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Abstract: We examine an interesting set of recent proposals describing a ‘wormhole paradigm’ for black holes.

These proposals require that in some effective variables, semiclassical low-energy dynamics emerges at the

horizon. We prove the ‘effective small corrections theorem’ to show that such an effective horizon behavior is

not compatible with the requirement that the black hole radiate like a piece of coal as seen from outside. This

theorem thus concretizes the fact that the proposals within the wormhole paradigm require some nonlocality

linking the hole and its distant radiation. We try to illustrate various proposals for nonlocality by making

simple bit models to encode the nonlocal effects. In each case, we find either nonunitarity of evolution in the

black hole interior or a nonlocal Hamiltonian interaction between the hole and infinity; such an interaction is

not present for burning coal. We examine recent arguments about the Page curve and observe that the quantity

that is argued to follow the Page curve of a normal body is not the entanglement entropy but a different

quantity. It has been suggested that this replacement of the quantity to be computed arises from the possibility

of topology change in gravity which can generate replica wormholes. We examine the role of topology change in

quantum gravity but do not find any source of connections between different replica copies in the path integral

for the Rényi entropy. We also contrast the wormhole paradigm with the fuzzball paradigm, where the fuzzball

does radiate like a piece of coal. Just as in the case of a piece of coal, the fuzzball does not have low-energy

semiclassical dynamics at its surface at energies E ∼ T (effective dynamics at energies E � T is possible under

the conjecture of fuzzball complementarity, but these E � T modes have no relevance to the Page curve or the

information paradox).
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Hawking type computations 320

6.1 Expressing states through path integrals . . . . . . . . . . . . . . . . . . . . . . . . . . 320

6.2 The Gibbons-Hawking computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

6.3 Wormholes that represent entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . 324

282



GUO et al./Turk J Phys

6.4 Modeling the evaporation of coal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

7 Postulating nonlocalities 329

7.1 Nonlocal definition of effective variables . . . . . . . . . . . . . . . . . . . . . . . . . . 330

7.1.1 How can we differentiate such a black hole from coal? . . . . . . . . . . . . . . 331

7.1.2 The kinematics of effective bits . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

7.1.3 Using the dynamics of the bits at r < 10 rh . . . . . . . . . . . . . . . . . . . . 333

7.1.4 Using dynamics of the radiation bits at infinity . . . . . . . . . . . . . . . . . . 336

7.1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

7.2 The experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

7.3 Nonlocal effects between black hole interiors: baby universes . . . . . . . . . . . . . . . 339

7.4 Nonlocal effects between different regions near spatial infinity . . . . . . . . . . . . . . 342

7.5 Nonlocal effects between the hole and its radiation . . . . . . . . . . . . . . . . . . . . 343

7.5.1 The difficulty with invoking holography . . . . . . . . . . . . . . . . . . . . . . 343

7.5.2 Using small nonlocal interactions . . . . . . . . . . . . . . . . . . . . . . . . . . 345

7.5.3 Identifying bits between the hole and the radiation region . . . . . . . . . . . . 346

8 The requirements for a bit model of the wormhole paradigm 350

9 Discussion 351

A Some details of the fuzzball paradigm 355

A.1 How fuzzballs differ from the traditional hole . . . . . . . . . . . . . . . . . . . . . . . 355

A.2 Construction of fuzzball microstates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

A.3 Understanding the fuzzball resolution to the information paradox . . . . . . . . . . . . 357

A.4 Fuzzball complementarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

B A bit model for Hawking pair creation at the horizon 358

B.1 The divergence of trajectories at the horizon . . . . . . . . . . . . . . . . . . . . . . . . 358

B.2 The state for t < 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

B.3 Evolution for t > 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

B.4 Matching at t = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

B.5 The entangled nature of the final state . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

1. Introduction

In 1974, Hawking discovered that black holes evaporate by producing entangled pairs at the horizon

[1, 2]. The two members of the pair {b, c} are in an entangled state which can be schematically written
as

|ψ〉pair =
1√
2

(
|0〉b|0〉c + |1〉b|1〉c

)
+O(ε) . (1.1)

Here the O(ε) correction takes into account any small quantum gravity corrections not captured by

the leading order ‘quantum fields on curved space’ computation done by Hawking. This pair creation

process leads to a monotonically rising entanglement entropy Sent of the hole with its radiation over
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time. We then get a violation of quantum unitarity when the hole evaporates away; an aspect of a

problem known as the black hole information paradox. The graph of Sent with time is called the Page

curve; thus, another way of stating the problem is that the Page curve for Hawking’s computation

does not come down to zero at the end of the evaporation process.

Over the past two decades a resolution to this puzzle has emerged in string theory; this resolution

is called the fuzzball paradigm [3–12]. In string theory, we must make a black hole by taking a bound

state of the strings and branes in the theory. In each case where such a bound state has been made, it

has been found that the bound state is a ‘fuzzball’: a horizon-sized quantum object with no horizon.

If all black hole microstates are assumed to have this behavior, then the black hole is an object no

different from a planet or a star; it radiates from its surface like any normal body, not by the production

of entangled pairs. In other words, there is no analogue of (1.1). In this way, the fuzzball paradigm

resolves the information paradox (for an overview of the fuzzball paradigm, see appendix A).

Recently, there has been interest in looking for an alternative resolution of the information

paradox; we will call this attempt the ‘wormhole paradigm’. The central aspect of the wormhole

paradigm is the requirement that, in some effective variables, we do have an approximation to low-

energy semiclassical dynamics at the horizon. This low-energy effective dynamics will lead to the

creation of entangled pairs in the effective variables

|ψeff 〉pair =
1√
2

(
|0〉b,eff |0〉c,eff + |1〉b,eff |1〉c,eff

)
+O(ε) . (1.2)

This pair creation again leads to a monotonically rising entanglement of the hole with its radiation.

The problem is then argued to be resolved by nonlocal effects in the gravity theory that connect the

hole to its radiation. In a rough picture we can imagine this connection to be in the form of a wormhole

extending from the hole to each radiation quantum [13]; hence, the term ‘wormhole paradigm’ for this

class of models.

There has been quite some confusion about the wormhole paradigm. What does it assume and

what does it show? One reason for this confusion is that there are several different lines of thought that

come under the rough umbrella of the wormhole paradigm. The common feature shared by all these

approaches is that there should be an emergence of effective semiclassical behavior at the horizon, i.e.

we should get vacuum pair production in the state (1.2). In this manner, the wormhole approaches

all differ from the fuzzball paradigm, where we do not have any such pair production. However, the

arguments for why the Page curve should come down (in spite of having the pair creation (1.2)) differ

between different formulations of the wormhole paradigm. As noted above, the Page curve will be

argued to come down using some postulate involving nonlocality. This postulate, however, is not

explicit in many of the approaches. One of our main goals will be to make such nonlocality explicit.

Some confusion is also caused by the fact that there are several different aspects of these

arguments, whose roles are sometimes not sufficiently clarified:

(A1) The existence of nonlocal Hamiltonian interactions between the hole and its radiation.

(A2) The idea that the effective bits appearing in (1.2) can be made as combinations of bits in

the hole as well as bits in the radiation at infinity.

(A3) The idea that if nonlocal effects are ‘small’ then they could be somehow consistent with

the notion that physics far from the hole should be ‘normal’.
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(A4) The idea that degrees of freedom (bits) describing quanta at infinity are not independent

of the degrees of freedom in the hole.

Note that the nonlocality needed in the wormhole paradigm is not the ‘nonlocality’ of entanglement. In

ordinary quantum mechanics, two quanta with an arbitrarily large separation can be in an entangled

state. Such an entanglement is present between the hole and its radiation in Hawking’s original

computation of radiation. However, this entanglement does not create any interaction between the

hole and its radiation. This entanglement will not by itself bring the Page curve down; rather, this

entanglement is the basic cause of the information paradox.

Our goal in this article is to try to clarify the above confusions by detailing what we understand

about the various proposals. In seeking this clarity, we make simple bit models to explain what we

think the different proposals are saying. Our hope is that these models will prompt a discussion in

the field that will make precise what is assumed, what is claimed and what is proved in the different

approaches to the wormhole paradigm. It may be that proponents of the wormhole paradigm have

other models in mind; in that case it would be very useful to have these other models expressed in the

same bit model language that we use here so that the underlying ideas behind the paradigm become

clear.

Let us now summarize the various issues arising in the fuzzball and wormhole paradigms; in the

process, we will keep in mind how points (A1)–(A4) above appear in the various arguments.

1.1. Different models for radiating objects

Let us list the various kinds of radiating objects that appear in the discussion of the fuzzball and

wormhole paradigms. In what follows, the reader should assume the following: (a) the exact theory

has a unitary evolution, unless stated otherwise, (b) the bits being described are bits of the exact

theory, unless they are explicitly termed effective bits and, (c) the radiation quanta at infinity are

always the exact bits that are observed by an apparatus placed at infinity.

1.1.1. Burning coal

First consider how a normal object like a piece of coal burns away. The state of the emitted quanta

depend on the state of the coal they are emitted from, since the emitted quanta are produced by

interactions between the quanta making up the coal. However, these interactions are short ranged;

once a radiated quantum has left the vicinity of the coal, its state is no longer affected by the coal.

The Page curve for the coal at first rises and then falls back down to zero.

One might say that there could be some small long-ranged interactions between the emitted

quanta and the remaining coal. However, the point is that such interactions are not the reason that

the Page curve drops down to zero for a piece of burning coal. We could perfectly well take a model

of the coal where the interactions between the radiated quantum and the remaining coal fall to zero

outside some radius Rmax and in such a model we will still find that the Page curve comes down to

zero at the end of evaporation.

A third fact that is of relevance in view of point (A4) above is that degrees of freedom at infinity

are independent of the degrees of freedom in the coal. The ‘bits’ at infinity are made by excitation of

say, a scalar field φ(x) near infinity, while bits in the coal are made from fields in the region of the

coal. These are independent degrees of freedom. To summarize, the properties of burning coal are:
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(C1) There are no relevant interactions between the radiated quanta and the remaining coal

once these radiated quanta have left the vicinity of the coal.

(C2) The bits at infinity which describe the radiation are independent of the bits that make up

the remaining coal.

(C3) The Page curve first rises and then falls back to zero at the end of the burning process.

1.1.2. The semiclassical black hole

The semiclassical black hole radiates quanta by pulling pairs out of the vacuum. Thus, these quanta

have no information about the details of the matter which made the hole. The state of the created
pair {b, c} can be modelled as

|ψ〉pair =
1√
2

(
|0〉b|0〉c + |1〉b|1〉c

)
. (1.3)

One can imagine that there may well be small quantum gravity effects that modify the state of the

created pair by the O(ε) corrections noted in (1.1); here the correction to any pair can depend on

the matter which made the hole and the state of the quanta that fell into the hole at earlier steps of

pair creation. Some people had originally hoped that small O(ε) corrections to (1.1) would somehow

introduce suitable correlations among the radiated quanta and bring the entanglement down to zero.

However, the small corrections theorem [14] showed that this is not possible; the entanglement entropy

Sent(N) after N emissions will continue to rise as

Sent(N + 1) > Sent(N) + ln 2− 2ε . (1.4)

Thus, we need an order unity correction to the low-energy dynamics at the horizon in order to resolve

the information paradox.

To summarize, the semiclassical hole is defined as one where we study quantum fields on the

fixed geometry of the classical black hole and include the possibility of small corrections arising out

of nonperturbative quantum gravity processes. For this semiclassical hole, we have the following
properties:

(SC1) The horizon is a vacuum region to leading order. Thus, semiclassical dynamics holds to

leading order in this region. The metric can be taken as

gµν = ḡµν + hµν , (1.5)

with ḡµν being the classical black hole metric and hµν is small. For a scalar field on this

background, we will have

�φ ≈ 0 , (1.6)

around the horizon. This dynamics will give rise to the creation of entangled pairs of the

form (1.1).

(SC2) There are no relevant interactions between the radiated quanta and the remaining hole

once these radiated quanta have left the vicinity of the hole.
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(SC3) The bits at infinity which describe the radiation are independent of the bits that make

up the remaining hole.

(SC4) The Page curve will keep rising monotonically in the form (1.4).

