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Abstract: We have measured the current–voltage-temperature (I-V-T) characteristics of the Au/n-GaAs/In Schottky
barrier diodes (SBDs) to introduce their thermal sensitivity mechanism. The forward bias voltage variation with
temperature (thermal sensitivity) of this SBDs has been studied at different constant current levels. The diode showed
high and decisive thermal sensitivity up to a current level of 0.10 pA. The bias voltage-temperature (V-T) curves of the
SBD have showed an excellent linear behavior at all current levels. The slope dV/dT = α or the thermal sensitivity
coefficient α from the V-T curves decreased from 3.42 mV/K at 0.10 pA to 1.31 mV/K at 10 mA with increasing current
level. Furthermore, the α versus current graph of the diode has given a straight line from 0.10 pA to 10 mA whose
intercept α0 and slope dα/dI values have been obtained as 2.65 mV/K and -0.081 mV/(AK). The linearity of the
voltage vs temperature and the α vs current graphs is a very crucial key factor of a good thermal sensor in the thermal
sensitivity.
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1. Introduction
Metal-semiconductor (MS) Schottky contacts (SCs) allow the current to flow in forward biased direction

after a given specific voltage (threshold voltage) but rectify the current in the opposite reverse biased direction.
The MS Schottky barrier diodes (SBDs) have a wide application field in electronic devices and in high frequency
and microwave applications. The MS contacts are generally used as both ohmic and Schottky contact in
electronic device fabrication [1–4]. The SCs are often used in high frequency circuits, low noise amplification,
microwave and optical signal detection in circuit applications. Besides these applications, the SCs based on
different Semiconductor materials were also used as a temperature sensing element in various low and high
temperature applications. That is, a MS SC can also be used as a thermal sensing probe in temperature
measurements [1–10]. In contrast to the p-n junction and semiconductor transistors, a change in the state
of the SC immediately affects its parameters when a SBD is in direct contact with environment, namely gas,
pressure and temperature. That is, the thermal sensing devices capable of operating under low and high
temperature, high radiation, and corrosive environment provide important information about the temperature
variation at the desired locations in the applications such as automotive industries, aerospace systems, industrial
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turbines, deep-well drilling telemetric systems and cement industries [5–15]. In integrated thermal sensing units,
the cryogenic temperature sensor is used as an important device [10–15].

A number of works were made on the performance of a MS SC in temperature sensing, using the variations
of forward bias voltage drop across the SC with temperature [5–16]. Brezeanu et al. [5] have designed a
temperature probe with a 4H-SiC SC which can sense temperature having sensitivity from 1.3 mV/K to 2.8
mV/K, over a wide temperature range from 20◦C to 400◦C . Guo et al. [7] used an Al2O3 based a-IGZO
(amorphous indium-gallium-zinc-oxide) SDs as a temperature sensor, and reported that the thermal sensitivity
of the sensor was 0.81 mV/◦C , 1.37 mV/◦C and 1.59 mV/◦C at the forward bias current density levels of
10−5 A/cm2 , 10−4 A/cm2 and 10−3 A/cm2 , respectively. Moreover, the forward voltage-temperature (V-T)
measurements have been carried out thermally annealed and un-annealed W/n-GaAs SBDs by Marcano et al.
[8] in the temperature range of 140K to 363 K and in the current range of 2.5 pA to 500 pA. They [8] have
obtained the thermal-sensitivity coefficient (dV/dT) = α values of -2.31 mV/K and -2.59 mV/K, at 100 pA for
thermally annealed and un-annealed SBDs, respectively. Filonov [9] found a α value of 2 mV/oC for Pd/GaAs
structures with 0.32 mm2 SC area for I=10 mA and n 0 = (1-3)x1016 cm−3 .

Kumar et al. [10] inspected the thermal sensitivity variation trend of Ni/4H-nSiC temperature sensors
depending on the metal contact diameter, [10] measured the thermal sensitivities in the current range from 50
pA to 1 µ A and in the temperature range of 273 K to 473 K in step of 25 K. Again, in a later article, Kumar
et al. [11] introduced a study on highly sensitive and circular shaped Ni/4H-nSiC temperature sensors of area
3.140 mm2 fabricated and characterized in temperature range of 233 K to 473 K and in forward current from
10 pA to 5 nA, and reported that the highest value of absolute thermal sensitivity for the SB diode is 3.425
mV/K at 10 pA. Benedetto et al. [12] analyzed the performances of di-vanadium Pentoxide/4H polytype of
silicon carbide (V2O5 /4H-SiC) temperature sensors in the temperature and current range between 147.22 and
396.75 K and 1 µA and 1 mA, respectively. Rao et al. [13] revealed from the thermal sensing measurements of a
4H-SiC SBDs that the forward bias voltage showed a linear dependence on the temperature with the sensitivity
of 1.86 mV/K at 16 µA and 1.18 mV/K at 80 µA.

