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Abstract: In this review, various researches on finding the bending angle of light deflected by a massive gravitating
object which regard the Gauss–Bonnet theorem as the premise have been revised. Primarily, the Gibbons and Werner
method is studied apropos of the gravitational lensing phenomenon in the weak field limits. Some exclusive instances are
deliberated while calculating the deflection angle, beginning with the finite-distance corrections on nonasymptotically
flat spacetimes. Effects of plasma medium is then inspected to observe its contribution to the deflection angle. Finally,
the Jacobi metric is explored as an alternative method, only to arrive at similar results. All of the cases are probed in
three constructs, one as a generic statement of explanation, one for black holes, and one for wormholes, so as to gain a
perspective on every kind of influence.
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1. Introduction
Light is a unique form of radiation: from vision to life, it serves its purpose in various ways. The most

interesting aspect of light, however, is the way it interacts with heavy objects. Added to solving the mystery
behind the precession of Mercury, this bending of light in the presence of a massive object opened up a wide
spectrum of prospects to explore, such as the spacetime and its null structure [1]. In this paper, we will be
focusing on a phenomenon called gravitational lensing that is a fascinating consequence of deflection of light.

Gravitational lensing occurs when an astronomical object is massive enough to bend the elapsing light
into a lens, enabling the observer to capture more information about the source than feasible. Depending on the
nature of the lens, it is classified as strong lensing or weak lensing. Here, we are concerned about weak lensing
which is caused by marginal distortions since it singles out mass distributions due to minute magnifications.
Some entities of curiosity are dark energy, dark matter, exoplanets, galaxy clusters, black holes, wormholes,
gravitational monopoles, etc. [2]-[55]. This established the foundations of general relativity which serve as the
basis theoretical advancements in science till this day.

Walia et al. have studied the gravitational deflection of light due to rotating black holes in Horndeski
gravity using Gauss–Bonnet theorem in [2]. Qiao and Zhou have analyzed the gravitational deflection angle of
light, weak gravitational lensing and Einstein ring using the Gauss–Bonnet theorem for an acoustic Schwarzschild
black hole in [3]. In [4], the authors have discussed the effects of nonlinear electrodynamics on nonrotating black
holes parametrized by the field coupling parameter and magnetic charge parameter using the Gauss–Bonnet
theorem under the influence of the generalized uncertainty principle. Li and Jia have investigated the deflection
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of a charged particle moving in the equatorial plane of Kerr–Newman spacetime in the weak field limit in [5]
using the Jacobi geometry and the Gauss–Bonnet theorem. The authors have furthered their work with Liu
to find the deflection and gravitational lensing of light and massive particles using the Gauss–Bonnet theorem
in an arbitrary static, spherically symmetric and asymptotically (anti-)de Sitter spacetimes in [6]. Javed et al.
have calculated the deflection angle for a Kazakov–Solodukhin black hole with the Gauss–Bonnet theorem to
comprehend the effects of the deformation parameter both in vacuum and in the presence of plasma [7]. Carvalho
et al. have considered the Casimir energy corrected by the Generalized Uncertainty Principle as the source in
their work [8] to investigate the gravitational bending angle due to the Casimir wormholes with the Jacobi
metric in the Gauss–Bonnet theorem. Ali and Kaushal have modified the Kerr-Newman black holes to find
the exact solutions of rotating black holes in Eddington-inspired Born–Infeld gravity [9]. In [10], Pantig et al.
have discussed the effects of dark matter on a Schwarzschild black hole by means of the extended uncertainty
principle. Takizawa and Asada have examined the methods for iterative solutions of the gravitational lens
equations in the strong deflection limit in [11] with the case study of Sagittarius A* and M87. The authors of
[12] have studied the influence of the Lorentz symmetry-breaking in the bending angle of massive particles and
light for bumblebee black hole solutions. Based on two types of nonlinear electrodynamic (NLED) models, Fu
et al. have deliberated on two black hole solutions with the Euler–Heisenberg NLED model and the Bronnikov
NLED model, and have calculated their weak deflection angles with the help of the Gauss–Bonnet theorem for
vacuum and plasma in [13]. The deflection of a massive, charged particle by a novel four-dimensional charged
Einstein–Gauss–Bonnet black hole is examined by Li et al. in [14] based on the Jacobi metric method. Gullu and
Övgün have tested the effect of the global monopole and the bumblebee fields causing the spontaneous Lorentz
symmetry-breaking [15]. The authors of [16] have investigated the gravitational lensing by asymptotically flat
black holes in the framework of Horndeski theory in weak field limits using the Gauss–Bonnet theorem to find
the deflection angle in vacuum and plasma medium.