1.1.3. Fuzzballs

A fuzzball behaves just like a piece of coal. The nontrivial step here is the demonstration that brane

bound states in string theory do not generate the geometry of the semiclassical hole; instead, they

generate extended objects that have no horizon or singularity. In [15], it was shown how the traditional

no-hair theorems are violated by specific features of string theory.

A fuzzball radiates from its surface just like a piece of coal radiates photons from its surface. For

a piece of coal, we do not have any effective pair creation of the states (1.1); similarly, for a fuzzball

we will not have any effective variables where we get (1.1). This issue is very important and will be

discussed in more detail below. Thus for a fuzzball we have the following behavior:

(F1) There are no relevant interactions between the radiated quanta and the remaining fuzzball

once these radiated quanta have left the vicinity of the fuzzball.

(F2) The bits at infinity which describe the radiation are independent of the bits that make up

the remaining fuzzball.

(F3) The Page curve first rises and then falls back to zero at the end of the burning process.

(F4) There are no effective variables in which we get (1.2).

(F5) The full structure of string theory is required to obtain ‘fuzzballs’; i.e. to obtain objects

that do not collapse to the traditional semiclassical hole. Thus a simple theory like (1+1)-

dimensional JT gravity will not have fuzzballs; in such a theory, we will just get the

traditional semiclassical hole.

1.1.4. An impossibility

The discovery that brane bound states in string theory generate fuzzballs with no horizon gives a

simple resolution to the information paradox. In the initial days of the fuzzball paradigm, some

people thought that this change to the geometry of the hole was too radical; they hoped that small

corrections to the traditional black hole could somehow encode enough correlations in the radiated

quanta to bring the Page curve down to zero. The small corrections theorem (1.4) showed that this

hope could not be realized; one needs an order unity correction to horizon dynamics, so the fuzzball

paradigm was a natural resolution to the puzzle rather than a radical one.

At this point some people felt that the following might be possible. Suppose it was true that in

the exact quantum gravity theory the microstates of the hole behaved like pieces of coal. However,

this description of the microstates would be very complicated. Suppose that there was some choice

of effective variables describing the complicated degrees of freedom of the black hole, in which an

approximation to the semiclassical dynamics emerged. In that case, getting an exact description of

the hole in terms of fuzzballs would be correct, but it may be that the effective variables would give a

simpler and more useful description of the dynamics. To make this suggestion more precise, suppose

we require the effective description to have the following properties:
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(EFF1) There are no relevant interactions in the exact theory between the radiated quanta and

the remaining hole once these radiated quanta have left the vicinity of the coal. (This

is just like (C1) for burning coal.)

(EFF2) The bits at infinity which describe the radiation are independent of the bits that make

up the remaining hole. (This is just like (C2) for burning coal.)

(EFF3) The effective degrees of freedom describing the hole are obtained (in some possibly very

complicated way) from all the degrees of freedom in the region of the hole; say in the

region r < 10 rh , where rh is the radius of the hole.1 Note that from property (EFF2),

these degrees of freedom making the effective bits are independent of the degrees of

freedom near infinity.

(EFF4) We will be quite generous in how little we demand from these effective variables:

(i) The semiclassical dynamics of the hole has to emerge only approximately with these

variables. Thus, for a scalar field the equation �φ = 0 in the vicinity of the horizon

can be relaxed to
�φeff = O(ε) , ε� 1 . (1.7)

(ii) This effective semiclassical dynamics has to only describe low-energy physics. This

low-energy physics includes modes with wavelengths rh/100 . λ . 10 rh since it

is the stretching of modes in this range which gives the Hawking pair production

that we are interested in. However, the effective dynamics does not have to work for

wavelengths down to string length or Planck length.

(iii) The evolution (1.7) will yield the creation of approximate entangled pairs (1.2) in the

region of the hole. We do not require that the above effective description describe

the creation of all the pairs emitted by the hole. We merely ask that it describes

the emission of a few pairs, after which we may have to choose a new set of effective

variables φeff (x) to continue getting an effective semiclassical dynamics around the

horizon.

Given the above conditions, one can prove the following:

(EFF5) The Page curve for the exact theory will keep rising monotonically; i.e. we cannot get

the analogue of property (C3) of burning coal.

This statement can be proved by a simple adaptation of the proof of the small corrections theorem

(1.4). In this adaptation, we will use the pair creation (1.2) for effective variables in place of the

pair creation (1.1) for semiclassical excitations around the traditional black hole geometry. The result

(EFF5) will be termed the effective small corrections theorem; we will see its derivation in Section 2.

To summarize the content of (EFF1)-(EFF5): we cannot require that the black hole behaves like

a piece of coal as seen from outside and also require that the variables in the region r < 10 rh give rise

to effective semiclassical dynamics around the horizon.

1In the rest of this paper, we will use this region r < 10 rh as describing the region up to a few horizon radii from
the center of the hole; the reader could, of course, substitute the number 10 by any other number of his choice.
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1.1.5. Wormhole model - I: Nonlocal construction of effective variables

We have seen above that in the fuzzball paradigm the black hole behaves like burning coal as seen

from outside; thus, properties (C1)–(C3) are reflected in (F1)–(F3). Furthermore, for a piece of coal,

we do not have any effective dynamics where we see pair creation at the horizon; likewise, for fuzzballs,

we have (F4) which says that there is no such effective description of pair creation. Thus, if we did

not wish to insist on getting (1.7) for low-energy modes, then fuzzballs already provide a resolution

of the information paradox.

As we have noted, the wormhole paradigm does ask for effective low-energy semiclassical dynam-

ics around the horizon and so will have the effective pair creation (1.2). As discussed in Section 1.1.4

above, this effective pair creation cannot be achieved while (i) keeping all the properties of burning

coal (C1)–(C3) and (ii) making the effective degrees of freedom only out of degrees of freedom in the

region r < 10 rh .

The wormhole paradigm tries to get around this difficulty by a variety of ways, which we will

now discuss. We start with the idea that the effective variables can be made using both the exact bits

in the region of the hole and the exact bits at infinity. We have the following postulates:

(WI-1) There are no relevant interactions between the radiated quanta and the remaining hole

once these radiated quanta have left the vicinity of the coal. Here we are talking about

the exact bits of the theory (just like (C1) for burning coal).

(WI-2) The bits at infinity which describe the radiation are independent of the bits that make

up the remaining hole. Again we are talking about the exact bits of the theory (just like

(C2) for burning coal).

(WI-3) The effective degrees of freedom describing the hole are obtained (in some possibly very

complicated way) from the exact bits in the region of the hole (r < 10 rh ), as well as the

exact bits making up the radiation R that has been emitted from the hole.

(WI-4) We ask for the same effective dynamics that was listed in (EFF4) in Section 1.1.4 above.

(WI-5) We ask that the Page curve for the exact bits making up the radiation R come down to

zero at the end of the evaporation process.

This may look like an appealing set of properties to ask for, since we have asked for the exact dynamics

to be like that of coal and have also asked for effective semiclassical dynamics around the horizon.

However, the construction (WI-3) runs into immediate difficulty with the postulate (WI-1) as follows.

Suppose we do have a set of effective bits which make the horizon region an approximation to the

semiclassical hole, say in the region r < 10 rh . Place an apparatus at r = 5 rh that sends a beam into

the hole and another at r = 5 rh that checks for a reflected beam. Since the effective variables yield

semiclassical dynamics to a first approximation, there will be very little reflected beam; the incoming

beam will fall into the hole. Now take the exact bits in the radiation R and change their state; for

example if they were spins, rotate the spins using a magnetic field applied in the radiation region near

infinity. Since the effective bits near the horizon involved the exact bits at infinity, the state of the

effective bits near the horizon will change; for example by

1√
2

(
|0〉b,eff |0〉c,eff + |1〉b,eff |1〉c,eff

)
→ 1√

2

(
|0〉b,eff |1〉c,eff + |1〉b,eff |0〉c,eff

)
. (1.8)
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However, if the state on the left-hand side of (1.8) was the local vacuum at the horizon, the state

on the right-hand side will not be the vacuum. Thus the beam will now reflect off the hole and be

observed in the detection apparatus.2 Thus, we see that manipulating the radiation bits R at infinity

in a suitable way can change the structure of the hole in the region r < 10 rh . As a consequence, we

should modify (WI-1) to read

(WI-1’) Modifying the radiation quanta at infinity will change the dynamics that is observed by

experimenters in the vicinity of the hole. This is different from the behavior of a piece

of burning coal, where manipulating the radiation quanta at infinity does not change

the observations of an experimenter examining the coal. We will investigate models of

this type in Section 7.1.

Maldacena [17] has suggested a model where manipulating the bits at infinity will lead to a modification

of the bits in the interior of the hole.3 In particular, he has conjectured that if the hole has evaporated

away completely and its contents have pinched off into a baby universe, then manipulating the radiation

bits R at infinity can extract information from this baby universe.

As we will observe in Section 8, however, manipulating the bits at infinity will also force to

a modification of the bits in the vicinity of the horizon and this latter modification will lead to the

above noted change in the results of an experimenter who seeks to scatter light off the hole. It is very

important to understand why in any situation where the interior bits can be manipulated from infinity,

the horizon region must also change under such modifications. We have the following situation:

(a) Suppose that we take a bit model where the bits beff , ceff emerging in the Hawking process

are made by using the bits at infinity as well as the bits in the region r < 10 rh . In this case,

manipulating the bits at infinity will change the observations of an experimenter outside the

hole who is trying to reflect a beam off the hole.

(b) Suppose we say that the effective bits around the horizon do not involve the bits at infinity.

Then we find that the beff , ceff are entangled with each other just as in Hawking’s original

computation. In this case, the effective small corrections theorem will tell us that the Page

curve of the exact theory will have to keep rising monotonically.

(c) Suppose we proceed as in case (b), but try to get the Page curve to come down by requiring

that the ceff quanta in the interior of the hole (i.e. in the ‘island’ region) are made as some

combinations of the bits at infinity as well as the bits in the region r < 10 rh . Such an

attempt will lead to nonunitarity of evolution in the region r < 10 rh . The reason is that we

have required approximate semiclassical evolution in the region around the horizon, and this

semiclassical evolution takes the ceff created around the horizon in (b) above and deposits

them on the island. So we do not have any freedom to choose what bits the ceff in the

island are made of; in particular, the ceff that end up on the island are maximally entangled

with the beff the escape to infinity. If we try to annihilate the ceff that are created at the

horizon so that they do not reach the island, then we get a nonunitarity of evolution in the
region r < 10 rh .

2For an explicit example of how waves reflect off a fuzzball see [16].
3We could regard this interior as the region inside of the QES, in the cases where the QES is within the horizon.
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In short, we have not been able to find a unitary bit model where, (i) the horizon exhibits an effective

semiclassical dynamics, (ii) The Page curve comes down, and (iii) an experimenter outside the hole

cannot see modifications of horizon behavior when bits at infinity are manipulated.

1.1.6. Wormhole model - II: Nonlocal Hamiltonian interactions

Some people have argued that quantum gravity can have nonlocal Hamiltonian interactions and that

it is these interactions that resolve the puzzle. One could then ask: why do we not see these nonlocal

interactions in everyday experiments? The idea of these proposals would then be that the nonlocal

effects are not large, in a sense that we explain below with the following postulates:

(WII-1) There are nonlocal interactions between the radiation R and the remaining degrees of

freedom in the region r < 10 rh . Thus, this is different from postulate (C1) for burning

coal.

(WII-2) These nonlocal effects can change, for example, the spin of any radiation quantum

at infinity through an interaction that depends on the state in the region r < 10 rh .

However, this change in the spin would be small if we look at (i) just a few radiation

quanta, and (ii) look at these quanta over timescales much shorter than the Hawking

evaporation time.

(WII-3) With these interactions, the Page curve comes down to zero by the end of the evapora-

tion process.

We will give a toy model for such nonlocal interactions in Section 7.5.2. We do not believe that such

nonlocal interactions actually arise in string theory. Here we just observe that if one does postulate

such effects, then a model along the lines of (WII-1)–(WII-3) is possible. It is important to note that

(WII-1) is different from (C1) for burning coal, so we cannot say that in such models the hole behaves

like a piece of burning coal as seen from outside.

1.1.7. Wormhole model - III: Identifying bits between the hole and infinity

Another set of arguments has taken the track of altering the condition (C2) that we had for coal.