Draghici et al. [14] reported the temperature sensing element of Ni/4H-SiC SBDs with sensitivities over
2 mV/◦C and excellent linearity which allows operation at temperatures up to 400 ◦C . Their diode temperature
sensitivities were between 1.8 mV/◦C and 2.54 mV/◦C , for the current levels in the range 100 nA to 100 µA [14].
Pascu et al. [15] introduced temperature-sensing element of the annealed (750 ◦C) and non-annealed Ni/4H-SiC
SBDs over 60-700 K. The high-performance temperature sensors in dual 4H-SiC Junction BDs and SBDs were
made by Min et al. [16] over 298-573 K. Their dual JBS diodes showed the higher peak sensitivity of 4.32 mV/K
compared to the 2.85 mV/K of the SBD at a forward current ratio (ID2 /ID1 ) of 25 [16]. Li et al. [17, 18]
fabricated the NiN/GaN and Ni/GaN SBDs, and reported from their temperature-dependent I-V characteristics
that the NiN-SBDs have better thermal stability than that of the Ni-SBDs owing to the suppression of interface
reaction between Ni and GaN, and therefore, that the thermal stability of the GaN diode with NiN (nickel
nitride) anode has temperature sensing application with the sensitivity of about 1.3 mV/K. Again, in their
other work, Li et al. [19] fabricated TiN/GaN SBDs with different SC diameters to investigate the temperature
sensing mechanism over a temperature range of 25-200 ◦C , and found that the thermal sensitivity increased with
the increasing SC diameter and obtained the highest sensitivity of 1.22 mV/K for SD with 300-µm-diameter at
current level of 20 mA. In addition to works above, it has been stated by Perez et al. [20] that the biased voltage
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of a SBD at a given bias current level can be used as a thermos-sensitive parameter to perform temperature
measurements on a monolithic integration of SBDs, and that the bias voltage versus temperature plot for a bias
current of 2.5 A/cm2 had a linear variation range with a sensitivity of -1.6 mV/K in 300-440 K [20]. Moreover,
the thermal sensitivity for Ni/4H-n-SiC SBD was reported to vary from 3.11 mV/K at 1 nA to 3.32 mV/K at
5 pA by Kumar et al. [21].

We have measured the current-voltage (I-V ) characteristics of the Au/n-GaAs/In SBDs in temperature
range of 350 K down to 20 K by steps of 5 K. We have characterized the thermal sensitivity or cryogenic
temperature behavior of the Au/n-GaAs/In SBDs as a temperature sensor and have operated from low current
of 0.10 pA to 10 mA which have covered a broad thermal sensing range. From the applicability point of view,
the thermal sensitivity study of the SBDs in low current levels is very important. Thermal-sensing applications
require a strongly linear forward voltage - temperature dependence [5–15]. To the best of our knowledge, no
such a study has been reported so far regarding this kind of sensitivity variation for Au/n-GaAs/In SBDs over
a wide temperature and current range.

2. Experimental procedure
The Si doped n-type GaAs layer with 1x1016 cm−3 concentration density was grown by Molecular Beam

Epitaxy (MBE) in a VG VAOH system. Detailed information about the epitaxy growth on the n-type GaAs
substrate can be found in ref. [22]. The chemically ultrasonic cleaning procedure was applied trichloroethylene,
acetone and methanol for 5 min to n-type MBE-GaAs samples. Then, the semiconductor sample was immersed
to 5% diluted HCl for 30 sec. After this step it was washed with DI water. Indium ohmic contact was evaporated
at 8x10−7 Torr, and then the n-type MBE-GaAs/In samples were annealed at 450 oC in dry nitrogen flow for
5 min for the ohmic contact formation. Finally, Au Schottky contacts with 0.5 mm diameter were carried out in
8x10−7 Torr. The schematic cross-section of MS Schottky diode is given in Figure 1. The I-V characteristics
were measured by Keithley 6515 and 2400 current-voltage source and electrometer, respectively. Cooling of
samples was provided by closed cycle He cryostat. The sample temperature was measured by Lakeshore 330
temperature controller and stability was better than 0.02 K during each sampling.

Figure 1. Schematic cross-section of metal-semiconductor Schottky diode.

