The subscripts indicates that the Born approximation has been subtracted. The function 𝑔(𝑥, 𝑡) is the Jost solution factor on 
the imaginary axis that solves the differential equation  

 
 𝑔′′(𝑥, 𝑡) = 2𝑡𝑔′(𝑥, 𝑡) + 𝑉(𝑥)𝑔(𝑥, 𝑡) (21) 

with boundary conditions 𝑔(∞, 𝑡) = 1 and 𝑔′(∞, 𝑡) = 0. 

4.  Models 

Here we consider the models for our calculations. We make use of the natural units ℏ = 𝑐 = 1.  
4.1.  Sinh-deformed models 

We consider the 𝜙4 and 𝜑6 potentials 
  

 𝑈4 =
1
2
(𝜙2 − 1)2				and				𝑈6 =

1
2
(𝜑2 + 𝑎2)(𝜑2 − 1)2, (22) 

where we have scaled all coordinates, fields and coupling constants such that only the 𝜑6 potential contains a single dimensionless 
parameter 𝑎. Applying the deformation procedure of Eq. (8) by using the deforming function 𝑔(𝜙) = sinh𝜙 (𝑔(𝜑) = sinh𝜑 for 
the 𝜑6 model) we obtain the potentials of the sinh-deformed 𝜙4 and 𝜑6 models, respectively as 
  

 𝑉4 =
1
2
𝑠𝑒𝑐ℎ2𝜙?1− sinh2𝜙@

2
				and				𝑉6 =

1
2
𝑠𝑒𝑐ℎ2𝜑?sinh2𝜑 + 𝑎2@?1− sinh2𝜑@

2
. (23) 

The field potential of the polynomial and sinh-deformed functions of the 𝜙4 model are shown in Figure 1a. That for the 𝜑6 
model for various values of 𝑎 are shown in Figure 2. There are two vacuum solutions in the sinh-deformed 𝜙4 model, 𝜙0 =
±arsinh(1) as observed in Figure 1a, but for the sinh-deformed 𝜑6 model, three cases emerges. For 𝑎 = 0, we observe three 
degenerate minima at 𝜑0 = 0 and 𝜑0 = ±arsinh(1), see Figure 2a. 

 
Figure  1. The field potential and kink solutions of the 𝜙4 model. 
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Figure  2. The field potentials of the sinh-deformed 𝜑6 model (dashed lines) and polynomial 𝜑6 model (solid lines) for various values of the 
dimensionless parameter. 
 

For 0 < 𝑎2 ≤ 1
2
, we observed in Figure 2b an additional local minimum at 𝜑0 = 0 and finally, for 𝑎2 > 1

2
 we observe in Figure 

2c two degenerate minima at 𝜑0 = ±arsinh(1). The models in Eq. (23) possess a discrete symmetry 𝑉4(𝜙) = 𝑉4(−𝜙) (𝑉6(𝜑) =
𝑉6(−𝜑)) that is broken by the perturbative vacua 𝜙0 = ±a𝑟𝑠𝑖𝑛ℎ(1) (respectively, 𝜑0 = 0, ±a𝑟𝑠𝑖𝑛ℎ(1) in all three cases of the 
𝜑6 sinh-deformed model). 

Applying Eq. (9) to the kink-antikink solutions of the polynomial 𝜙4 model [19] the kink-antikink solutions of the sinh-
deformed 𝜙4 model are  

 𝜙%,%(𝑥) = ±arsinh(tanh(𝑥))	, (24) 

which are related by the spatial reflection 𝑥 ↔ −𝑥. The kink solutions of the sinh-deformed and polynomial 𝜙4 model are shown 
in Figure 1b. The corresponding classical kink mass is  
 

 𝐸c4 = 𝜋 − 2. (25) 

The background potential for the fluctuations, which defines the excitation spectrum of the kink, is symmetric under the 
spatial reflection 𝑥 → −𝑥  

 𝑣4(𝑥) = 2tanh2𝑥 + 1+ 8tanh2"+4

J1)tanh2"K
2. (26) 

This yield 𝑚* = 𝑚,, with 𝑚*
2 = 4 as observed in Figure 3. 