That is, we postulate that the degrees of freedom far from the hole are not independent of degrees of

freedom in the region of the hole r < 10 rh . Thus the postulates would have the form:

(WIII-1) There are no Hamiltonian terms giving an interaction between the bits in the region

r < 10 rh and the radiation region R .

(WIII-2) The degrees of freedom at infinity are not independent of the degrees of freedom in

the region r < 10 rh . (This is different from (C2) for burning coal.)

(WIII-3) We require the horizon have the semiclassical behavior of the traditional hole, i.e.

we have the creation of entangled pairs (1.1) at the horizon. (We do not talk about

effective bits, since the identification of bits is supposed to resolve the puzzle while

maintaining semiclassical dynamics (1.5) at the horizon.)

291



GUO et al./Turk J Phys

(WIII-4) We require that the Page curve comes down to zero at the end of the evaporation
process.

However, there is an immediate issue with such a model. By (WIII-3), we create entangled pairs at

the horizon. Each of the excitations {b, c} have two states {0, 1} , so we have a 4-dimensional Hilbert

space from these excitations. The excitation b moves off to infinity, while c falls into the hole; at this

stage, we still have a 4-dimensional space of states for this pair of quanta. Now suppose we wish to

make an identification of bits, so that the bit representing b is identified with the bit representing c .

We can try this in two ways:

(i) We require that the state of the bit b become the state of the bit c . Since b and c have the

same state, the Hilbert space spanned by them is now 2-dimensional. The reduction from

4 to 2 dimensions is a nonunitary evolution of the system.

(ii) We keep all 4 states of the b, c pair but introduce a nonlocal Hamiltonian between the b, c

quanta so that the states where b, c are not identified rise in energy to a level where they

are not part of the low-energy space of excitations. With this model we find that the b

quantum at infinity does not behave like a normal quantum: it costs energy to change its

state between |0〉 and |1〉 , while a similar bit radiated by a piece of coal does not have such

an energy increase.

The above are two very crude models of what happens if we try to identify bits. One can try to

include more complicated identifications; however, the essential difficulty will remain the same: the

continuous production of new entangled pairs gives an enlargement of the Hilbert space of excitations

and if we try to bring the Page curve down by introducing identifications between bits, then we either

have nonunitarity or find that the bits at infinity behave differently from bits radiated from a piece of

coal. We will consider models of this type in Section 7.5.3.

1.1.8. The Page curve

It has been argued that one can obtain a Page curve for the black hole that comes down to zero at

the end of evaporation using general arguments of semiclassical gravity (e.g. (1+1)-dimensional JT

gravity) without knowing the details of the quantum gravity theory. We will argue that one cannot

get the Page curve in this manner. In more detail, we do the following:

(a) It has been stated that such a semiclassical argument for the Page curve is similar to the

Gibbons-Hawking computation of black hole entropy. We will see, however, that there is an

important difference. With the Gibbons-Hawking computation, we start with a Euclidean

path integral with time period β which correctly counts the states for any system with

Hamiltonian H and spectrum {Ei} , through the partition function

Z(β) = Tr
[
e−βH

]
=
∑
i

e−βEi . (1.9)

One then observes that there is a plausible classical saddle for this path integral, with

the only assumption made being that this saddle should give a good approximation to the
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integral. For the Page curve computation, we are not able to cast the the starting path

integral as a quantity that gives the entanglement for an arbitrary system. For example, in

computing the second Rényi entropy S2(A), we need to compute Tr[(ρA)2] where ρA is the

reduced density matrix of the region A . In the recent Page curve computation, one makes

a replacement of the type

Tr
[
(ρA)2

]
→

(
Tr
[
(ρA)2

]
+ C

(
Tr[ρA]

)2)
, (1.10)

for some constant C . Thus, we will be starting with a quantity that appears to be different

from the entanglement entropy that we wished to compute.

(b) It has been argued that the prescription (1.10) is justified because it takes into account

the fact that there can be topology change in gravity. We consider the role of topology

changing processes in Section 4 (using (1+1)-dimensional gravity as an example) and find

that topology change does not allow for the prescription (1.10). The second Rényi entropy

S2(A) is still given by Tr[(ρA)2] on the full Hilbert space, which now includes disconnected

line segments arising from the possibility of topology change.

(c) So what can give the prescription (1.10)? It is crucial to note that we cannot make arbitrary

‘prescriptions’ for the behavior of the effective semiclassical gravity theory and then use these

to compute quantities like entanglement entropy. Let the variables of the exact gravity

theory be denoted by gexact and of the approximate effective theory by geff . The effective

variables geff need to be some functionals of the exact variables gexact ; we write this

symbolically as

geff = F [gexact] . (1.11)

The Lagrangian of the exact theory then determines, through (1.11), the dynamics of the

effective theory

Lexact[gexact] → Leff [geff ] . (1.12)

Similarly, any quantity Qexact[gexact] which is of interest in the exact theory will map,

through (1.11), to a quantity Qeff [geff ] in the effective theory

Qexact[gexact] → Qeff [geff ] . (1.13)

Thus, any prescription like (1.10) for the semiclassical dynamics must have its origins in

the dynamics of the exact theory. To summarize, in our investigations we have not been

able to find any way that the effective theory emerging from the exact theory will give rise

to a wormhole that will connect different replica copies.

1.1.9. Investigating nonlocalities

If the effective variables describing the black hole are made from the exact variables in the region

of the black hole r < 10 rh then we have seen that the postulates (EFF1)–(EFF4) imply (EFF5);

i.e. the Page curve does not come down. So to look for what feature in the exact theory can give a

prescription like (1.10), we consider nonlocal effects. We consider three kinds of these nonlocalities:
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(i) Nonlocal effects in the exact theory that connect the interior of one hole to the interior of

another hole. The effective small correction theorem extends in a straightforward way in

this case to say that the Page curve cannot come down. We look at a model where the

interior regions of the holes disconnect to give rise to baby universes, and this correlates the

different interiors. We find that in this case the evolution in the black hole interior violates
unitarity.

(ii) Nonlocal effects in the exact theory that connect the interior of the hole to the radiation

region. In this case, we can have models like that in Section 1.1.6 where the Page curve

comes down to zero, but the hole does not look like a piece of burning coal as seen from

outside: (WII-1) differs from (C1). It is also not clear how such nonlocal interactions lead

to the prescription (1.10) used in the Euclidean path integral.

(iii) Nonlocal effects between the radiation near infinity from one hole and the radiation near

infinity from another hole. It has been argued that such effects can change the way we

measure the entanglement of the radiation R . This is because one needs to measure many

identical copies of the radiation R1, R2, . . . produced from identically prepared holes in

order to judge the state of this radiation. If these different measurements interfered with

each other, then one would have a novel effect with radiation from a black hole; i.e. we

would have an effect that is not present when we check the entanglement of radiation from

normal quantum objects. Note that since we can separate the different copies of the hole

by an arbitrary distance, this interaction between the radiation regions Ri must not fall off

with distance. We do not believe that there are such nonlocal effects in string theory; it is

also not clear how exactly such effects would lead to the prescription (1.10).

1.2. Summary

Let us return to our original issue: why has the wormhole paradigm been so confusing? One reason is

that the wormhole paradigm is not addressing the information paradox itself, but a somewhat different

question. The information paradox arises from a combination of two observations:

(i) The no-hair results suggest that all matter in a black hole rushes to the central singularity,

leaving the vacuum state around the horizon.

(ii) Hawking’s computation shows that entangled pairs are created from such a vacuum region,

leading to a monotonically rising Page curve. The small corrections theorem (1.4) makes

this difficulty precise, since no small corrections to Hawking’s computation can bring the

Page curve down.

The fuzzball paradigm resolves the paradox by showing that in string theory the no-hair theorems

are violated: all microstates that have been constructed are horizon-sized quantum fuzzballs with no

horizon or singularity. However, these constructions need the full structure of string theory; there are

no fuzzballs in (1+1)-dimensional gravity, we simply get a monotonically rising Page curve [18–21].

The recent wormhole paradigm arguments do not seek to address the information paradox as

summarized in points (i) and (ii) above. Instead, these arguments typically start with an assumption

that some hitherto unknown effects in the quantum gravity theory makes the black hole behave like a
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piece of coal as seen from outside; i.e. the Page curve comes down to zero at the end of evaporation.

The question that is then asked is: given this behavior of the Page curve, how can we recover some

approximation to semiclassical dynamics around the horizon? Note that this question is different from

the information paradox.

There is an immediate difficulty in answering the above question about semiclassical behavior

at the horizon. As noted in Section 1.1.4, one cannot get this semiclassical behavior through any

combination of the degrees of freedom in the black hole region r < 10 rh . In the fuzzball paradigm,

we note this fact and observe that there will be no low-energy semiclassical dynamics at the horizon

(property (F4) in Section 1.1.3). There is a possibility of getting some effective classical dynamics for

infalling objects with high energies E � T , where T is the temperature of the hole; this possibility

is called the conjecture of fuzzball complementarity [22, 23]. However, this conjecture has no bearing

on the discussions of the information paradox and the Page curve since these discussions only involve

the Hawking quanta which have energy E ∼ T . For such E ∼ T quanta, the fuzzball paradigm says

that there is no effective dynamics that yields (1.2).

The wormhole paradigm seeks to get the effective dynamics (1.2) through a variety of postulates

that involve nonlocal effects connecting the hole to its far away radiation. Since the question being

asked is about effective low-energy dynamics, the computations with the wormhole paradigm typically

involve simple (1+1)-dimensional theories like JT gravity, not the full structure of string theory.

However, (1+1)-dimensional gravity has been well studied and here one finds no resolution of the

information puzzle: the Page curve keeps rising monotonically. So what can we hope to learn by

using such simple theories? What one does in the wormhole paradigm is to add ‘prescriptions’ to the

behavior of the (1+1)-dimensional theory. These prescriptions can, for example, be in the form of a

modification (1.10) of how the Rényi entropy should be written in terms of path integrals. With these

new prescriptions for the low-energy dynamics, it is then argued that one has found a Page curve that

comes down to zero.

Here we come to a crucial issue. One cannot make an arbitrary prescription for low-energy

effective dynamics. Instead, these low-energy effective variables have to emerge from some map of the

form (1.11) This map then determines the low-energy effective dynamics and the rules for computing

low-energy quantities as in (1.12) and (1.13). The wormhole paradigm does not seek to give us the

map (1.11). However, in that case, how do we know that the low-energy prescriptions are correct?

We have tried to list various prescriptions that have been considered in the wormhole paradigm, and

then ask what effect in the exact theory these would emerge from. These effects in the exact theory

must take the form of nonlocal effects over long distances, since constructions of effective variables

that use only the degrees of freedom in the region of the hole r < 10 rh cannot bring the Page curve

down. We do not believe such nonlocal effects are actually present in string theory. But in the present

article we will not discuss the existence of nonlocality in string theory; we will take up this issue in

a following article. Instead, we will elaborate on the observations made in the sections above in an

effort to concretize the nonlocalities that are explicitly or implicitly part of the wormhole paradigm.

1.3. The plan of the paper

The plan of this paper is as follows:

In Section 2, we derive the ‘effective small corrections theorem’. This theorem extends the small

corrections theorem of [14] to the case where we have only approximate semiclassical behavior at the

horizon in terms of effective variables made out of all the degrees of freedom in the region of the hole.
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Thus, we do not assume that the actual spacetime around the horizon is close to the classical one.

This theorem shows that we cannot have both, (i) the black hole radiating like a piece of coal as seen

from outside (conditions (C1)–(C3) of Section (1.1.1) and (ii) some effective degrees of freedom in the

region r < 10 rh giving rise to a ‘code subspace’ where we have approximate semiclassical behavior

satisfying the weak requirements of (EFF4). This theorem thus implies that the wormhole paradigm

must have some kind of nonlocal effects as an essential ingredient in getting the Page curve to come

down.4

This is followed by Section 3, where some notation and background for black holes is recalled:

the Penrose diagram, good slices, baby universes etc.