A static spherically symmetric wormhole solution due to the vacuum expectation value of a Kalb–Ramond
field is obtained by Lessa et al. in [17]. Javed et al. have analyzed the weak gravitational lensing of the Einstein–
nonlinear-Maxwell–Yukawa black hole in their work [18] in vacuum and in the presence of plasma. In [19], the
authors have shown that every light-like geodesic in the NUT (Newman, Unti and Tamburino) metric projects
to a geodesic of a two-dimensional Riemannian metric a.k.a. the optical metric with the help of Fermat’s
principle. Moumni et al. have studied the gravitational lensing by some black hole classes within the nonlinear
electrodynamics in [20] for the weak field limits using the Gauss–Bonnet theorem for vacuum and plasma
medium. Weak gravitational lensing by Bocharova–Bronnikov–Melnikov–Bekenstein black hole is demonstrated
by Javed et al. in [21] also for vacuum and plasma medium. Arakida has proposed a novel concept of the total
deflection angle of a light ray in terms of the optical geometry, i.e. the Riemannian geometry experienced by
the light ray [22]. Khan and Ren have explored the effects of quintessential dark energy and its consequences on
the spacetime geometry of a black hole on horizons and the silhouette generated by a Kerr-Newman black hole
in [23]. In [24], Takizawa et al. have discussed a gravitational lens for an observer and source located within
a finite distance from a lens object without assuming asymptotic flatness. Light bending caused by a slowly
rotating source in quadratic theories of gravity with the Einstein–Hilbert action extended by additional terms
quadratic in the curvature tensors is studied in [25] by Buoninfante and Giacchini. Övgün et al. have used a
new asymptotically flat and spherically symmetric solution in the generalized Einstein–Cartan–Kibble–Sciama
theory of gravity to determine the weak deflection angle using the Gauss–Bonnet theorem in [26]. Islam et al.
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have generalized the work on nontrivial 4D Einstein–Gauss–Bonnet theory of gravity in their paper [27] for the
gravitational lensing by a Schwarzschild black hole. The authors of [28] have examined the weak gravitational
lensing by stringy black holes for plasma and nonplasma mediums. The deflection angle of a dirty black hole is
presented in [29] by Pantig and Rodulfo; essentially, a Schwarzschild black hole of mass surrounded by the dark
matter. An exact solution of Kerr black hole surrounded by a cloud of strings in Rastall gravity is obtained
through the Newman–Janis algorithm in [30] by Li and Zhou for various cases by employing the Gauss–Bonnet
theorem.

Li and Övgün have studied the weak gravitational deflection angle of relativistic massive particles by
the Kerr-like black hole in the bumblebee gravity model in the weak field limits in [31]. The work of Li and
Jia in [32] scrutinizes the weak gravitational deflection of relativistic massive particles for a receiver and source
at finite distance from the lens in stationary, axisymmetric and asymptotically flat spacetimes by extending
the generalized optical metric method to the generalized Jacobi metric method using the Jacobi–Maupertuis
Randers–Finsler metric. Crisnejo et al. have shown that the Gauss–Bonnet theorem can be applied to describe
the deflection angle of light rays in plasma media in stationary spacetimes in [33] and also have obtained the
leading order behavior of the deflection angle of massive/massless particles in the weak field regime with higher
order corrections in a cold non magnetized plasma. The equivalence of the Gibbons–Werner method to the
standard geodesic method with the case study of Kerr–Newman spacetime especially for the asymptotically flat
case in [34] by Li and Zhou. Övgün et al. have examined the light rays in a static and spherically symmetric
gravitational field of null aether theory using the Gauss–Bonnet theorem to determine the deflection angle and
showing that the bending of light stems from a global and topological effect [35]. Weak gravitational lensing
in the background of Kerr–Newman black hole with quintessential dark energy has been explored by Javed et
al. and they have extended their work by finding the deflection angle of light for rotating charged black hole
with quintessence in [36]. They have also taken an interest in a model of exact asymptotically flat charged
hairy black holes in the background of dilaton potential in [37] and have shown the effect of the hair on the
deflection angle in weak field limits for vacuum and plasma medium. The authors of [38] have analyzed the
weak gravitational lensing in a plasma medium and computed the deflection angle of nongeodesic trajectories
followed by relativistic test massive charged particles in a Reissner–Nordström spacetime as an application.
Leon and Vega have studied the weak-field deflection of light by different mass distributions [39]. Roesch and
Werner have applied the results of general relativity on the isoperimetric problem to show that length-minimizing
curves subject to an area constraint are circles, and have also discussed the implications for the photon spheres
of Schwarzschild, Reissner–Nordström, as well as continuous mass models solving the Tolman–Oppenheimer–
Volkoff equation in [40]. In [41], Crisnejo et al. have investigated the finite distance corrections to the light
deflection in a gravitational field with a plasma medium. A rotating global monopole is discussed by Ono et al.
in [42] as a possible extension to an asymptotically nonflat spacetime of a method improved with a generalized
optical metric to find the deflection of light for an observer and source at finite distance from a lens object in a
stationary asymptotically flat spacetime. They have also calculated the gravitomagnetic bending angle of light
using this in [43]. The same method has been used by them in the weak field approximation to calculate the
deflection angle for rotating Teo wormhole [44]. Övgün has also used this method in [45] applying it to the
nonrotating and rotating Damour–Solodukhin wormholes spacetimes to explore the gravitational lensing effects
of these objects.

In [46], Övgün et al. have found a new traversable wormhole solution in the framework of a bumblebee
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gravity model in which the Lorentz symmetry violation arises from the dynamics of a bumblebee vector field
that is nonminimally coupled with gravity. The authors have studied the weak deflection angle in the spacetime
of rotating regular black hole [47]. Weak gravitational lensing by black holes and wormholes in the context of
massive gravity theory is scrutinized by the authors of [48] and they have established the time delay problem
in the spacetime of black holes and wormholes, respectively. Jusufi and Övgün reported the effect of the
cosmological constant and the internal energy density of a cosmic string on the deflection angle of light in the
spacetime of a rotating cosmic string with internal structure [49]. In [50], Jusufi et al. have studied quantum
effects on the deflection angle using the Gauss–Bonnet theorem in the spacetime of global monopole and a
cosmic string. Arakida has reexamined the light deflection in the Schwarzschild and the Schwarzschild–de Sitter
spacetimes in [51] so as to propose the definition of the total deflection angle of the light ray by constructing
a quadrilateral on the optical reference geometry determined by the optical metric in a supposedly static and
spherically symmetric spacetime. An electrically charged traversable wormhole solution is given by Goulart for
the Einstein–Maxwell–dilaton theory when the dilaton is a phantom field [52]. The work of Jusufi and Övgün in
[53] shows the calculation of the quantum correction effects on the deflection of light in the spacetime geometry
of a quantum improved Kerr black hole pierced by an infinitely long cosmic string. Authors have investigated
the Lorentz symmetry breaking effects on the deflection of light by a rotating cosmic string spacetime in the
weak limit approximation in [54]. The authors of [55] have probed the deflection of light by a rotating global
monopole spacetime and a rotating Letelier spacetime in the weak deflection approximation. Bloomer [56] has
pursued a geometrical approach to gravitational lensing theory and has extended it to the axially symmetric
Kerr spacetime arriving at an expression for the gravitational deflection angle in the equatorial plane. Gibbons
and Warnick have made use of the fact that the optical geometry near a static nondegenerate Killing horizon
is asymptotically hyperbolic in their work [57] to investigate universal features of black hole physics. In [58],
Gibbons et al. have considered a triality between the Zermelo navigation problem, the geodesic flow on a
Finslerian geometry of Randers type, and spacetimes in one dimension higher admitting a time-like conformal
Killing vector field.