In the sinh-deformed 𝜑6 model, we obtain the kink solution for 𝑎 ≠ 0 as [14, 30]  
 

 𝜑% = arsinh n𝑎 L+1
M4L)62(1)L)2

o ,				with				𝑋 = 𝑒>%" (27) 
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Figure  3. The scattering(dashed lines)-and pseudo(dotted lines)-potentials for the sinh-deformed 𝜙4 model. The scattering potential for the 
corresponding polynomial model is indicated with the solid line. 
 
where 𝑚* = 2√1+ 𝑎2. The kink solution for 𝑎 = 1 is indicated in Figure 4a. The spatial reflection 𝑥 → −𝑥 gives the antikink. 
The background potential is  
 

 𝑣6(𝑥) = 2(𝑎2 + sinh2𝜑%)(3sinh2𝜑% − 1) + (sinh2𝜑% − 1)(9sinh2𝜑% − 1) 
 −3(sinh2𝜑% − 1)2tanh2𝜑% − 6(𝑎2 + sinh2𝜑%)(sinh2𝜑% − 1)tanh2𝜑% 
 +(𝑎2 + sinh2𝜑%)(sinh2𝜑% − 1)2(2sinh2𝜑% − 1)s𝑒𝑐ℎ4𝜑% (28) 

and is symmetric under the spatial reflection 𝑥 → −𝑥 as observed in Figure 5a for 𝑎 = 1. Consequently, 𝑚, = 𝑚*. 

Figure  4. The kink solutions of the sinh-deformed 𝜑6 model (dashed lines) and polynomial 𝜑6 model (solid lines). 
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Figure  5. The scattering(dashed lines)- and pseudo(dotted lines)-potentials for the sinh-deformed 𝜑6 model. The scattering potential for the 
corresponding polynomial model is indicated with the solid line. 
 

For 𝑎 = 0, two distinct kink solutions exist [19, 23]. The first one interpolates between 𝜑0 = 0 and 𝜑0 = a𝑟𝑠𝑖𝑛ℎ(1)  
 

 𝜑%& = arsinh rs1
2
(1+ tanh𝑥)t, (29) 

which we show in Figure 4b, while the second one interpolates between 𝜑0 = −arsinh(1) and 𝜑0 = 0 (see Figure 4c),  
 

 𝜑%&& = −arsinh rs1
2
(1− tanh𝑥)t. (30) 

The corresponding classical kink mass in either case is  
 
 𝐸c4 =

1
2
(2ln2− 1). (31) 

The background potential for the fluctuations in this case is not symmetric under the spatial reflection 𝑥 → −𝑥  
 

 𝑣6(𝑥) = 2tanh2𝑥 + 5tanh𝑥 − 7+ 10tanh2")54

J3)tanh2"K
2. (32) 

This, of course, implies that 𝑚* = 2 ≠ 𝑚, = 1 as observed in Figure 5b. In the same figure we also show the corresponding 
pseudo-potential. 

 
4.2.  Hyperbolic model 

Here we consider the hyperbolic potential [31]  
 𝑉(𝜙) = 1

4
?1− sinh2(𝜙)@

2
. (33) 

This potential has two degenerate minima 𝜙0 = ±a𝑟𝑠𝑖𝑛ℎ(1) as observed in Figure 6a. In the limit of small values of 𝜙, this 
potential approaches the polynomial 𝜙4 model  

 𝑈(𝜙) = 1
4
(1− 𝜙2)2, (34) 

with a factor 1
2
 compared to 𝑈4 in Eq. (22). The kink-antikink solutions of the hyperbolic 𝜙4 model are  

 𝜙%,%(𝑥) = ±a𝑟𝑡𝑎𝑛ℎ( 1
√2

tanh(𝑥))	, (35) 

which are related by the spatial reflection 𝑥 ↔ −𝑥. The kink solution is shown in Figure 6b. The resulting classical mass is  
 𝐸c4 =

3
8√2{ln?2√2+ 3@ − ln?−2√2+ 3@} − 1. (36) 

The background potential  
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 𝑣(𝑥) = 2+ 14tanh2(")+12

Jtanh2(")+2K
2 (37) 

is symmetric under the spatial reflection 𝑥 ↔ −𝑥 as observed in Figure 7. In the limit as 𝑥 → ±∞ we have 𝑚, = 𝑚* = 2. 