In Sections 4–6 we examine recent suggestions that the Page curve for a black hole can be

computed by adding certain prescriptions to how we use semiclassical gravity. In these computations,

one finds the entanglement entropy by taking a suitable limit of Rényi entropies, and argues that the

resulting Page curve will come down like the Page curve of a normal body. We find that in these

computations the Rényi entropies are replaced by a new quantity that is not the Rényi entropy, so

the curve that is argued to come down is not the Page curve, in the sense of entanglement entropy.

It has sometimes been argued that the replacement of the Rényi entropies by the new quantities is

dictated by the possibility of topology change in gravity. We examine the role of topology change

in the computation of entanglement entropies via path integrals and find that, at least in the (1+1)-

dimensional quantum gravity example studied, topology change does not imply a replica wormhole

connecting different copies in the Rényi entropy computation. We note that one cannot make an

arbitrary prescription for how semiclassical geometries should behave in an effective theory, since

this effective theory must descend from the exact theory through the relations (1.11), (1.12), and

(1.13). We, therefore, argue that the recent Page curve computations differ from the Gibbons-Hawking

computation of black hole entropy in a fundamental way: while the Gibbons-Hawking computation

starts with a path integral that would yield the entropy for any physical system, the Page curve

computation modifies the starting path integral in a way that yields a quantity different from the

entanglement entropy.

We could not identify, in Section 7, any clear nonlocality postulate for the exact theory that

could yield the prescriptions used for the effective theory in the recent Page curve computations. We,

therefore, proceed by examining various kinds of nonlocalities that have been postulated and find that

the postulate that baby universes connect the interiors of different black holes leads to a nonunitarity of

evolution. Alternatively, nonlocalities that connect the hole to infinity lead to an asymptotic observer

finding different behaviors for quanta radiated from coal and from a black hole.

In Section 8, we give an explicit set of conditions that must be met by any bit model for the

wormhole paradigm. These conditions impose the requirement of an effective low-energy semiclassical

dynamics at the horizon and the requirement of a Page curve that comes down.

We then conclude in Section 9 by a summary. The appendix A contains a review of some aspects

of the fuzzball paradigm and appendix B details a bit model for the process of Hawking pair creation

for a classical black hole horizon.

In this paper, we have just tried to isolate the nonlocality postulates that are implied by the

wormhole paradigm.5 The literature of the wormhole paradigm spans a large number of papers, but

4To be precise, getting around the effective small corrections theorem requires the violation of one of its assumptions,
the least radical of which is the introduction of non-locality. Otherwise, something like non-unitarity would be required;
something that is not very appealing.

5We do not discuss approaches like that of [24] which require the exact theory to be an ensemble averaged theory;
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we have included very few references. This is because we are not seeking to analyze in detail any

particular paper in this paradigm but to instead explore the different categories of models that have

been proposed. Thus, where we do include references, they just point to the kind of model that we

are analyzing. As we already noted above, it is possible that the proponents of some wormhole models

have ideas in mind different from those we cover and it is the hope of this paper that these authors

would explain their work in the bit model language used in the present paper and thus clarify the

physics that leads to the Page curve coming down in their model.

In a follow-up paper, we plan to present a discussion of why we believe that such nonlocalities do

not exist in string theory. In particular, some confusion has been caused by suggestions that AdS/CFT

duality implies a nonlocality in gravity. However, such is not the case; the CFT and the gravity theory

are both completely local, and the nonlocality of the map between the two cannot be used to argue

for a nonlocality in gravity itself.

2. The effective small corrections theorem

The small corrections theorem, proved in [14], shows that any small corrections to semiclassical horizon

dynamics will not change Hawking’s conclusion that the Page curve monotonically rises. We are now

interested in a situation where the actual state of the hole is not necessarily close to the semiclassical

geometry; in fact this state can be a very complicated mess of the quantum gravitational degrees

of freedom in a region which for concreteness we take to be r < 10 rh . We then ask that in

some effective variables made out of these complicated degrees of freedom, we get the low-energy

semiclassical dynamics described by the conditions (EFF4) listed in Section 1.1.4. In this situation

we can immediately extend the small corrections theorem to an ‘effective small corrections theorem’;

here the term effective denotes the fact that instead of the exact bits {b, c} , we now have effective bits

{beff , ceff} .
The effective small corrections theorem provides a strong constraint which relates the exact

theory to any effective theory. In short, the result of the theorem is the following. Suppose that in the

effective theory, the dynamics of low-energy modes around the horizon is the traditional semiclassical

dynamics, then in this effective description, we will find the production of entangled pairs of the form

(1.2). Suppose further that far from the hole (say for r > 100 rh ) the physics decouples from the

physics of the hole, by which we mean: (i) the effective degrees of freedom geff describing the hole

do not involve the degrees of freedom gexact at r > 100 rh and (ii) quanta in the exact theory that

reach r > 100 rh are no longer influenced significantly by the hole. Then the entanglement entropy

Sent will keep rising monotonically in the exact theory, i.e. the Page curve of the exact theory will not

come down. We will outline the derivation of this theorem below, setting it up in the context of our

present discussion. As we proceed with this outline, we will make clear the assumptions that go into

the proof.

2.1. The proof of the effective small corrections theorem

We proceed in the following steps.

(A) The exact theory: First consider the exact theory. The black hole has a mass M as seen

from infinity; let the classical black hole for this mass have Schwarzschild radius rh . We assume

this is because we have in mind string theory as our exact theory and we believe that string theory is not an ensemble
averaged theory.
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that far from the hole the exact theory is just given by standard string theory around gently

curved space (‘normal physics’). For pedagogical convenience, let us say that this far-away region

is r > 100 rh . We assume that the degrees of freedom in this far region are independent of the

degrees of freedom in the hole, just as is the case in normal quantum field theory. In and around

Figure 1: The gravitational mess. The blue region depicts the classical black hole (within r < rh ) and the
green region depicts ‘the region of the hole’ (r < 10 rh ) where complicated quantum gravity effects may occur.
Also shown is the region far away (r > 100 rh ) where ‘normal physics’ occurs.

the black hole the classical metric has a low curvature; this may suggest that we should take the

traditional picture of the hole where the metric is given by (1.5) with ḡµν the classical black hole

metric. However, we will not limit ourselves to such a semiclassical picture, instead, allowing for

the possibility that due to some unknown quantum gravity effects, the entire region of the hole is a

complicated quantum gravitational mess; we depict this symbolically in Figure 1. For pedagogical

concreteness we let the ‘region of the hole’ be the region r < 10 rh .

(B) Requiring an effective semiclassical description: Now consider the effective theory. In the

distant region r > 100 rh , we will not define any effective theory, since we have already assumed

that the low-energy physics in the far region is just low-energy string theory in gently curved space

(‘normal physics’). So the exact theory in the far region already has the behavior we would want

for any effective theory. In the region of the hole (r < 10 rh ), the exact theory is very complicated.

We assume that from the large number of degrees of freedom describing the exact theory in this

region, a small subset can be used to describe dynamics that approximate the dynamics expected

from the semiclassical black hole. This subset is described by effective variables geff which are

some complicated functionals of the exact degrees of freedom gexact

geff = F [gexact] . (2.1)

This small subset geff is sometimes called the ‘code subspace’ which captures semiclassical

dynamics from all the complicated degrees of freedom in the region. For pedagogical concreteness,

we assume that the degrees of freedom geff describe the metric and a scalar field φ satisfying

�φ ≈ 0 . (2.2)

The approximation sign here indicates that the effective semiclassical description is only required

to be approximate; we will be more explicit about the accuracy of this approximation below. We

will be quite generous in the freedom which we allow for this effective theory. We require the

effective behavior (2.2) only for low-energy modes. Thus, for a hole with rh = 3 km, we can ask

that (2.2) need only hold for wavelengths between, say, 1 cm and 20 km, the range where we
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need to follow vacuum modes to see the emergence of particle pairs in the Hawking computation.

Furthermore, we require that the effective variables geff given by (2.1) describe the semiclassical

dynamics (2.2) only for the duration of production of a few Hawking pairs; after which, one may

need a different choice of effective variables g̃eff = F̃ [gexact] to get the semiclassical dynamics.

These are the minimum conditions that we need to describe the requirement that there be some

kind of effective semiclassical behavior. Note that the only assumption we have made in these

conditions is that the effective degrees of freedom describing the region of the hole emerge from

the exact degrees of freedom in the region of the hole; thus, in particular, they do not involve the

exact degrees of freedom in the far region r > 100 rh .

(C) Pair production in the effective description: Given (2.2), we will have the production of

entangled pairs in the effective theory (Figure 2). We lose no generality of the argument by taking

a simple form for the state of the pair

|ψeff 〉pair =
1√
2

(
|0〉b,eff |0〉c,eff + |1〉b,eff |1〉c,eff

)
+O(ε) . (2.3)

Here the O(ε) corrections encode the fact that the evolution (2.2) was only approximate; we will

specify the magnitude of these corrections more precisely below. In the region immediately around

the hole (say the region r < 2 rh ), spacetime is curved and the definition of particles is somewhat

ambiguous. Once the quantum beff gets far from the hole, the definition of particles becomes well

defined. We will use this latter fact to remove part of the ambiguity from beff in the step below

(There will be no need to remove any ambiguity in the definition of particles from ceff ).

b beffc

r=10rh

Figure 2: The left-hand figure depicts an entangled pair {c, b} in the exact theory. The right-hand side depicts
the entangled degrees in the effective theory, where the entangled pair emerges in the state |ψeff 〉pair as shown
above (also mentioned in (2.3)).

(D) The movement of beff away from the hole: The Hawking pair (2.3) is created in the vicinity

of the hole, say in the region r . 10 rh , with the degrees of freedom in beff then moving from this

region towards infinity. When these degrees of freedom reach the region r > 100 rh , they must be

described as excitations of standard string theory around gently curved space by the assumptions

in (A) above (this is depicted in Figure 3). That is, the effective degrees of freedom become some

set of degrees of freedom of the exact theory. Let these exact degrees of freedom resulting from

beff be denoted by b .

This step in the argument is very important, since it connects the effective theory to the exact

theory. If there were no such connection, then the effective theory would likely be an irrelevant
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figment of our imagination. Note that in step (A), we have assumed that the degrees of freedom

in the far region r > 100 rh are independent of the degrees of freedom in the region of the hole

r < 10 rh . Thus, the degrees of freedom making up b will be independent of the degrees of freedom

in r < 10 rh . We use this fact to partially fix the ambiguity in the definition of the quantum beff ,

which was noted in (C) above. We do this by choosing the definition of beff such that the exact

degrees of freedom giving rise to beff are independent of the exact degrees of freedom making

up ceff . This can always be done, since beff turns into the excitations of the exact theory that

reach the far region, while ceff remains in the hole. We will denote by c the exact bit that b is

entangled with.

r=10rh r=100rh

Figure 3: Movement of beff away from the hole. When these degrees of freedom reach the region r > 100 rh ,
they must be described as excitations of standard string theory around gently curved space by the assumptions
in (A). This is shown in the figure by there being no difference between the exact and effective theory for
r > 100 rh .

(E) Entanglements: We label the successive emissions from the hole by steps 1, 2, 3, . . . and denote

the quanta emitted at emission steps 1, 2, . . . , N as {b1, b2, . . . , bN} ≡ {b} (an ‘emitted’ quantum

here is one that has reached the region r > 100 rh ). Consider any subset A of the degrees of

freedom for the exact theory. We write S(A) for the entanglement entropy of the degrees of

freedom in A with the rest of the degrees of freedom of the exact theory. Then the entanglement

entropy SN of the radiation with the remaining hole in the exact theory after N emissions is

SN = S({b}) . (2.4)

We are now interested in the next step of the emission (the (N + 1)th step). It is convenient to

break this emission process into two steps: (a) the process in (C) where a pair is created in the

effective theory in the region of the hole r < 10 rh ; (b) the process in (D) where the degrees of

freedom in beff move to the far region r > 100 rh . Let us consider the entanglement entropy in

these steps.