3. Result and discussion
It was reported that the maximum current sensitivity to temperature changes can be observed in the

Schottky contacts where a thermionic emission (TE) takes place [7–11]. Therefore, we should first look at
whether the current flow through the Au/n-GaAs/In SBDs obeys to TE model. The current transport expression
with voltage through a SB diode in the standard TE model is given by [2–4]

I = AA∗T 2exp

(
−eΦb (V )

kT

)[
exp

(
eV

kT

)
− 1

]
, (3.1)
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in expression above, A, A*, V and Φb(V ) terms represent, respectively, the diode area, Richardson constant
for n-type GaAs (8.16 Acm−2K−2 ), the forward bias voltage and the bias-dependent SBH, respectively. The
Φb(V ) can be obtained as follows [2–4]:

Φb (V ) = Φb (0)−
(
1− 1

n

)
V, (3.2)

β =

(
1− 1

n

)
,Φb (V ) = Φb (0)− βV, (1− β) =

1

n
(3.3)

I = AA∗T 2exp
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kT
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]
(3.4)

I = AA∗T 2exp
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]
(3.5)

where I0 and Φb0 are the saturation current and zero bias SBH, and from eqn.(3.5) I0 is given by

I0 = AA∗T 2exp

(
−Φb0

kT

)
. (3.6)

From Equation (3.6), Φb0 = Φb(0) is written as

Φb0 =
kT

q
ln

(
I0

AA∗T 2

)
(3.7)

Thus, the TE current expression can be written as

I = I0exp
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where

(1− β) =
1

n

and for qV > 3kT from Equation (3.8), ideality factor n and forward bias voltage are given by

n =
q

kT

dV

d(lnI)
(3.9)

V = n
kT

q
ln

(
I

AA∗T 2

)
+ nΦb0 (3.10)
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α =
dV

dT
=

nk

q

[
ln

(
I

AA∗T 2

)
− 2

]
. (3.11)

Figure 2 displays the temperature-induced I-V curves of one from the Au/n-GaAs/In SBDs. It can be
seen from the figure that the linear portion of the curve where TE current is dominant still occupies more than
six decades in current at 350 K, with an ideality factor of 1.026. The linear part in the I-V curves increases with
decreasing temperature from 350 K to 120 K. It can be said that the TE fitting curves obey the experimental
data quite well at high temperatures or in the high current region at low temperatures.

Figure 2. Dependence of the I-V data on measurement temperature in the Au/n-GaAs/In diode

Some researchers [5–21] reported from the experimental thermal sensitivity studies that the maximum
current sensitivity depending on temperature can be observed in the Schottky contacts where a TE takes place.
Therefore, we first looked at whether the current flow through the Au/n-GaAs Schottky contact corresponds to
TE. Furthermore, the bias voltage in the forward bias I-V characteristics depends explicitly on barrier height
and thus ideality factor. That is, the bias voltage dependent of the SBH in the intimate SBDs will also affect its
thermal sensitivity. Therefore, the dependence of the bias voltage on the temperature and current in the SBDs
are important factors in thermal sensitivity studies. A systematic study of the variation of these parameters
with temperature is required to get a relevant explanation about measured thermal sensitivity trend in the
fabricated SBD. The forward bias current flow through the diode should obey TE law and should show an ideal
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exponential type curve [22–30]. The ideality factor value ranges from 1.026 at 350 K to 1.064 at 120 K, and the
values of the ideality factor close to one are evidence that the current fits the TE model [22–35].

Figure 3. Dependence of barrier height and ideality factor characteristics on measurement temperature in the Au/n-
GaAs/In diode

The dependence of barrier height Φb0 and ideality factor n on measurement temperature was given in
Figure 3 for the Au/n-GaAs/In diode. The Φb0 taken the values of 0.815 eV, 0.824 eV and 0.458 eV at 350 K,
300 K and 40 K. It can be seen from Figure 3 that the Φb0 value decreased while n value increased from 120 K
down to 40 K. These low and high barrier height values are evidence that there exist inhomogeneities in barrier
height formation at the Au/n-GaAs lateral interface. The SBH in the MS Schottky contacts has been reported
to depend sharply on the interface atomic structure at epitaxial MS interfaces. In such cases, the current across
the MS contact is greatly influenced by the presence of the SBH inhomogeneity [35–40]. Some researchers have
considered the presence of locally non-uniform regions or patches with relatively lower or higher barriers [41–45].
Thus, they have suggested that the abnormal behaviors at low temperature can rather be adequately explained
using a barrier potential fluctuation model based on spatially inhomogeneous BHs at the MS interface. Thus,
it is reasonably assumed that the I-V characteristics are dominated by the current flow through the low-SBH
patches because the overall current across the SBD arises from low barrier height regions which are interspersed
within a uniform higher barrier height region [45–56]. That is, as the temperature is decreasing, electrons loose
thermal energy, and the current preferentially flows through areas with smaller barrier height with decreasing
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temperature due to the BH inhomogeneity [45–56].