Figure  6. The field potential and kink solutions of the hyperbolic 𝜙4 model. 

 
Figure  7. The scattering(dashed lines)- and pseudo(dotted lines)-potentials for the hyperbolic 𝜙4 model. The scattering potential for the 
corresponding polynomial model is indicated with the solid line. 

5.  Numerical results 

In this section, we report our numerical results for the VPEs for the two models discussed above. As stated earlier, we have 
rescaled to dimensionless coordinates and fields such that model parameters (coupling constant ‘𝜆’ and mass ‘𝑚’) are unity. It 
must be noted that the coupling constant 𝜆 serves as a loop-counting parameter. In this case, the classical mass scales as  1

O
 while 

the VPE proportional to 𝑚, where 𝑚 is a mass parameter1† in the potentials considered. Thus, taking the coupling constant as 
unity does not affect the computation of the VPE. 

We obtain the bound states energies contribution to the VPE, by first solving the Schrödinger-wave equation using the Boole’s 
algorithm, which is otherwise know as the 5-point closed Newton–Cote formula; with the initial conditions  

 
 𝜂* → 1,				𝜂*′ → −.𝑚*

2 −𝑚,
2 − 𝐸2				as				𝑥 → ∞ 

and  

 
1 This generally holds for the 𝜙! model. For this to be correct, for the 𝜑" model the dimensionless parameter 𝑎 must be written as 𝑎 = 𝛼*#$  

where 𝛼 do not vary with 𝑚 or 𝜆. Then the quadratic mass type term in 𝑈"(𝜑) does not contain the coupling constant 𝜆. 
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 𝜂, → 1,				𝜂,′ → .𝑚,
2 − 𝐸2				as				𝑥 → −∞. 

from either side. We obtained the bound state energy by tuning the energy 𝜔 = 𝜔: such that the Wronskian 𝜂,𝜂*′ − 𝜂*𝜂,′  is zero 
at the matching point 𝑥>. 

The next step requires computing the continuum part of the VPE, where the phase shift and its first Born approximation are 
obtained by solving Eqs. (11) and (18). We achieved this by utilizing the Runge–Kutta algorithm to solve Eq. (14) which yields 
the S-matrix needed for the computation of the phase shift. It must be noted that the numerically obtained phase shift does not 
vary with the choice of 𝑥>. 

We will be looking at two scenarios in the computation of the VPE. The first case deals with models with symmetric scattering 
potential. This regime, has equivalent vacua at 𝑥 → ±∞, as such translating the kink solution as2‡ 𝑥 → 𝑥 + 𝑥0 does not change 
the VPE of the kink. For models with asymmetric scattering potential, the nonequivalent vacua produce translational variance 
with the center of the kink solution 𝑥0. 
5.1.  Sinh-deformed models 

We first compare the results of the sinh-deformed 𝜙4 model and its corresponding polynomial model. The two vacua for both 
models have equal curvature with 𝑚, = 2. From Figure 3, one observes that the scattering potential of the polynomial 𝜙4 model 
is shallower and broader than that of the polynomial 𝜙4 model. We observed that both cases have two bound states with the 
bound state energies of the polynomial 𝜙4 model smaller than that of the corresponding sinh-deformed model; this is attributed 
to the shallowness and broadness of its scattering potential. This in effect accounts for the smaller value of the VPE observed in 
the polynomial 𝜙4 model as indicated in Table 1. Figure 8a shows the phase shift for the sinh-deformed 𝜙4 model, confirming 
the Levinson’s theorem cf. Eq. 17 for 𝑛 = 2. 
 
Table  1. The bound state energies and VPEs of the sinh-deformed 𝜙4 model cf. Eq. (23) and polynomial 𝜙4 model cf. Eq. (22). The entries 𝐸b.& 
and 𝐸s'(). denote the bound state and continuum contributions to the VPE, i.e. the two distinct terms in Eq. (19). The last entry in parenthesis 
are the Jost solutions cf. Eq. (20) confirming the VPE result. 
 