(a) Here the pair (2.3) is created in the region of the hole r < 10 rh and it is assumed that the far

region decouples from the region of the hole. Thus, this process of pair creation must be given by a
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unitary transformation of the exact degrees of freedom in the region r < 10 rh . The entanglement

of the far region with the region of the hole cannot change in this process.6 Thus, after this

(N + 1)th step of pair creation in the region of the hole the entanglement of the exact degrees of

freedom in the far region with exact degrees of freedom in the region of the hole is still SN . The

entanglement of the newly created quanta {bN+1, cN+1} are such that the leading order part of

the state (2.3) of the effective quanta gives

S(bN+1,eff + cN+1,eff ) = 0 , S(cN+1,eff ) = ln 2 . (2.5)

The entanglement of the exact degrees of freedom corresponding to these excitations must then

satisfy

S(bN+1 + cN+1) < ε1 , S(cN+1) > ln 2− ε2 , (2.6)

for some ε1, ε2 � 1. The relation (2.6) finally specifies the magnitude of the small corrections

that we have mentioned in the above steps.7

(b) The degrees of freedom that give rise to the new radiation quantum bN+1 move out to the far

region. The value of the entanglement entropy at this emission step is then, by definition, given

by

SN+1 = S({b}+ bN+1) , (2.7)

since now bN+1 has joined the earlier quanta {b} in the outer region r > 100 rh .

(F) The inequality: We now recall the strong subadditivity relation

S(A+B) + S(B + C) ≥ S(A) + S(C) . (2.8)

Here A,B,C are three subspaces made from degrees of freedom that are independent of each

other. We set
A = {b} , B = bN+1 , C = cN+1 , (2.9)

and from (2.8), we get

S({b}+ bN+1) + S(bN+1 + cN+1) ≥ S({b}) + S(cN+1) . (2.10)

From (2.6) and (2.7), this can be written as

SN+1 > SN + ln 2− (ε1 + ε2) . (2.11)

Thus, for ε1, ε2 � 1, the entanglement entropy keeps growing monotonically with the number of

emission steps; it does not behave like the entanglement for a normal body which rises till the

halfway point of evaporation and then falls back to zero.

In brief, as a result of the steps (A)–(F), the effective small corrections theorem says the following.

Suppose that the far region decouples from the region of the hole (as is the case for the burning away

of a piece of coal), then if semiclassical dynamics (2.2) emerges in any effective description, it will

force the Page curve of the exact theory to keep rising monotonically.

6If two parts of a system are entangled, and we make a unitary action on one part, the entanglement between the
two parts does not change.

7The steps relating the corrections to the state of the pair to ε1 and ε2 are discussed in [14].
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3. Some definitions

In this section, we summarize the meaning of some terms that will be used in the discussions of later
sections.

3.1. The classical black hole

The classical Schwarzschild hole in 3+1 dimensions is given by the metric

ds2 = −
(

1− rh
r

)
dt2 +

dr2

1− rh
r

+ r2
(
dθ2 + sin2θ dφ2

)
, (3.1)

with rh = 2GM . These Schwarzschild coordinates describe only the exterior of the horizon r > rh .

To see both the outside and inside of the horizon in a common coordinate patch, we can use the

Eddington-Finkelstein coordinate

u = t+ r∗ = t+ r + rh log
( r
rh
− 1
)
, (3.2)

in which the metric (3.1) becomes

ds2 = −
(

1− rh
r

)
du2 + 2dudr + r2

(
dθ2 + sin2θ dφ2

)
. (3.3)

We can start from flat space and form the black hole by sending in a shell of energy M composed of

radially infalling massless particles. The Penrose diagram for the corresponding classical hole is given

in Figure 4. If we just analytically continue the metric (3.1) as far as it can be continued, we find the

eternal hole whose Penrose diagram is depicted in Figure 4. This ‘eternal’ hole has a singularity in

the past (bottom) quadrant and a second asymptotic infinity in the left quadrant. Thus the eternal

hole does not correspond to a physical situation that we can create in the lab.

ho
ri
zo
nhorizon

singularity

singularity

Figure 4: The Penrose diagrams for a classical black hole forming from an infalling null shell and for an eternal
black hole. The blue dotted line represents the classical horizon. Each asymptotic region of the eternal black
hole sees a future and past horizon.
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3.2. The semiclassical black hole

We can study the process of black hole formation and evaporation using ‘good slices’; i.e. slices that

are smooth and pass only through regions where the curvature is low (i.e. the Ricci scalar R � l−2
p ).

This is important because if we were forced to have slices that passed through a singularity, then we

could not be sure of how quantum fields evolve past this singularity. The good slices in Eddington-

Finkelstein coordinates are depicted in Figure 5.

horizonsingularity

t=constant

r=
co
n
st
a
n
t

Figure 5: Good slices of a classical black hole. Asymptotically these are constant-time slices, while inside the
horizon time and space switch roles, so they become constant-r slices. These segments are then linked smoothly.
The good slices do not pass close to the singularity.

Outside the horizon r = rh = 2GM a spacelike slice can be taken as t = t̄ for some constant

t̄ . Inside the horizon space and time interchange roles and a spacelike slice can be taken as r = r̄ for

some constant r̄ . As a concrete example, we may take r̄ = rh
2 = GM , so that this part of the slice is

neither near the horizon nor near the singularity. The inside and outside parts of this spacelike slice

can be joined by a smooth ‘connector’ segment. To move to a later slice, we can advance the t = t̄

part of the slice to t = t̄ + ∆t̄ . We keep the shape of the connector part the same. We then join up

with the r = r̄ part of the slice by making this part longer. This shows the stretching of hypersurfaces

that leads to the creation of particle pairs in the region around the horizon (see appendix B for a bit

model description of this. Each time we advance the slice by ∆t̄ ∼ rh , we create ∼ 1 particle pairs

whose entangled state can be schematically represented by (1.1).

The essential feature of a classical black hole is the existence of a horizon. It is this horizon that
allows a constant r segment r = r̄ to be spacelike rather than timelike. There are two aspects of this

segment that are important. Firstly, the part of the slice given by r = r̄ can be made arbitrarily long,

while still staying within the black hole radius rh . Secondly, excitations on this part can have either

sign of the energy E , as measured from infinity. Given the above two aspects of the r = r̄ segment of
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the slice, we can make states inside the black hole as follows. We place nquanta quanta of wavelength

λ ∼ rh along this segment, each having a spin that can be ↑ or ↓ . Let the proper distance between

quanta be ∼ rh . Furthermore, let alternating quanta have energies that are of opposite signs (i.e.

E,−E,E,−E, . . . ). By choosing different values for the spins, the number of states (Nstates ) on this

segment is given by

Nstates = 2nquanta . (3.4)

By choosing the r = r̄ part of the slice to be sufficiently long, we can place an arbitrarily large number

of such quanta and thus get an arbitrarily large value for Nstates . Thus, the entropy

S ≡ logNstates , (3.5)

can be made arbitrarily large and in particular we can make

S > Sbek , (3.6)

where Sbek = A
4G , where A is the area of the black hole horizon. This is called the ‘bags of gold’

problem or the problem of ‘unbounded entropy’: we can store an entropy in the hole which is arbitrarily

larger than the Bekenstein entropy Sbek .

The bags of gold problem is closely related to the Hawking puzzle. The evaporation of the

hole generates negative energy quanta on the r = r̄ part of the slice, of the kind used in the above

construction of states. If we keep feeding the black hole with quanta of wavelength λ ∼ rh , then these

quanta end up on our r = r̄ slice as the positive energy quanta used in the above construction. The

entanglement entropy Sent of the black hole with its radiation can be made arbitrarily large and in

particular we can have

Sent > Sbek . (3.7)

3.3. Some definitions

If we include the backreaction of the negative energy quanta that fall inside the hole, then the mass

M of the hole slowly decreases, and we reach the endpoint of evaporation as M → 0. One possibility

at this stage is that the hole evaporates away completely as far as the usual part of spacetime r ≥ 0

is concerned; i.e. the location r = 0 returns to being a normal part of spacetime with the vacuum

state in its vicinity. However, before the endpoint of evaporation, the interior of the hole contained

the matter which made the hole as well as the negative energy quanta which fell into the hole in the

evaporation process. We can imagine that this interior region pinches off into a ‘baby universe’ that is

disconnected from the usual r ≥ 0 part of spacetime. This situation is depicted in Figure 6. In some

situations, we will call some part of a spacelike slice an ‘island’. With the good slices we have chosen,

this island will be, roughly speaking, the r = r̄ segment of the spacelike slice. The exact location

of the upper endpoint of this island will be determined by an optimization process, but this exact

location will not be of importance for the physical argument. The relevant aspect of the island will

be that it contains the negative energy members of the Hawking pairs (except perhaps for the final

few, depending on where the exact upper endpoint of the island is).
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Figure 6: The disconnected baby universe. Before the endpoint of evaporation, the black hole interior contains
the matter which made the hole, as well as the negative energy Hawking quanta from the evaporation process.
One may imagine that this interior region pinches off into a ‘baby universe’ that is disconnected from the rest
of the spacetime.

3.4. The Euclidean hole

The analytic continuation t → −iτ converts the Schwarzschild metric (3.1) to the metric of the

Euclidean hole

ds2 =
(

1− rh
r

)
dτ2 +

dr2

1− rh
r

+ r2
(
dθ2 + sin2θ dφ2

)
. (3.8)

The radial coordinate ranges over rh ≤ r < ∞ and the ‘Euclidean time’ direction τ is taken to be

compact, with 0 ≤ τ < 4πrh ; this period corresponds to the inverse temperature of the hole

T−1 ≡ β = 4πrh = 8πGM . (3.9)

The r, τ directions form a cigar whose tip lies at r = rh ; the metric is smooth at this tip with the

chosen periodicity of τ . Note that the Euclidean hole has no horizon or any region interior to a

horizon. There is no place where quanta can have negative energy as seen from infinity, and there

is no analogue of pair creation. Thus, the Euclidean metric (3.8) does not exhibit the ‘bags of gold’

problem or the problem of growing entanglement entropy (Sent ). The metric (3.8) can, however, be

thought of as a saddle point for some path integral in the gravity theory.

3.5. (1+1)-dimensional gravity

Arguments in the wormhole paradigm have often been made with the help of two dimensional gravity

theories. In two dimensions, the Einstein action is topological. For Euclidean signature, we have

1

2π

(∫
d2x
√
g R+ 2

∫
∂
dy
√
h K

)
= χ , (3.10)
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where R is the 2-d bulk curvature, K is the extrinsic curvature at boundaries and χ is the Euler

number. Varying such an action does not determine the metric. We can get an action which does

have stationary points by including a scalar field X ; we can also write this field as

X = e−2Φ , (3.11)

where Φ is the dilaton. The most general form of the action is then

S = C

∫
d2x
√
−g

(
1

2
RX − 1

2
U(X)(∇X)2 + V (X)

)
. (3.12)

In terms of Φ, this has the form

S =
1

2
C

∫
d2x
√
−g e−2Φ

(
R− Ũ(Φ)(∇Φ)2 + 2Ṽ (Φ)

)
. (3.13)

Two-dimensional theories of this form can be obtained by dimensionally reducing a D > 2 dimensional

Einstein gravity theory on the angular sphere; in that case X ∼ rD−2 .

In the CGHS model [18], Hawking radiation was computed with a particular choice of the two-

dimensional theory. They considered the action suggested by the worldsheet action in string theory,

and coupled this to Nf free scalar fields fi , giving

SCGHS =
1

2π

∫
d2x
√
−g

(
e−2Φ

(
R+ 4(∇Φ)2 + 4λ2

)
− 1

2

∑
i

(∇fi)2

)
. (3.14)

Hawking radiation was computed for the scalar fields fi and the Page curve was found to be mono-

tonically rising, just as in Hawking’s original computation. The important difference from Hawking’s

computation is the following. In the CGHS model, the gravity theory is fully quantum; we do not

make the assumption that the matter fields travel on a fixed curved space. The reason that we any-

way find a definite gravity background {g,Φ} is that in two dimensions the gravity theory has no

propagating degrees of freedom, so the path integral over gravity variables can be gauge fixed to a

particular configuration of g and Φ. Thus, the CGHS model tells us that treating gravity quantum

mechanically in 1+1 dimensions does not change Hawking’s conclusion that the Page curve will keep

monotonically rising as the evaporation proceeds. In the CGHS model we do not take into account

the backreaction created by the negative energy quanta falling into the hole.

In the RST model [19] the action (3.14) was slightly modified to a form where the backreaction

could be easily computed. The hole can then be seen to evaporate away as the radiation proceeds.

The Page curve again keeps rising till the endpoint of evaporation. The entanglement entropy of this

radiation was computed as a function of time in [20, 21].