Figure 4. Dependence of the forward biased voltage on measurement temperature in Au/n-GaAs/In diode at different
constant currents, (a) 0.10 pA to 1.0 nA, and (b) 10 nA to 10 mA

Figure 4 represents the dependence of the forward biased voltage on measurement temperature in Au/n-
GaAs/In diode, (a) 0.10 pA to 1.0 nA, and (b) 10 nA to 10 mA. The V-T curve at each current level in Figure 4
(a) and (b) given a straight line. The linearity in the thermal sensitivity plots is a key factor of a good thermal
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sensor. Paying attention to Figure 4 (a) and (b), the V-T graph at each current level continues linearly down
to approximately 120 K. The thermal sensitivity coefficient defined as the slope of V-T curve depends on the
Φb0 and n values. It can be noticed that these two parameters have a very low temperature dependence. The
situation is clearly seen from Figure 3. The Φb0 value decreased while n value increased from 120 K down to 40
K. The series resistance of the diode causes the V-T curves to deviate from the linearity at high voltages. We
can state that the series resistance restricts the linearity of the V-T characteristics for higher bias current level.
This is more evident at higher current levels in Figure 4 (b), for example, at 0.75 V for the current level of 10
mA. The thermal sensitivity coefficient values α = (dV/dT) corresponding to constant current values for the
Au/n-GaAs/In SBD are given in Table 1. The slope dV/dT = α or the thermal sensitivity coefficient α from
V-T curves increased with decreasing current level and it ranged from 3.42 mV/K at 0.10 pA to 1.31 mV/K at
10 mA. Furthermore, we have also obtained a value of α = 2.67 mV/K at the current level of 1.0 nA.

Table 1. The thermal sensitivity coefficients, α = (dV/dT ) , corresponding to constant current values in the Au/n-
GaAs/In SBD. These values have been obtained from the V-T curves in Figure 4 (a) and (b).

Current (dV/dT)(mV/K)

0.10 pA 3.42

0.50 pA 3.24

1.00 pA 3.17

5.00 pA 3.06

10.0 pA 2.99

50.0 pA 2.90

100 pA 2.84

500 pA 2.72

1.00 nA 2.67

10.0 nA 2.50

100 nA 2.31

1.00 µA 2.11

10.0 µA 1.91

100 µA 1.72

1.00 mA 1.53

10.0 mA 1.31

It has been seen that the sensitivity for SiC SBDs [5] has varied from 1.3 mV/K from 010 mA to 2.8
mV/K at 0.10 nA with the forward current in 300 K to 400 K range. Marcano et al. [8] obtained α values
of 2.31 mV/K and 2.59 mV/K, at 100 pA for thermally 750 ◦C annealed and un-annealed W/n-GaAs SBDs,
respectively, in the measurement temperature range of 140-363 K. Filonov [9] reported a thermal sensitivity
coefficient of α = 2 mV/oC at I=10 mA for Pd/GaAs structures.

The thermal sensitivity α versus forward current plot of the diode is given in Figure 5. The thermal
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Figure 5. Dependence of the thermal sensitivity α on current level in the Au/n-GaAs/In diode

sensitivity of the Au/n-GaAs/In diode as a function of forward current level is expressed theoretically by
Equation (3.11). That is, the thermal sensitivity has followed Equation (3.11) because the current across the
diode obeys the TE model down to about 120 K. The experimental data in the graph have been fitted Equation
(3.11). It has been clearly depicted that thermal sensitivities linearly have varied with logarithmic value of the
current. The intercept and slope values of the straight line in Figure 5 have been obtained as 2.65 mV/K and
-0.081 mV/(AK) for the diode, respectively.

4. Conclusion
It has been seen that the current flow through the fabricated Schottky contact obeys to TE model

with the ideality factor values ranging from 1.026 at 350 K to 1.064 at 120 K. This is an important property
in the experimental thermal sensitivity studies for the fact that the maximum current sensitivity depending
on temperature can be observed in the Schottky contacts. The forward biased voltage versus measurement
temperature curve at each current level for the Au/n-GaAs/In diode has given a straight line in the current
range of 0.10 pA to 10 mA. The linearity in the thermal sensitivity is a key factor of a good thermal sensor.
The thermal sensitivity coefficient α from V-T curves increased with decreasing current level and ranged from
3.42 mV/K at 0.10 pA to 1.31 mV/K at 10 mA. Furthermore, we have also obtained a value of α = 2.67 mV/K
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at the current level of 1.0 nA.
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