 Bound state energies  𝐸*.&  𝐸+'().  𝐸,('.  
Polynomial 𝜙!  0.0  1.732  –1.134  0.470  –0.664 (–0.666) 
Sinh-deformed 𝜙!  0.0  1.892  –1.054  0.412  –0.643 (–0.644)  

 
In the case of sinh-deformed 𝜑6 model for 𝑎 = 0, we have an asymmetric scattering potential with an unequal meson masses 

𝑚, = 1 and 𝑚* = 2 for the kink soliton cf. Eq. (29). We observed from Figure 5b for 𝑎 = 0 that the scattering potential is 
narrower and almost overlap that of its polynomial counterpart. This in turn causes its VPE to be large cf. Table 2. Furthermore, 
the results indicate that except for the zero-mode there will be no additional bound state. We numerically obtained the binding 
energy (denoted by 𝐸b.9), as 𝐸b.9 = −0.4107 which is larger than the binding energy, 𝐸b.9 = −0.5 of the polynomial 𝜑6 model. 
The unequal meson masses produces a translational variance of the VPE as seen in Table 2 under the translation 𝑥 → 𝑥 + 𝑥0. 
The results show that as 𝑥0 increases, the kink shifts the vacuum with the bigger mass towards negative infinity causing low-lying 
modes to disappear. This decreases the VPE. It must be noted that the results stem from a change in values of the phase shift as 
𝑥0 varies. The phase shift exhibits the threshold scattering cusp 𝑘 = .𝑚*

2 −𝑚,
2 = √3 and approaches <

2
 as 𝑘 → 0 confirming 

Levinson’s theorem. We verified this by the plot of the phase shift in Figure 8d. 
 

Table  2. The VPE as a function of the center of the kink 𝑥0 in the polynomial 𝜑6 model and sinh-deformed 𝜑6 model cf. Eq. (23) for 𝑎 = 0. 
 𝐸-('  
𝑥.  −2  −1  0  1  2  
Polynomial 𝜑"  0.154  0.053  -0.047  -0.148  -0.249  

Sinh-deformed 𝜑"  0.229  0.129  0.028  -0.074  -0176  
 
For 𝑎 ≠ 0 we observe a symmetric scattering potential cf. of Figure 5a. This potential is narrower compared to that of the 

polynomial 𝜑6 model. In effect, it yields large values for the VPEs for various values of 𝑎 as seen in Table 3. The results in Table 
3 show that the results using the Jost function formalism of Eq. (20) agrees favorable well with the present calculations of Eq. 

(19) with a minor error. The error margin improves as 𝑎 increases. Here the error is estimated as the relative error |Qv'(+Qv'(
) |

|Qv'(|
. 

Also, we show in Figure 8c the phase shift for 𝑎 = 1. 
 

 
2 This corresponds to kink solution centered at −𝑥.. 
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Table  3. Comparison of the VPEs for the symmetric scattering potential of the polynomial 𝜑6 model cf. Eq. (22) and sinh-deformed 𝜑6 model 
cf. Eq. (23) for 𝑎 ≠ 0. We have also indicated the Jost solutions for both the polynomial and the sinh-deformed 𝜑6 models. The error is 
calculated as the relative error |0v!"10v!"

# |
|0v!"|

, where 𝐸v(' is the method of computing the VPE using Eq. (19) and 𝐸v('2  is the method of computing 
the VPE using the Jost function formalism of Eq. (20). 
𝑎  0.01  0.05  0.1  0.2  1.0  1.5  
Polynomial 𝜑"  −1.841  −1.596  −1.462  −1.297  −1.102  −1.297  
Jost (poly. 𝜑")  −1.840  −1.595  −1.461  −1.298  −1.101  −1.295  
Error (poly. 𝜑")  3.04 × 101!  6.84 × 101! 6.41 × 101!  8.52 × 101!  1.23 × 1013  1.30 × 1013  
Sinh-deformed 𝜑"  −1.819  −1.570  −1.430  −1.256  −1.037  −1.230  
Jost (sinh-def. 𝜑")  −1.827  −1.576  −1.435  −1.261  −1.038  −1.229  
Error (sinh-def. 𝜑")  4.22 × 1013  4.04 × 1013 3.72 × 1013  3.33 × 1013  6.93 × 101!  5.44 × 101!  