From these computations in (1+1)-dimensional theories, one can see that the monotonically

rising nature of the Page curve should not depend on precisely which action of the type (3.12) we

take. One theory which has been considered in recent computations is Jackiw-Teitelboim gravity (JT

gravity). The action of JT gravity plus a matter CFT is

S0

4π

(∫
d2x
√
−g R+ 2

∫
∂
dy
√
hK +

1

4π

∫
d2x
√
−g X(R+ 2) +

1

2π

∫
∂
dy
√
hXbK

)
+ SCFT . (3.15)
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Here the first two terms are the topological terms (3.10); they have been included since one may need

to sum over different topologies in some Euclidean computations. The term SCFT denotes matter

fields that we add to the gravity action; we take these matter fields to define a conformal field theory

(CFT). A particular example of this CFT could be one given by a set of free scalar fields.

Note that all these two dimensional theories are ‘incomplete’ theories of gravity in the following

sense. Black holes in these theories have a Bekenstein entropy Sbek > 0 given in terms of the value of

the field X (or equivalently Φ) at the horizon. However, the theories do not have the necessary degrees

of freedom to manifest exp[Sbek] orthogonal quantum states to account for this entropy. String theory,

on the other hand, is a ‘complete’ theory, since we expect that there are in fact exp[Sbek] states to

account for the entropy. Consider, for example, the black hole in 4+1 noncompact dimensions studied

in [25]. The Bekenstein entropy is reproduced by counting the number of states of branes carrying the

given mass and charges. Note, however, that these states differ from each other in the configurations

of branes in the 5 compact directions. If we dimensionally reduce on these compact directions, then we

cannot manifest the states required to account for the entropy. Similarly, fuzzball microstates differ

from each other in the way the compact directions fiber over the noncompact directions. If we consider

the dimensionally reduced theory, then there will be no fuzzballs; there will be a unique state for the

black hole as indicated by the no-hair theorems.

4. The Page curve - I: What topology change can and cannot do

It has been argued that using a simple theory of gravity like JT gravity, one can deduce that the Page

curve of a black hole must come down like the Page curve of a normal body. But how can this be,

when we have already noted in the above section that the Page curve in simple (1+1)-dimensional

theories of gravity keeps rising montonically? As we will see below, the important step in the recent

computations will be that a new ‘prescription’ will be added to the (1+1)-dimensional theory. This

prescription will, in turn, be equivalent to requiring a certain nonlocality in the exact theory. Our

task is to clarify this nonlocality requirement.

Our discussion of the Page curve will span three sections, so we start by summarizing the points

that we will make in these three sections:

(1) It has been argued that the recent Page curve computations are similar to the Gibbons-

Hawking computation of entropy in the following sense. In the Gibbons-Hawking com-

putation, a semiclassical computation is able to reproduce the entropy, while the actual

significance of this entropy as a count of states will only emerge when we know the exact

quantum gravitational structure of the hole. However, we will argue that the recent semi-

classical Page curve computations are not similar to the Gibbons-Hawking computation in

this way. In the Gibbons-Hawking computation we start with a path integral of the exact

quantum gravity theory that should yield the entropy; this path integral is then argued to

have a semiclassical saddle point which we use. However, in the Page curve computations,

we start with a quantity that is not the entanglement entropy that we wanted to compute.

Instead, we modify the path integral for the Rényi entropies by a ‘prescription’. It is this

prescription that contains the nonlocal effects that the wormhole paradigm must invoke in

order to avoid a monotonically rising Page curve.

(2) It has been argued that the prescription arises automatically when we take into account the
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fact that in gravity, one can have topology change. We will argue that such is not the case.

We will see explicitly how topology change affects the structure of the Hilbert space and

the definition of the inner product. We will then note that these effects of topology change

do not generate a link between different replica copies, either in the Euclidean setting or

in the Lorentzian setting.

(3) In the wormhole paradigm, one seeks to nevertheless introduce such links between copies,

arguing that they are a feature of the semiclassical Gibbons-Hawking type of path integral

that emerges as an approximation of the exact theory. However, here we must remem-

ber that the exact variables are related to the effective semiclassical variables through the

relation geff = F [gexact] (eq.(1.11)), which then forces the behavior of all other effective

quantities through (1.12) and (1.13). Thus, we cannot postulate that the effective semi-

classical theory will have links between copies if there is no corresponding dynamics in the

exact theory that corresponds to the prescription of introducing these links. We will not

be able to identify any clear postulate in the exact theory which can give the replica worm-

hole prescription in the effective theory. In a later section, we will look at some models

of nonlocality that have been proposed in the exact theory. We will see that for models

where the nonlocalities stay within the black hole interiors, there is a loss of unitarity,

while with models that have nonlocalities involving also the region far from the hole, there

is a violation of normal low-energy physics far from the hole.

In the remainder of this section we will make a first pass at the role of different topologies in Lorentzian

and in Euclidean signature.

4.1. Topology change in (1+1)-dimensional gravity: the Lorentzian theory

It is sometimes said that the new ‘prescription’ in the (1+1)-dimensional theory just takes into account

the fact that we must allow topology change in a gravity theory. We will see that such is not the case.

It is true that in the CGHS or RST computations the topology of the (1+1)-dimensional spacetime

was taken to be the trivial one, similar to the topology that Hawking assumed in his (3+1)-dimensional

computation. However, we will also see that allowing topology change in the black hole region will

not change Hawking’s conclusion that the Page curve keeps monotonically rising. The reason for this

is that the effective small corrections theorem does not care about which topologies contribute to the

dynamics of the black hole interior.

One might argue that since we do not really know how quantum gravity behaves, it is possible

that there are new rules for amplitudes in quantum gravity, which need not hold in non-gravitational

quantum theories. However, actually we do know a lot about quantizing gravity, especially in the

(1+1)-dimensional case. The string worldsheet theory is a (1+1)-dimensional quantum gravity theory,

since we need to sum over both the quantum fields Xµ(τ, σ) on the worldsheet as well as the metric

gab(τ, σ) on the worldsheet. The worldsheet theories with central charge c < 1 yield quantum gravity

theories that have been solved in multiple ways: through dynamical triangulations [26, 27], in light

cone gauge (KPZ) [28] and in conformal gauge (DDK) [29, 30]. All these ways of studying 2-d quantum

gravity include the possibility of topology change. Let us, therefore, review from first principles what

topology change means in 1+1 dimensions and what constraints we have from unitarity on such a

theory. In this way, we will understand what aspects of the dynamics we can change and what we
cannot.
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Let us start with a very simple model; this model will have all the features that we wish to

highlight. In 1+1 dimensions, the spatial sections are 1-dimensional; thus, we first consider a single

line segment. Let this segment have N lattice points along it and on each lattice point we have a

single bit whose value can be 0 or 1. Thus there are 2N states on this segment; we label these states
as

|ψ(N)
i 〉 , i = 1, . . . , 2N . (4.1)

We can assume that the spacing between lattice points is the Planck length.

Now suppose this line segment described a (1+1)-dimensional cosmology at some fixed time.

The cosmology can expand, so that at some later time we have a longer line segment. Since we have

kept the spacing between lattice sites as the Planck length, we will have N ′ > N lattice sites on this

new segment and thus a larger number of states allowed for the quantum bits on the segment. At first,

this looks confusing, since the dimension of the Hilbert space should not change during time evolution.

But the answer is simple. Since this is a theory of quantum gravity, the spacelike slice is described

not only by the quantum fields on it, but also by the metric on it. Our Hilbert space consists of the

union of the Hilbert spaces for segments of all different lengths N ≥ 0, with 2N states |ψ(N)
i 〉 on each

such segment. The evolution can then take us from one quantum state on a segment of one length N

to some quantum state of a segment of a different length N ′ . The transition Hamiltonian H must

satisfy

〈ψ(N ′)
j |H|ψ(N)

i 〉 =
(
〈ψNi |H|ψ

(N ′)
j 〉

)∗
. (4.2)

That is, the amplitude for any given transition must be the complex conjugate of the amplitude of the

reverse transition. So, even though the metric on the segment can change, we still have a well-defined

notion of unitarity.

This setup is sufficient to understand the quantum gravitational setting of (1+1)-dimensional

models like the CGHS model or the RST model, where spacetime could stretch but not change

topology. Now suppose we do wish to allow topology change. What should we do? In our (1+1)-

dimensional situation the answer is simple: all we can do is to allow the possibility that a line segment

can break into two segments or two such segments can join to form one. A basis of our Hilbert

space now consists of the following configurations. Each configuration has some number k ≥ 0 of line

segments with the ith segment having length Ni and 2Ni possible states of the quantum bits on the

segment. Note that if two segments in a configuration have the same length and the same configuration

of quantum bits, then they are indistinguishable, i.e. they are like two bosons of the same species.

This aspect will be important when we talk about baby universes later. The Hamiltonian then

gives transition amplitudes between these basis states, which can be nonzero between states having a

different number of line segments. The amplitudes must still satisfy the analogue of (4.2)

〈{ψ(N ′)
j }|H|{ψ(N)

i }〉 =
(
〈{ψ(N)

i }|H|{ψ(N ′)
j }〉

)∗
, (4.3)

where we have used the symbol {ψ(N)
i } to denote a collection of line segments. We have not specified

what the transition amplitudes are and choosing different values for these amplitudes will define

different (1+1)-dimensional quantum gravity theories. With our choice of matter field (a single bit

per lattice site) there are no other freedoms in defining the overall structure of the theory. In particular,

we must satisfy (4.3) if we wish to preserve unitarity. This is important to note since we will find
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that in some of the recent models of black hole evaporation using baby universes, the evolution chosen

turns out to be not unitary.

We have gone through these simple points in detail since there has been much confusion about

what postulates we can or cannot add to a quantum gravity theory like JT gravity. The above

discussion was in the Lorentzian theory, where the black hole problem is actually defined. We will now

turn to the Euclidean theory, which has also been used to make indirect computations of entanglement

entropy. Again, our goal will be to understand the significance of different postulates that we may or

may not add to a theory like JT gravity.

4.2. The small corrections theorem and topology change

Having seen the nature of topology change in gravity, we remark here on the fact that the possibility

of topology change in the black hole interior has no effect on the derivation of the effective small

corrections theorem. To see this, consider the (1+1)-dimensional case in which we studied topology

change in Section 4.1 above. Topology change could lead to a 1-dimensional spatial segment to break

into two segments, or two such segments could join to form one. There are two possibilities to consider:

(a) Suppose this breaking of segments happens at the horizon and in such a way that it in-

validates the effective semiclassical dynamics at the horizon. Furthermore, this breaking

happens often enough that this effective semiclassical description is invalidated for a signif-

icant fraction of emitted quanta (i.e. for a fraction that is order unity). In that case, the

central assumption of the wormhole paradigm is invalidated, since we do not have semi-

classical dynamics at the horizon in some effective variables. So we will not consider this

possibility further.

(b) Suppose the line segment breaks in two very occasionally, so that such a break typically

happens when the segment becomes very long. As a example, we may say that such a break

happens when the segment holds ∼ Sbek negative energy quanta {c} . However, we see that

such a process of breaking segments has no effect on the effective small corrections theorem,

since its derivation does not need to know what happens to the c quanta that fall into the

hole, only that the evolution of the black hole region is unitary.

4.3. Using Euclidean path integrals for (1+1)-dimensional gravity

The physical gravity theory is the Lorentzian one; however, its Euclidean continuation can be a useful

tool to compute certain quantities; for instance, the Gibbons-Hawking computation of Sbek . We will

now consider another use of the Euclidean path integral: as a means of generating entangled states

between two disconnected regions. We will then make the observation that this kind of Euclidean

path integral does not imply that there is an interaction between the two disconnected spaces. If we

do argue for such an interaction, then this interaction would be a new postulate; i.e. not something

that follows from a Euclidean path integral in the gravity theory. This issue will be relevant in our

understanding of how JT gravity has been used in the recent computations of the Page curve.