In Section 2, a brief review of the Gauss–Bonnet theorem (GBT) is given and in Section 3, the GW
method, an extension of GBT proposed by Gibbons and Werner in 2008, is studied; these are the basis of
finding the deflection angle of light in this paper. In Section 4, we have inspected the method to induce finite-
distance corrections for nonasymptotically flat spacetimes while determining the deflection angle. Section 5
concentrates on the effects of homogenous plasma on the deflection angle as a medium instead of the light rays
travelling through vacuum. Section 6 draws attention to stationary black holes, followed by Section 7 specifying
the Jacobi Matrix approach, and the conclusion in Section 8.

2. Brief review of Gauss–Bonnet theorem
The surface that the bending of light occurs in is the key to compute the weak deflection angle; the

rays of light are treated as space-like geodesics of the optical metric. Introducing the Gauss-Bonnet theorem,
an approach that utilizes these attributes by relating the topology of the surface to its intrinsic geometry, it
facilitates the bending angle to be invariant under coordinate transformations according to [61].

To elaborate on this, let us look at the simplest example of a triangle as in [62]. Say, the interior angles
of the triangle are θa , θb and θc so that: θa + θb + θc = π . Then, the corresponding exterior angles will be:
π − θa , π − θb , and π − θc .
For a spherical triangle belonging to a unit sphere, the above equation changes to: θa + θb + θc > π such that
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the additional quantity is related to the area of the triangle as: θa + θb + θc − π = A∆ . Therefore, for a sphere
of radius, R , this can be written as:θa + θb + θc − π = A∆

R2

Applying the Gauss–Bonnet theorem over the given area with the Gaussian curvature of the sphere, K :∫
A∆

K dS +
∑

exterior angles =

[
A∆

R2

]
+

[
(π − θa) + (π − θb) + (π − θc)

]
(2.1)

=
[
θa + θb + θc − π

]
+
[
3π − θa − θb − θc

]
(2.2)

= (θa + θb + θc)− π + 3π − (θa + θb + θc) (2.3)

= 2π (2.4)

thus correlating its differential geometry with its topology. The physical significance of the Gaussian curvature
is the intrinsic measure of the surface curvature at a particular point contingent to the surface.

Expanding this notion to a spacetime fabric [60], the metric of a static, axis-symmetric, asymptotically
flat spacetime can be assumed as:

ds2 = gµν dxµ dxν = −f(r) dt2 +
1

g(r)
dr2 + r2

(
dθ2 + sin2 θ dϕ2

)
. (2.5)

The null geodesics satisfies ds2 = 0 , and taking the equatorial plane θ = π/2, dθ = 0 , optical metric
can be written as:

dt2 ≡ ḡij dxi dxj = ḡrr dr2 + ḡϕϕ dϕ2 =
1

f(r)g(r)
dr2 +

r2

f(r)
dϕ2, (2.6)

where i and j run from 1 to 3 , and γij . The Gaussian curvature of the optical metric is

K =
RicciScalar

2
= − 1

√
ḡrr ḡϕϕ

[
∂

∂r

(
1√
ḡrr

∂
√
ḡϕϕ
∂r

)
+

∂

∂ϕ

(
1

√
ḡϕϕ

∂
√
ḡrr

∂ϕ

)]
. (2.7)

Thus, the Gauss–Bonnet theorem is written as:∫∫
M

K dS +

∫
∂M

κ dt+
∑
i

αi = 2πχ(M), (2.8)

where M is the selected manifold, dS is a surface element, αi is the exterior angle at the ith vertex, and χ is
the Euler characteristic of the topology.

The extent of deviation of a curve from the shortest length of an arc connecting any two points on a
surface is measured by the Geodesic curvature, κ :

κ =
1

2
√
ḡrr ḡϕϕ

(
∂ḡϕϕ
∂r

dϕ

dt
− ∂ḡrr

∂ϕ

dr

dt

)
. (2.9)

Using bounded M by a geodesic C1 from the source S to the observer O and a circular curve CR

intersecting C1 in S and O at right angles, Eq. (2.8) reduces to∫∫
M

K dS +

∫
C1

κ(CR) dt = π, (2.10)
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where we have used κ(C1) = 0 and χ(M) = 1 . If the center of the lens is singular, then χ(M) will be taken
as zero.