 

 
Figure  8. Phase shifts for the various models. 

 
5.2.  Hyperbolic model 

We observe that the scattering potential of the hyperbolic 𝜙4 model is symmetric and broader than its corresponding polynomial 
model cf. Figure 7. This causes its VPE to be smaller compared to the polynomial counterpart as seen in Table 4. Also, we observe 
two vibrational modes in addition to the translational zero-mode compared to the one vibrational mode of its polynomial model. 
The occurrence of this is due to the broadness of its scattering potential. Also, the VPE result from calculations of the hyperbolic 
model is in agreement (within numerical precision) to the one obtained by using the heat kernel method [32, 33]. The result from 
the heat kernel method has the value of VPE as 𝐸v67 = −0.73433. Finally, in Figure 8b, we show the phase shift for this model 
for 𝑛 = 3, thus confirming the Levinson’s theorem. 
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Table  4. The bound state energies and VPEs of the hyperbolic 𝜙4 model cf. Eq. (33) and polynomial 𝜙4 model cf. Eq (34). We have confirmed 
the VPE result using the Jost function formalism of Eq. (20) which is indicated in the parenthesis of the last entry. 

 bound state energies  𝐸*.&  𝐸+'().  𝐸,('.  
polynomial 𝜙!  0.0  1.225   -0.802  0.354  -0.448(-0.471)  

hyperbolic 𝜙!  0.0  1.433  1.911  -1.328  0.597  -0.732(-0.734)  

6.  Conclusion 

We have investigated the vacuum polarization energies (VPE) of kinks in the sinh-deformed 𝜙4 and 𝜑6 models obtained from 
the polynomial 𝜙4 and 𝜑6 models by a deformation procedure. We make use of spectral methods for computing the VPE in 
terms of scattering data for the quantum fluctuations about the classical kink. The models we used are not multiplicatively 
renormalizable. However, using the no-tadpole renormalization condition at one-loop order produce finite results for our 
calculations. 

Our results show that the sinh-deformed 𝜙4 and 𝜑6 models show similar behaviors to their polynomial counterparts. In the 
case of the 𝜙4 model they both have two bound states; the zero-mode and a vibrational shape mode. The narrowness of the 
scattering potential of the sinh-deformed 𝜙4 model causes its vibrational mode frequency to be larger than that of its polynomial 
counterpart. In effect, the VPE of the sinh-deformed model is quite large. In the case of the 𝜑6 model with the dimensionless 
parameter 𝑎 = 0, the kink solutions of both models possesses nonequivalent vacua at spatial infinity. This leads to translational 
variance with respect to the center of the kink. The VPE may assume any negative value which then destabilizes the kink. The 
broadness of the scattering potential of the polynomial model in this case, causes its binding energy to be smaller than that of the 
sinh-deformed model. 

In the case of the hyperbolic 𝜙4 model, we find its scattering potential to be broader than its polynomial counterpart. We also 
observe two vibrational modes for the hyperbolic model as compared to only one for its polynomial counterpart. In effect, the 
VPE of the hyperbolic 𝜙4 model is smaller. The reported value of the VPE in this case, is 𝐸v67 = −0.734 which is in agreement 
with the value reported using the heat kernel method. The later approach makes use of 𝜁 −function regularization which requires 
truncation approximation. 

It will be interesting to study the VPEs as a function of the kink-antikink potentials of the sinh-deformed models as well as 
the hyperbolic 𝜙4 model. To do this requires to first substitute the configuration of the kink-antikink solutions that describe its 
scattering interactions to the Lagrangian density to obtain the classical kink potential. The VPE is then computed using the 
obtained potential. In deriving this configuration care must be taken in such a way that the configuration is not a solution to the 
stationary equations and additions must be made to avoid an imaginary VPE. 
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