In the previous subsection, we took our line segments to be open. We can equally well consider

closed loops; let us do that here since then the corresponding Euclidean manifolds will be simpler

in that they will not have a boundary. Consider the space made of two disconnected circles; let the

spatial coordinate on these circles be σ1 and σ2 , respectively. On each circle let there be a free

310



GUO et al./Turk J Phys

scalar field X . There is no interaction Hamiltonian connecting these two circles, but the overall state

|Ψ〉 of the system can have entanglement between the two circles, as in the case of the generically

nonfactorizable state

|Ψ〉 =
∑
n

cn|ψ1,n〉|ψ2,n〉 , (4.4)

where |ψ1,n〉 and |ψ2,n〉 are states on the circles 1 and 2, respectively. Despite there being no

interaction between the two circles, we may introduce an interaction as an artificial technique to

generate the entangled state. Thus, consider the scalar field on the Euclidean cylinder of length τ ;

the two ends of this cylinder are the two circles 1 and 2 that we had started with. The path integral

over X on this cylinder generates the entangled state on the two circles

|Ψ〉thermal =
∑
n

e−τEn |E1,n〉|E2,n〉 , (4.5)

where |E1,n〉 and |E2,n〉 are states of energy En on circles 1 and 2. While this generates a particular

entangled state, more general entangled states of the form (4.4) can be made by including higher genus

surfaces in place of the cylinder and/or adding operator insertions Ô on this Euclidean cylinder; such

possibilities are depicted in Figure 7(b).

The important point to note is that the Euclidean manifold generating the entangled state in

the above way is an artificial construction whose sole purpose is to obtain the entangled state; this

manifold joining the two circles does not imply that there is an interaction Hamiltonian between the

two circles. Nevertheless, we will now modify the dynamics by adding a ‘prescription’ using the above

kinds of Euclidean surfaces linking the two circles to generate an interaction between the two circles.

Suppose we construct the state (4.5) using a path integral on the Euclidean cylinder as described

above. We can now evolve the state on each circle in Lorentzian time, using the Hamiltonian of the

free fields on the respective circles. There is, of course, no interaction between the two circles in this

evolution.

Now suppose we want to introduce an interaction between the circles. We wish to introduce a

cylinder that stretches from one circle to the other; one may call this a ‘wormhole’. We cannot do this

while staying in Lorentzian signature, since it is not possible to put a continuous light cone structure

on a geometry of the kind in Figure 7(a) where the wormhole is a horizontal cylinder connecting the

two circles 1, 2. Thus we assume that the prescription for the new interaction is as follows: (i) the

Lorentzian evolution changes to Euclidean on each circle, (ii) the Euclidean wormhole joins these two

Euclidean sections as in Figure. 7(a), and (iii) we return to Lorentzian evolution on the two circles. If

we wish to compute a complete amplitude, we can take the inner product with the state (4.5) again;

the geometry giving this full amplitude is depicted in Figure 7(a).

We have now added a prescription that gives an interaction between the field theories on the

two circles 1, 2. Let us see what the nature of this interaction is. In the physical problem of the black

hole, one circle (say circle 1) will correspond to the space inside a black hole, while the other circle

(circle 2) will describe the degrees of freedom far from the hole. Since these two regions are far from

each other, we should think of the wormhole connecting them as ‘long’.

The wormhole interaction can instead be written as an operator that acts on two Hilbert spaces:

one on the worldsheet of the theory on circle 1 and one that acts of the worldsheet of the theory on

circle 2, as in Figure 7. We take local coordinate patches z1, z2 on the two worldsheets and let Ôhi
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Figure 7: The bottom and top of figure (a) depicts the generation of the states |Ψ〉 and 〈Ψ| , respectively, on
the union of two circles by Euclidean evolution (E). Under Lorentzian time evolution (L), these states of their
respective circles evolve independently; there is no interaction. An interaction, shown by a horizontal Euclidean
evolution, can equally be written as operator insertions; one per circle, as in (b).

be a basis of operators in each patch. Then we can write the effect of the wormhole interaction as an

effective operator

Ŵ = |0〉1 2〈0|+
∑
i

e−β
′hi |Ôhi〉1 2〈Ôhi | + Hermitian conjugate , (4.6)

where β′ governs the length of the wormhole and we have separated the identity term and the

contributions of higher dimension operators (see Figure 8). The identity term gives no interaction

between the two circles. In the limit of a long wormhole, only operators Ôhi with low dimensions hi

contribute significantly. An example of such a low dimension operator is Ô = ∂X , for which the effect

of the wormhole becomes

Ŵ → e−β
′
∂X(z1)∂X(z2) . (4.7)

× ×

(a) (b)

Figure 8: Two equivalent pictures where a wormhole linking two points z1, z2 on the plane can be thought of
as operators inserted at these two points in the computation of, for instance, correlation functions.
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Let us look at the effect of this interaction on any of the components making up the state (4.5). The

state |E1,n〉 contains excitations of the form

â†1,k1 · · · â
†
1,kp
|0〉1 , (4.8)

where the â†1,ki are creation operators on circle 1 and |0〉1 is the vacuum state on this circle. We

have a similar structure for the state |E2,n〉 on circle 2. In the operator (4.7), we can expand each

∂X in creation and annihilation operators on the respective circles and by doing so we see that its

action on (4.5) yields terms of the following kind. One of the oscillator excitations â†1,k in (4.8) is

annihilated by ∂X(z1), and an oscillator excitation â†2,k′ is created on circle 2. Thus, we can say

that a particle vanishes from circle 1 and another particle appears on circle 2. This is the nonlocal

transport of quanta that results from the prescription that we have added to the theory of free scalar

fields on circles 1 and 2.

4.4. Summary

Let us summarize what we have seen in this section. Firstly, considering the Lorentzian theory.

Whilst it is true that there can be topology change in gravity, if we take a (1+1)-dimensional theory

for instance then the role of this topology change is well understood: all that can happen is that the

spacelike slice – which is a 1-dimensional manifold – can split into two segments, or two such segments

can join to form one. The rules for this splitting and joining should ensure that the the evolution is

unitary. We understand these rules in many formalisms where (1+1)-dimensional gravity has been

studied and do not have the freedom to add arbitrary rules to the quantum gravity theory on the

grounds that we do not know what role topology change should play.

Now consider Euclidean computations. Here we have to be careful about a new issue: there is

a ‘technical tool’ that we can use to generate an entangled state between two noninteracting regions.

This tool is a path integral over a cylinder that connects two noninteracting circles. We must be careful

to not confuse this technical tool with a real interaction between the two noninteracting circles. If

we nevertheless postulate such Euclidean cylinders between two circles imply actual interactions in

the theory, then roughly speaking such interactions are of the form where we take a quantum from

one circle and place it on the other circle (eq.(4.8)); one could call this a wormhole-type interaction

between otherwise noninteracting regions.

5. The Page curve - II: The prescription of replacing Rényi entropies by new quantities

In Section 5.1 we review the definition of entanglement entropy and then how Rényi entropies are

given by appropriate traces when the entanglement is between one part of a spacelike slice and its

complement in Section 5.2. In Section 5.3, we see how a ‘prescription’ is used in the wormhole paradigm

to replace the Rényi entropy by a new quantity.8 In Section 5.4, we recall our discussion of section 4

about what topology change can do, and we note that the above prescription does not follow from

considerations of topology change.

8For other critiques on path integral justifications of the island formula, see [31, 32].
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5.1. Entanglement entropies: review of notation

Consider a quantum system in a pure state |Ψ〉 . Suppose there is some way to separate the degrees

of freedom of this system into two sets, which we call subsystem A and subsystem B . The Hilbert

space H is assumed then to decompose as

H = HA ⊗HB . (5.1)

If |ψi〉 and |χj〉 are orthonormal bases of states on subsystems A and B respectively, then we can

write the full pure state on H as

|Ψ〉 =
∑
i,j

Cij |ψi〉|χj〉 ,
∑
i,j

|Cij |2 = 1 . (5.2)

The inner product of the full system A ∪ B factorizes into inner products on the subsystems. For

instance, using the product states |Ψ1〉 = |ψ1〉|χ1〉 and |Ψ2〉 = |ψ2〉|χ2〉 we get

〈Ψ1|Ψ2〉 = 〈ψ1|ψ2〉〈χ1|χ2〉 . (5.3)

For more general |Ψ1〉 and |Ψ2〉 the inner product is obtained from the above relation using linearity.

Consider the state |Ψ〉 in (5.2) and suppose we wish to trace out subsystem B to get a density

matrix ρA describing system A (a reduced density matrix). We first write the bra corresponding to

the ket |Ψ〉
〈Ψ| =

∑
i′,j′

C∗i′,j′〈ψi′ |〈χj′ | , (5.4)

and then obtain the density matrix of the full system as

|Ψ〉〈Ψ| =

(∑
i,j

Cij |ψi〉|χj〉

)(∑
i′,j′

C∗i′,j′〈ψi′ |〈χj′ |

)
. (5.5)

Finally we trace out subsystem B , getting the reduced density matrix for subsystem A to be

ρA =

(∑
i,j

Cij |ψi〉

)(∑
i′,j′

C∗i′,j′〈ψi′ |

)
δjj′ =

∑
i,i′

(∑
j

CijC
∗
i′j

)
|ψi〉〈ψi′ | . (5.6)

Note that the partial trace in (5.6) is done using the inner product on the Hilbert space HB

〈χj′ |χj〉 = δj′j . (5.7)

If we use some other matrix in place of the identity matrix in (5.7) to perform the partial trace, then

we are not computing the desired reduced density matrix but some other quantity. It is important to

note this fact, since we will see that in the wormhole paradigm the prescriptions that are added are

equivalent to replacing (5.7) by a different matrix.

The entanglement entropy Sent(A) (also called the von Neumann entropy or the fine grained

entropy of subsystem A) is given by

Sent(A) = −Tr
[
ρA log ρA

]
= −

∑
λi log λi , (5.8)
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where λi are the eigenvalues of ρA . The Rényi entropies Sn(A) are defined by

Sn(A) = − 1

n− 1
log
[

Tr ρnA
]

= − 1

n− 1
log
[∑

i

λni

]
. (5.9)

This family of quantities provides a useful way of obtaining the (generally difficult to calculate) Sent via

the analytic continuation to n ∈ R , followed by taking the limit n→ 1+ . If this can be well-defined,

then we get

lim
n→1+

Sn(A) = Sent(A) . (5.10)

To get a rough sense of what these measures of entanglement describe, consider the maximally

entangled state between subsystems A and B

|Ψ〉 =
1√
N

N∑
i=1

|ψi〉|χi〉 , (5.11)

from which the eigenvalues of the reduced density matrix ρA are λi = 1
N and we get

Sent(A) = −
N∑
i=1

1

N
log

1

N
= logN . (5.12)

Therefore, Sent(A) measures the number of terms in the sum in (5.11). For the Rényi entropies, we

have

Tr[ρnA ] =
N∑
i=1

1

Nn
=

1

Nn−1
, (5.13)

and so

Sn(A) = − 1

n− 1
log
[ 1

Nn−1

]
= logN . (5.14)

Hence, in this maximally entangled case the Rényi entropies are the same as Sent(A). The Rényi

entropies are less useful as a description of entanglement when the λi are not all comparable to each

other. If one eigenvalue λ1 is large while the other N − 1 are all equal, Sent reflects the largeness of

N while the Sn saturate to a value set by λ1 and do not reflect the large entanglement encoded by

the other λi 6=1 .

5.2. Computing the Rényi entropies

We now set up the computation of the second Rényi entropy S2(A) for a 1-dimensional system and

then see how this computation is modified by a prescription in the wormhole paradigm. In Figure 9, we

depict a 1-d system consisting of M +N line segments. The first M segments are labeled by an index

j = 1, . . . ,M and the last N segments are labeled by i = 1, . . . , N . At the center of each segment

we place a scalar field degree of freedom X ; this is the matter field on our 1-dimensional spacelike

slice. When we will discuss the gravitational theory later, we will think of the first M segments as the

gravitational region containing the black hole, while the last N segments will describe the spacetime

away from the hole, including the region near infinity.
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Figure 9: A 1-d discrete system where the first M segments make up the subset B and the last N segments
make up subset A . At the center of each segment shown is a scalar field degree of freedom X ; this is the matter
field on our 1-dimensional spacelike slice.