3. Calculating deflection angle using Gibbons and Werner method
In order to mitigate the complexity of determining the deflection angle, consider a space domain dis-

tinguished by the optical metric for an optical geometry in an asymptotic region with a point source and an
observer. Assume that the source, located at infinity from a spherically symmetric distribution of mass or – in
this case – the lens, is viewed by the observer located at infinity from the lens (perhaps, a Schwarzschild black
hole), in an asymptotically flat spacetime [1]. Analyzing the second integral in Eq. (2.10), the circular curve
CR := r(ϕ) = R = const. In the limit R → ∞ , one can obtain,

κ(CR) dt = lim
R→∞

[κ(CR) dt]

= lim
R→∞

[
1

2
√
ḡrr ḡϕϕ

(
∂ḡϕϕ
∂r

)]
dϕ

= dϕ. (3.1)

Inserting Eq. (3.1) into Eq. (2.10), one has

∫∫
MR→∞

K dS +

∫ π+α̂

0

dϕ = π, (3.2)

then, the weak deflection angle can be calculated by integrating its curvature over an infinite region bound by
the ray of light apart from the lens:

α̂ = −
∫∫

M
K dS = −

∫ π

0

∫ ∞

u/sinϕ

K dS (3.3)

where we have used the zero-order particle trajectory, r = u/ sinϕ and 0 ≤ ϕ ≤ π . The distance between the
lines passing through the particle (along the direction of its motion) and the center of the gravitating object is
known as the impact parameter, u . Also,

dS =

√(
r2

f(r)2g(r)

)
dr dϕ. (3.4)

This was proposed by Gibbons and Werner [60] as an alternate method to find the deflection angle.

3.1. Examples: black holes
A black hole is a point of extreme gravity in the spacetime fabric, so strong and funneled down that no

particle can escape its pull. When a black hole is formed, there are two possibilities: one, it creates a core that
is singular which has a physical solution that emphasizes on the existence of singularity. Here, the Physics we
know ceases to thrive due to its infinite density. Beginning with a Schwarzschild black hole, in Eq. (2.5):

f(r) := 1− 2M

r
. (3.5)
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Applying null geodesics and choosing the equatorial plane ∂gµν/∂θ = 0 , the optical metric becomes:

dt2 =
dr2

f(r)2
+

r2

f(r)
dϕ2 (3.6)

with its Gaussian curvature derived to be:

K = −2M

r3
. (3.7)

Plugging this into Eq. (3.3) with dS ≡ r dr dϕ , the zeroth order approximation along a straight line for
a Schwarzschild black hole renders the deflected angle [60] to be:

α̂ =
4M

u
. (3.8)

For the sake of comparison and further understanding, Table (1) is tabulated. It shows how the deflection
angle and hence, Eq. (3.8) varies in different paradigms.

Table 1. Deflection angle caused by various black holes.

Case considered Gaussian curvature Deflection angle
Weyl correction of a
Schwarzschild black hole
[63]

K = − 2M
r3 + 3M2

r4 − 72Mα
r5 α̂ = 4M

u + 15πM2

4u2 + 32Mα
u3 + 261πMα

4u4

Schwarzschild-like solu-
tion in Bumblebee gravity
[63]

K = − 2M
(1+l)r3 α̂ = 4M

u + πl
2 − 2Ml

u

Rindler-modified
Schwarzschild black
hole [64]

K = − 2µ
r3

[
f + µ

2r − 4πr3

µ F (ρ, f, p, µ)
]

α̂ = 0.126127529√
a3u7

Reissner–Nordström black
hole [65] with topological
defects

K = − 2M
r3

(
1− 3M

2r

)
+O(Q2, r4) α̂ = 4M

u + 4µπ − 3πQ2

4u2 + 4π2η2

Einstein–Maxwell–
Dilaton–Axion [66]
(EMDA) black hole

K = − 2M
r3 + 3M2

r4 −
(

6M
r4 − 12M2

r5

)
r0 α̂ = 4M

u + 3Mπ
2u2

[67] Extended uncertainty
principle (EUP) black
hole

K = − 8M3α
r3L2 − 2M

r3 α̂ = 4M
u + 16αM3

uL2

Regular black holes with
cosmic strings (RBCS)
[68]

K = − 2M0

r3 +
3M2

0

r4
α̂ = 4M

u + 4πµ

Non linear electrodynamic
(NLED) black hole [69] K = − 2M

r3 + 3Q2

r4 − 4MQα
r3 α̂ = 4M

u − 3πQ2

4u2 + 20MQα
u

It is worth noticing that anything added to or subtracted from the term 4M/u models the deflection
angle to the desired case suggesting that the GB method is vastly flexible.
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3.2. Examples: wormholes
On the other hand, another possibility during the formation of a black hole is that it forms a bridge

through the spacetime fabric to another point (in the same universe or another). In its purest form, the
mathematical solution indicates that the center of the compressed matter contains a throat called the Einstein–
Rosen bridge, technically known as a traversable wormhole.

Table (2) is analogous to Table (1) but for different types of wormholes:

Table 2. Deflection angle caused by various wormholes.

Case considered Gaussian curvature Deflection angle
Einstein–Rosen-type
wormhole in Weyl gravity
[62]

K = 1
4U4 − 4M(U4+27α)

U10 +O
(
U16

) α̂ = π
16u2 + 3πM

8u4

[62] Einstein–Rosen-type
wormhole in Bumblebee
gravity

K = 1
4U4(1+l) −

4M
U6(1+l) +

25M2

U8(1+l)
α̂ = π

16u2 + 3πM
8u4 + πl

2

Einstein–Maxwell-dilaton
(charged) wormhole [70] K = − 16PQ

r4 + Σ2

r4 +O
(
r6
)

α̂ = 3πPQ
2u2 − πΣ2

4u2

[71] Brane–Dicke worm-
hole class II

Brane–Dicke worm-
hole class I

K = − 2C̃B
r3

K = −e(
2
π

arctan[ βr ])
2

π3β2
0

[
2Bπ−4BC̃π2

r3

]
α̂II =

8B
u
√
2ω+4

α̂I =
4B
u (1− 2π) + 2πBω

u − 3πBω2

4u

*[72] Wormhole with
electric charge

Wormhole with a scalar
field

K =
3Q2−u2

0

r4 − 4u2
0Q

2

r6

K =
−u2

0+α
r4

α̂EC =
πu2

0

4u2 − 3πQ2

4u2

α̂SF =
πu2

0

4u2 − πα
4u2

[73] Black-bounce
traversable wormhole K = 3M2

r4 − 2M
r3 − a2

r4 +O
(
r5
)

α̂ = 4M
u + πa2

4u2

Schwarzschild-like worm-
hole [74] K = − (λ2+2)M

ρ3n2
0

α̂ = 4M
n0u

+ 2Mλ2

n0u

Phantom wormhole [75]
K =

4r(a−1)r0+(7−14a)r20
4r4 α̂ = 2r0

u (1− a)− πr20
16u2 (7− 14a)

Like in the case of black holes, a pattern is evident. In most of the cases, the deflection angle is dependent
on the term proportional to π/u2 . In other cases, the inverse dependence of the deflection angle on the impact
parameter like in the case of a black hole is observed.

4. Calculating the deflection angle of nonasymptotically flat spacetimes using finite-distance
corrections

One of the underlying assumptions in the derivation of the weak deflection angle is that the distance
of both the source and the observer is infinite from the lensing object. On the other hand, every observable
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object is at a finite redshift from the observer, us. Owing to this, the above equations need a tweak called
finite-distance corrections: it is written as the difference between the deflection angles for the asymptotic case
and the finite-distance case: [61] δα̂ = α̂− α̂∞.

Ishihara et al. have attained a general form for finite-distance corrections in [76]. Let Ψ be the angle
of the light ray measured radially and Φ be the longitude at a given point – subscripts S and R denote the
positions of the source and the receiver respectively. If the coordinate-separation angle between the source and
the observer is ΦRS = ΦR − ΦS , then, Eq. (3.3) is formulated as:

α̂ = −
∫∫

K dS ≡ ΨR −ΨS +ΦRS . (4.1)

Correcting this to a finite distance r for both the source and the receiver with r̃ := 1/r , then:

α̂ = ΨR −ΨS +

[∫ r̃L

r̃R

dr̃√
F (r̃)

+

∫ r̃L

r̃R

dr̃√
F (r̃)

]
, (4.2)

where the subscript L represents the lens taken to be at zero and,

F (r̃) ≡
(

dr̃

dϕ

)2

(4.3)

is the photon orbit equation of the spacetime in question. Eq. (4.2) is, therefore, corrected for finite-distance.
One application of this method is the Kottler case [76] whose spacetime is given by:

ds2 = −
(
1− rg

r
− Λr2

3

)
dt2 +

dr2

1− rg
r − Λr2

3

+ r2
(
dθ2 + sin2 θdϕ2

)
, (4.4)

where rg is a geodesic parameter in the metric and Λ is the cosmological constant. The orbit equation for the
Kottler spacetime, also known as the Schwarzschild de-Sitter spacetime, is defined as:

F (r̃) =
1

u2
− r̃2 + rg r̃

3 +
Λ

3
. (4.5)

Expanding over rg and Λ to find ΨR and ΨS followed by determining ΦRS , the deflection angle for the
nonasymptotically flat case is found to be:

α̂ =
rg
u

[√
1− u2r̃2R +

√
1− u2r̃2S

]
− Λu

6

[√
1− u2r̃2R
r̃R

+

√
1− u2r̃2S
r̃S

]
+

rgΛu

12

[
1√

1− u2r̃2R
+

1√
1− u2r̃2S

]
.

(4.6)
Encompassing the scope of the source and the observer to positions far from the lens, the deflection angle

reduces to:

α̂ =
2rg
u

− Λu

6

(
1

r̃R
+

1

r̃S

)
+

rgΛu

6
(4.7)

as derived by [76] which agrees with [60].
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For a nonasymptotically flat spacetime, it is intriguing to notice that under the case of Weyl conformal
gravity, the deflection angle is derived [76] to be:

α̂ =
2M

u

(√
1− u2r̃2R +

√
1− u2r̃2S

)
− γM

(
u r̃R√

1− u2r̃2R
+

u r̃S√
1− u2r̃2S

)
, (4.8)

where γ is a metric parameter. Extrapolating this equation of the deflection angle at a finite-distance, when
the source and the observer are too far from the lens such that u r̃R ≪ 1 and u r̃R ≪ 1 , it remarkably reduces
to Eq. (3.8) with negligible higher-order terms.

4.1. Examples: black holes
Although the abovementioned method has demonstrated reliability, it is not suitable for black hole due

to the singularity of the lens. Ono and Asada [61] have extended this to strong deflection limits to include loops
in the photon orbits and for Sagittarius A*. The latter is evaluated to be approximately 10−5 arcsec, much
larger than the corrections required for M87 since Sagittarius A* is comparatively closer to us.

In [59], the authors have studied the case of a Kerr black hole with modified gravity alterations. They have
corrected for finite-distance pertaining to the fact that the deflection angle depends not only on the Gaussian
curvature but also the geodesic curvature. So, the deflection angle with finite-distance corrections is expressed
as:

α̂ = −
∫∫

K dS −
∫

κ dℓ, (4.9)

where ℓ is the arc length of the photon sphere and the line element dℓ2 ≡ dr2 + r2
(
dθ2 + sin2 θ dϕ2

)
gives

rise to the path integral [59] in the second term of Eq. (4.9).
The resulting deflection angle has been found to be:

α̂ =
4M

u
(1 + α)± 4aM

u2
(1 + α), (4.10)

where α is a parameter that determines the degree of deviation of MoG from general relativity in addition to
governing the strength of gravity and a is the spin parameter that corresponds to a Kerr black hole. The result
of this is nontrivial as shown by their plots.

4.2. Examples: wormholes
Consider the case of a Teo wormhole, an axially symmetric rotating wormhole which has the most generic

solution for a traversable wormhole. The deflection angle is given by:

α̂ =
u0

u
± 4a

u2
. (4.11)

But when corrected for finite-distance, the deflection angle becomes:

α̂ =
u0

2u

(√
1− u2r̃2R +

√
1− u2r̃2S

)
± 2a

u2

(√
1− u2r̃2S +

√
1− u2r̃2R

)
(4.12)

which is in agreement with Eq. (4.8), with the positive sign signifying retrograde and the negative sign signifying
prograde [61].
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5. Calculating deflection angle in plasma medium
So far, the discussion was concentrated on the light rays travelling through vacuum medium. Next step is

to probe into a medium of plasma; observations of the Event Horizon Telescope [77] necessitate this now more
than ever. When matter falls into a black hole, it is essentially disintegrated by the extreme gravitational force
of the black hole which then heated up to millions of degrees creating magnetized plasma.

When a light ray encounters this hot soup of ionized gas, it will experience refraction, implying that there
is a factor of refractive index involved, written as:

n(r) =

√
1− ω2

e

ω2
∞

(
1− 2M

r

)
, (5.1)

where ωe is the plasma frequency of an electron and ω∞ is the photon frequency both measured at infinity
[78]. This nonzero factor causes the rays of light that pass by to be significantly deflected. To find the deflection
angle on the plasma medium, one should use the corresponding optical metric is:

dσ2 = goptij dxidxj =
n2(r)

f(r)

(
dr2

f(r)
+ r2dφ2

)
. (5.2)

5.1. Examples: black holes
The deflection angle of a Schwarzschild black hole in a plasma medium is given by [78]:

α̂ =
2M

u

[
1 +

1

1− (ω2
e/ω

2
∞)

]
. (5.3)

Going back to the second half of Table (1), let us examine the effect of plasma on the corresponding black
holes and retabulate in Table (3).

The contribution of the plasma term is apparent in every case such that if ωe/ω∞ → 0 , all of the above
expressions boil down to their nonplasmic counterparts. Conclusively, the influence of plasma is distinctly
discernible, as shown graphically by [79].

5.2. Examples: wormholes
Similarly, plasma medium contributes conspicuously to the deflection angle due to a wormhole. As

discussed in [80], the Gaussian curvature and the deflection angle of a Casimir wormhole – a type of a travesable
wormhole generated by the Casimir effect – is found to be:

K = − 2a

3r3
+

2a2

3r4
(and) (5.4)

α̂ =
4a

3u
− πa2

6u2
, (5.5)

respectively. Casimir effect is a physical attractive force between two parallel, conducting boundaries caused by
quantum field fluctuations which allows the energy to be relatively negative at a specific point. Incorporating
the effects of plasma, the Gaussian curvature becomes:

K = − ω2
ea

ω2
∞r3

− 2

3

a

r3
+

7

3

a2ω2
e

r4ω2
∞

+
2

3

a2

r4
(5.6)
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Table 3. Deflection angle caused by various black holes in the presence of homogenous plasma

Case Gaussian curvature Deflection angle

EMDA black hole [66] K =
M(ω2

er−2ω2
∞r+4r0ω

2
e−6r0ω

2
∞)ω2

∞
(ω2

e−ω2
∞)2r4

α̂ = 4M
u + 3Mr0π

2u2 + 4M
u

ω2
e

ω2
∞

+ 5πMr0
4u2

ω2
e

ω2
∞

EUP black hole [67] K = − 2M
r3 + 3M2

r4 − 8M3α
L2r3 − Mω2

e

ω2
∞r3 +

4M2ω2
e

ω2
∞r4 −(

4α
ω2

∞L2r3 + 4
ω2

∞r5

)
M3ω2

e

α̂ = 4M
u + 16αM3

uL2 + 6M
u

ω2
e

ω2
∞
+ 24αL2M3

u
ω2

e

ω2
∞

RBCS [68] K =
M(ω2

e−2ω2
∞)ω2

∞
(ω2

e−ω2
∞)2r3

− 3M2(ω2
e+ω2

∞)ω4
∞

(ω2
e−ω2

∞)3r4
α̂ = 4M

u + 4πµ+ 4M
u

ω2
e

ω2
∞

NLED black hole [69] K = M
r3

(
−2− ω2

e

ω2
∞

+
2ω4

e

ω4
∞

)
+ 2MQ2

r5(
1− 17ω2

e

ω2
∞

+
5ω4

e

ω4
∞

)
− 4MQα

r3

(
1 +

ω2
e

ω2
∞

− 3ω4
e

ω4
∞

) α̂ = 4M
u − 3Q2π

4u2 + 4MQα
u + 2M

u
ω2

e

ω2
∞

+ 2MQα
u

ω2
e

ω2
∞

− 6M
u

ω4
e

ω4
∞

− 3Q2π
4u2

ω4
e

ω4
∞

to give the deflection angle:

α̂ =
4a

3u
− πa2

6u2
+

2a

u

ω2
e

ω2
∞

− 7πa2

12u2

ω2
e

ω2
∞

(5.7)

hence sustaining its property of distinctive flexibility.
Examining these analyses, it is evident from the photons’ equation of motion for a wormhole in homoge-

nous plasma that the inner radius of the photon orbits around the wormhole decreases with the existence of
plasma.

6. Calculating deflection angle of stationary black holes
A nonrotating black hole with no charge or time-dependence and exhibiting axis-symmetry is categorized

as a stationary black hole. The periphery of such a black hole from which nothing can escape, known as the
event horizon, is nonexpanding. The Schwarzschild spacetime is independent of time, and hence, stationary.

The line element of one such spacetime is given by [1]:

ds2 = −A(r, θ) dt2 − 2H(r, θ) dt dϕ+B(r, θ) dr2 + C(r, θ) dθ2 +D(r, θ) dϕ2. (6.1)

At the equatorial plane, applying null condition:

dt =
√
γij dxi dxj + βi dx

i (6.2)

≡ B(r, θ)

A(r, θ)
dr2 +

C(r, θ)

A(r, θ)
dθ2 +

A(r, θ)D(r, θ) +H2(r, θ)

A2(r, θ)
dϕ2 − H(r, θ)

A(r, θ)
dϕ, (6.3)

where γij is the spatial metric (not gij ) defined as the arc length along the photon orbit.
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Ergo, the Gauss–Bonnet theorem can be expressed as:

∫∫
R∞
R �S∞

S

K dS +

∫ S

R

κg dℓ+

∫ R∞

S∞

κ̄g dℓ+ [ΨR + (π −ΨS) + π] = 2π. (6.4)

The limit of the double integral R∞
R �S∞

S is a quadrilateral on the equatorial plane embedded on to γij

which is the associated 3-dimensional space. The geodesic curvatures of the paths from R to R∞ and S to
S∞ are zero owing to the geodesic nature, κg is the photon geodesic curvature. κ̄g is the geodesic curvature of
the segment of circular arc with infinite radius, R∞ = S∞ .

6.1. Deflection angle using the Werner method for stationary spacetime
One of the solutions to a stationary black hole is the Kerr solution. Werner employed a new geometric

approach in [81] to determine the deflection of light. The line element of the Kerr spacetime (with the rising
Randers metric) in the Boyer–Lindquist coordinates is written as:

ds2 = −∆

ρ2
(
dt− a sin2 θ dϕ

)2
+

sin2 θ

ρ2
[(
r2 + a2

)
dφ− a dt

]2
+

ρ2

∆
dr2 + ρ2 dθ2, (6.5)

where

∆ = r2 − 2mr + a2 (and) (6.6)

ρ2 = r2 + a2 cos2 θ. (6.7)

The metric components of the osculating Riemannian manifold to the first order are:

ḡrr = 1 +
4m

r
− 2mar

b3
sin6 ϕ(

cos2 ϕ+ r2

b2 sin4 ϕ
)3/2 (6.8)

ḡrϕ =
2ma

r

cos3 ϕ(
cos2 ϕ+ r2

b2 sin4 ϕ
)3/2 (6.9)

ḡφφ = r2 + 2mr − 2mar

b

sin2 ϕ
(
3 cos2 ϕ+ 2 r2

b2 sin4 ϕ
)

(
cos2 ϕ+ r2

b2 sin4 ϕ
)3/2 (6.10)

with its determinant calculated to be:

det ḡ = r2 + 6mr − 6mar

b

sin2 ϕ√
cos2 ϕ+ r2

b2 sin4 ϕ
. (6.11)

Solving for the Christoffel symbols and the Ricci tensor, the Gaussian curvature is obtained to be:

K = −2M

r3
+

3Ma

u2r2
f(r, ϕ), (6.12)

where
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f(r, ϕ) = sin3 ϕ(
cos2 ϕ+ r2

b2
sin4 ϕ

)7/2

[
2 cos6 ϕ

(
5r
b sinϕ− 2

)
+ cos4 ϕ sin2 ϕ

(
9r
b sinϕ− 10r3

b3 sin3 ϕ− 2
)

+ 2r
b cos2 ϕ sin5 ϕ

(
2− r2

b2 + r2

b2 cos 2ϕ+ 4r
b sinϕ

)
+ r2

b2

(
− r

b sin
9 ϕ+ 2r3

b3 sin11 ϕ+ sin4 2ϕ
)]

. (6.13)

Hence, the deflection angle in a Kerr–Randers optical geometry is:

α̂ =
4M

u
± 4aM

u2
, (6.14)

which resembles Eq. (4.10) derived for a Kerr-MoG black hole; a is the angular momentum parameter.
Jusufi and Övgün have applied this method to a rotating global monopole spacetime in [55]. With the

defined line element and the correcsponding expressions for the metric, the Christoffel symbols and the Ricci
tensor, the Gaussian curvature is derived to be:

K = −2M

r3
+

3Ma

r2
f(r, ϕ, β), (6.15)

where

f(r, ϕ, β) = sin3 ϕ

b7
(
cos2 ϕ+ r2β2 sin4 ϕ

b2

)7/2

(
2β6r5 sin11 ϕ+ 5β4b2r3 cos2 ϕ sin7 ϕ− 10β2b2r3 cos4 ϕ sin5 ϕ

−9β2b2r3 cos2 φ sin7 ϕ− β2r3b2 sin9 ϕ+ 16β2b3r2 cos4 ϕ sin4 ϕ+ 8β2b3r2 cos2 ϕ sin6 ϕ

−2β2b4r cos4 ϕ sin3 ϕ+ 10b4r cos6 φ sinϕ+ 11b4r cos4 ϕ sin3 ϕ+ 4b4r cos2 ϕ sin5 ϕ

−4b5 cos6 ϕ− 2b5 cos4 ϕ sin2 ϕ
)
. (6.16)

Defining η as the scale of gauge-symmetry breaking that is associated with the spacetime of the global monopole,
the deflection angle is derived to be:

α̂ =
4M

b
± 4Ma

b2
+ 4π2η2 +

16πMη2

b
. (6.17)

They have also analyzed the case of a rotating Letelier spacetime [55] for which the Gaussian curvature
is calculated to be:

K = −2M

r3
+

3Ma

r2
f(r, ϕ,A) (6.18)

where, f(r, ϕ,A) is the same as f(r, ϕ, β) for β =
√
1−A giving:

α̂ =
4M

b
± 4Ma

b2
+

πA

2
+

2MA

b
. (6.19)

Analogizing this method given by Werner with [82] in which the authors have plotted Eq. (6.14) against a
rotating Teo wormhole whose deflection angle is found to be Eq. (4.11), it is obvious that although the behaviors
of the deflection angles of the Teo wormhole and the Kerr solution are very much alike, the light deflection is
stronger in the latter case.
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6.2. Deflection angle using the finite-distance corrections in stationary axisymmetric spacetime
An intriguing attempt of applying the finite-distance corrections to stationary black holes is presented

by [61]. Revisiting the definition of the tweak corresponding to finite-distance corrections:

δα̂ = O
(

J

r̃2S
,
J

r̃2R

)
, (6.20)

where J is the spin angular momentum of the lens. This is akin to the second post-Newtonian effect with
the factor of the spin parameter. Here, it is prominent that the deflection angle is independent of the impact
parameter. Otherwise, the deflection angle would be:

α̂ =
4M

u
− 4aM

u2
+

15πM2

4u2
(6.21)

at the infinite distance limit with the finite-distance corrections for a Kerr black hole. The last term of
this equation is the second-order Schwarzschild contribution to the deflection angle, without which the above
equation agrees with Eq. (6.14).

7. Calculating deflection angle using Jacobi metric approach within GBT
Contemplating on Eq. (4.9), the geodesic curvature of a nongeodesic circular (photon) orbit around the

lens causing deflection must be inspected. In order to avoid the geodesic curvature term, the authors of [83]
have used a geodesic circular orbit, and then employing the GBT to find the deflection angle.

Jacobi metric is utilized to derive the radius of the circular orbit using a geometric method for a particle
in the equatorial plane. For the line element,

ds2 = −A(r) dt2 +B(r) dr2 + C(r) dΩ2, (7.1)

then its Jacobi metric is written as:

dl2 = m2

(
1

1− v2
−A

)(
B

A
dr2 +

C

A
dϕ2

)
. (7.2)

Taking the particle velocity to be unity, the orbit equation is:

(
dr̃

dϕ

)2

=
C4r̃4

AB

(
1

u2
− A

C

)
. (7.3)

Implementing Eq. (4.1) with the facet that the circular orbit is perpendicular to the outgoing radial lines
of light rays, the deflection angle is formulated as:

α̂ =

∫∫
M

K dS +ΦRS . (7.4)

Reexamining the deflection angle in the Weyl and Bumblebee gravities as in Table (1), the Gaussian
curvatures are:

KW = −γ2

4
− (2 + 3rγ)M

r3
+

3(1 + 2rγ)M2

r4
(and) (7.5)
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KB =
M
(
1− v2

)
m2r3λ2

[
8M3

(
1− v2

)2 − r3v2
(
1 + v2

)
− 3Mr2v2

(
1− 2v2

)
− 6M2r

(
1− 3v2 + 2v4

)]
[rv2 + 2M (1− v2)]

3 , (7.6)

where γ is a metric constant and λ =
√
1 + l , for l is the Lorentz violation parameter in a static, spherically

symmetric, asymptotically nonflat spacetime with the lens at finite distance. The corresponding deflection
angles are:

α̂W =
2M

(√
1− u2r̃2R +

√
1− u2r̃2S

)
u

−Muγ

(
r̃R√

1− u2r̃2R
+

r̃S√
1− u2r̃2S

)
(and) (7.7)

α̂B = (λ− 1)
(
π − sin−1 ur̃R − sin−1 ur̃S

)
+

[(
1 + v2

)
λ− u2r̃2R

(
1 + v2λ

)√
1− u2r̃2R

+

(
1 + v2

)
λ− u2r̃2S

(
1 + v2λ

)√
1− u2r̃2S

]
M

uv2
.

(7.8)
For the source and observer at infinity, the last equation shrinks to:

α̂ = π(λ− 1) +
2λM

(
1 + v2

)
uv2

(7.9)

which is in agreement with [60] using the conventional formula:

α̂ =

∫∫
∞
R �∞

S

K dS +

∫ R

S

κg dσ +

(
1− 1

λ

)
ΦRS . (7.10)

As for the case of wormholes, [84] can be referred to find the deflection angle of light of a Janis–Newman–
Winnicour (JNW) wormhole using the Jacobi metric method:

α̂ =
4γ̃M

u
+

(
16γ̃2 − 1

)
πM2

4u2
, (7.11)

where γ̃ is the ratio of the mass related to the asymptotic scalar charge to the mass of the wormhole. The
leading term is consistent with the expressions found earlier.

Another illustration discussed in [84] is the charged Einstein–Maxwell-dilaton wormhole. The deflection
angle is derived to be:

α̂ =
3πPQ

2u2
− πΣ2

4u2
− 15πPQΣ2

16u4
+

105πP 2Q2

16u4
(7.12)

which is congruous to the results in Table (2). In both of the above examples, the velocity, v , is taken to be 1
since we are heeding to the case of light.

8. Conclusion
In this review, we have brought quite a few researches together which talk about finding deflection angle

using the Gauss–Bonnet theorem. The aim was to summarize the expressions of the deflection angle for various
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cases in an attempt to compare and contrast one another, possibly spotting a pattern. It was noticed that every
adjunct had a unique and distinct role in modifying the deflection angle for all the cases considered.

Initially, the Gauss–Bonnet theorem was examined, followed by studying the Gibbons and Werner method
to calculate the deflection angle with Eq. (3.3). These were analyzed for a few black holes in Table (1) and
wormholes in Table (2). Then, the source and the observer were taken to be at a finite distance and this
correction gave rise to an extensive equations which reduced to the established equations at infinite limits; this
was done for both black holes and wormholes as well. Next, the effect of inducing a medium of ionized plasma
was investigated: yet again, the plasmic terms manifested discretely in both black holes and wormholes such
that its contribution reduced the deflection angle to the case of vacuum when removed. Stationary black holes
were scrutinized for a Kerr black hole and with finite-distance corrections, only to beget a coalesced expression
for the deflection angle. Lastly, the Jacobi metric was perused for black holes and wormholes, which yielded
coherent results.
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