Let us consider the last N segments as defining a subsystem A and the first M segments as

describing a subsystem B . Our goal is to trace out system B to get a density matrix ρA for system

A . We start with a pure state |Ψ〉 for the full system A ∪ B . Similarly to (5.2), we write this state
as

|Ψ〉 =
∑
i1,j1

Ci1j1 |ψi1〉|χj1〉 ,
∑
i1,j1

|Ci1j1 |2 = 1 , (5.15)

where |ψi1〉 and |χj1〉 are orthonormal bases for the states of subsystems A and B respectively. We

now take a second set of M +N line segments, on which we place the state dual to |Ψ〉

〈Ψ| =
∑
i′1,j
′
1

C∗i′1j′1
〈ψi′1 |〈χj′1 | . (5.16)

To trace over the subset B we take the outer product |Ψ〉〈Ψ| using (5.15) and (5.16), and act with

the delta function δj1,j′1 . In the 1-dimensional slices depicted in Figure 10, this operation corresponds

M N

M N

M N

(a) (b)

Figure 10: A schematic representation of a method for computing the quantity Tr(ρ 2
A ), displaying only the

spatial slice on which a state is defined. This is in place of the full Euclidean manifold over which a path
integral generates the given state on that slice. In (a), a partial trace (represented by the blue arrow) over
the B subsets results in the reduced density matrix (ρA)i1i′1 . In (b), we multiply two copies of (ρA)i1i′1 and

perform a trace over the remaining indices to get Tr(ρ 2
A ).
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to identifying the values of the field variable X in the first M segments of the bra and the ket states

and summing over all possible values, yielding the reduced density matrix ρA on the N segments

describing set A . Expanding ρA in a basis as
∑

i1,i′1
(ρA)i1i′1 |ψi1〉〈ψi′1 | we see that the state on the last

N segments of (5.15) gives the ket of the density matrix while the state on the last N segments of

(5.16) gives the bra of the density matrix.

Since our goal is to compute S2(A), we need a second copy of the density matrix |Ψ〉〈Ψ| on

A∪B . To get this second copy of ρA , we take one more set of M +N line segments, with the states

|Ψ〉 =
∑
i2,j2

Ci2j2 |ψi2〉|χj2〉 , 〈Ψ| =
∑
i′2,j
′
2

C∗i′2j′2
〈ψi′2 |〈χj′2 | , (5.17)

such that
∑

i2,j2
|Ci2j2 |2 = 1. To trace over the set B and get the second copy of ρA we take |Ψ〉〈Ψ|

and act with the delta function δj2,j′2 . Now we have two copies of ρA , one with components (ρA)i1i′1
and the other with (ρA)i2i′2 . To compute ρ 2

A we must act with δi′1,i2 and then to get Tr[(ρA)2] , we

must further act with δi1,i′2 . Collecting together all these steps gives9

Tr
[
(ρA)2

]
=

(∑
i1,j1

Ci1j1 |ψi1〉|χj1〉
∑
i′1,j
′
1

C∗i′1j′1
〈ψi′1 |〈χj′1 |

)(∑
i2,j2

Ci2j2 |ψi2〉|χj2〉
∑
i′2,j
′
2

C∗i′2j′2
〈ψi′2 |〈χj′2 |

)

×
(
δj1,j′1δj2,j′2

)(
δi1,i′2δi′1i2

)
. (5.18)

5.3. The ‘prescription’

We have gone through these elementary steps in detail so that we can now state the ‘prescription’ that

will be used in the wormhole paradigm to modify the above computation. This prescription makes

the following replacement of the first bracket in the second line of (5.18)

δj1,j′1δj2,j′2 → δj1,j′1δj2,j′2 + Cδj1,j′2δj2,j′1 , (5.19)

where C is a constant that will be specified below10.

The indices of type j run over the subsystem B that we trace over, which in the black hole context

describes the gravitational region containing the black hole. With a little relabelling of indices, we

can see that the effect of the prescription (5.19) in the computation (5.18) can be written in terms of

the reduced density matrix on A as

Tr
[
(ρA)2

]
→

(
Tr
[
(ρA)2

]
+ C

(
Tr[ρA]

)2)
. (5.20)

Let us note the effect of this prescription on entanglement entropies. Suppose the state |Ψ〉 has the

form

|Ψ〉 =
1√
k

k∑
i=1

|ψi〉|χi〉 , (5.21)

9We write this as explicitly as possible in order to make very clear the difference once a prescription is introduced in
the following subsection.

10See for example an overview in [33].
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Figure 11: In the wormhole prescription, the computation of the second Rényi entropy depicted in Figure 10 is
modified by a term generated by the partial traces show in blue on two copies of the total density matrix. This
corresponds to (Tr[ρA])2 . A simple redefinition of indices gives the right-hand side.

then one finds

Tr[ρA] = 1 , Tr
[
(ρA)2

]
=

1

k
. (5.22)

The second Rényi entropy S2(A) for this state is given by (cf. (5.9))

S2(A) = − log
[

Tr
[
ρ 2
A

]]
= log k . (5.23)

The entanglement between A and B rises with increasing k and so here S2(A) correctly reflects this.

However, with the above prescription, we get

Sprescription2 (A) = − log
[

Tr
[
ρ 2
A

]
+ C

(
Tr[ρA]

)2]
= − log

[(
1

k
+ C

)]
. (5.24)

Suppose we take the constant C to be

C = e−Sbek , (5.25)

then we see from (5.24) that for k � Sbek , we get

Sprescription2 (A) ≈ log k , (5.26)

while for k & Sbek we get

Sprescription2 (A) ≈ Sbek . (5.27)

Thus, Sprescription2 (A) is a quantity that behaves like the usual Rényi entropy for low amounts of

entanglement, but saturates to the value Sbek for large values of the entanglement. It is important

to note that Sprescription2 is not the original quantity S2 that we were supposed to compute. So what

is the reason that we are computing Sprescription2 ? It has sometimes been said that the modification

S2 → Sprescription2 arises because we must take topology change into account in a theory of gravity.

We now argue that this is not the case; topology change can indeed occur in gravity, but it does not

imply the replacement S2 → Sprescription2 .
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5.4. Topology change

Topology change may appear to be something mysterious; however, we have already seen in Section

4.1 how to handle topology change in (1+1)-dimensions. The fundamental structure of the quantum

theory is not altered, as far as the notion of Hilbert space, inner products and unitarity are concerned.

In the (1+1)-dimensional case we considered, the spatial sections simply did not have to consist of

only a single line segment but instead could be made of multiple line segments, with the full Hilbert

space being the union of these different possibilities. There has to be an inner product on this Hilbert

space and the evolution has to be unitary with respect to this inner product. In fact, this structure

Figure 12: Introducing topology change in the 1-d system, the first M segments which up the subset B can be
broken into subsegments. The last N segments still make up the subset A . Again, X represents the matter
field on our 1-dimensional spacelike slice.

of having multiple line segments is not peculiar to gravity. We could consider the quantum dynamics

of a 1-dimensional polymer, which can break into multiple line segments. A similar Hilbert space and

evolution will emerge, though the details of the Hamiltonian will depend on the physics of the system.

With this in mind, let us turn to the computation of the Rényi entropies. In the discussion of

Section 5.2, the subregion B represents the region with gravity. Allowing topology change then only

changes the fact that the states |χj〉 describing this subset B consist not just of one segment but

a linear combination of states with different number of segments. Recall that we had taken a line

segment to be made up of a certain number of links and at the center of each link we had placed a

scalar degree of freedom X . In a connected segment, the Hamiltonian will typically have an interaction

linking the scalar field values at neighboring links α, α+ 1 of the form

H int
α,α+1 =

1

2

(Xα −Xα+1)2

δ2
. (5.28)

There will be no such term between links that are on different line segments; this fact will tell us

when we have topologically disconnected segments. Crucially, any entanglement entropy is simply a

function of the state |Ψ〉 on a spacelike slice with the inner product being needed to trace out the

subsystem B . The Hamiltonian is, however, not involved in the computation of entanglement. In a

constrained system the allowed states may be subject to a Hamiltonian constraint and we will discuss

this issue below, but once we have a state |Ψ〉 that is a physical state for the system A ∪B , then to

compute a Rényi entropies Sn(A) all we need is the inner product on the system B .

However, now we see immediately that topology change does not lead to any prescription like

(5.19). All that happens is that the states |χj〉 now span both single segment and multi-segment

possibilities. The states labeled by indices i1, j1, i
′
1, j
′
1 in (5.18) pertain to the first copy of ρA and
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the states labeled by i1, j2, i
′
2, j
′
2 pertain to the second copy of ρA . We do not end up mixing these

two copies of ρA in a new way a suggested by the prescription (5.19). It is true that gravity can allow

for topology change, but this just changes the structure of the Hilbert space, without changing how a

quantity like S2(A) is to be computed.

So let us ask: why was a prescription like (5.19) suggested? To understand the answer to this

question, we will now cast the above computation of Sn(A) in the language of path integrals.

6. The Page curve - III: Path integrals and the difference between Rényi and Gibbons-

Hawking type computations

In Section 6.1, we see how to recast states in terms of path integrals and observe that allowing

topology change in the gravity theory does not give a wormhole that should connect different replica

copies. In Section 6.2 we recall the Gibbons-Hawking computation of entropy and observe that the

Rényi entropy-inspired computations using added prescriptions are fundamentally different from the

Gibbons-Hawking computation: with the Rényi entropy computations, we start with a path integral

prescription that is not the correct one for the Rényi entropy for a general quantum system, while in

the Gibbons-Hawking computation, the starting point is the correct path integral that should count

all microstates.

Section 6.3 discusses further, in relation to the sewing procedure in 2-d CFTs, how having

‘wormholes’ in a Euclidean picture has no relation to interactions in the real, Lorentzian theory (and

thus cannot answer a Lorentzian problem such as that of black hole information loss).

In Section 6.4, we note that there are computations which show that the Page curve comes down,

but these computations hold for normal systems where the Page curve would automatically come down

by the standard computation of Page [34]. In these systems there is no analogue of the effective pair

production (1.2), so these computations do not address the goal of the wormhole paradigm.

6.1. Expressing states through path integrals

As we have already noted, the computation of entanglement entropies is related to the state |Ψ〉 on a

spacelike slice, it does not involve the dynamics of the system. Thus, there is no natural connection

between the computation of a quantity like Sn(A) and a path integral in the theory. So why should

we try to use path integrals?

In 2-d CFTs, the path integral has been useful in the computation of entanglement in the

following way. We often wish to compute the entanglement of a subregion A when the overall state

|Ψ〉 on our spatial slice is the vacuum |0〉 . In this case we can generate the state |Ψ〉 = |0〉 on our

spacelike slice as follows. Working in Euclidean signature a path integral over the lower half plane

generates the state |0〉 on the upper boundary of this half-plane. Let us call the 2-d manifold spanning

the lower half-plane M1 . We generate the dual state 〈Ψ| = 〈0| by a similar path integral on an upper

half-plane, calling this manifold M̃1 . We then perform the trace over the subset B by joining M1 and

M̃1 along the region representing B (the complement of A). The states on the edges of M1 and M̃1

that are in the segment A then give the density matrix ρA . If we wish to compute the entanglement

for some state other than |Ψ〉 = |0〉 , we can insert appropriate operators in the manifolds M1 and

M̃1 to alter the evolution.

However, here we note that getting ρA from a path integral in this way is just a trick that makes
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the computation easier; the original definition of the density matrix as a partial trace over the subset

B actually involves only the state |Ψ〉 on the 1-dimensional slice. Thus we should be careful to not

modify the path integral computation in an arbitrary way through a ‘prescription’, since then we will

not be actually computing the density matrix ρA or the entropies Sn(A).

(a) (b) (c)

Figure 13: In (a), states ψi and ψj are shown on the circles that they are defined on. In (b), the states ψ′i and
ψ′j evolve in Euclidean time to the states ψi and ψj , respectively in a 2-dimensional gravity theory, depicted
as cylinders. In (c), we allow the 2d gravity theory to have topology change, which is shown as the addition of
handles to the cylinders.

As an example, let us start with an ordinary CFT on a circle. In Figure 13(a), we depict the

bra and ket states |Ψi〉 and 〈Ψj | for such a CFT with the inner product between these states denoted

by

〈Ψj |Ψi〉 . (6.1)

How should we get this inner product from a path integral? In Figure 13(b), we depict an amplitude

between states |Ψ′i〉 and 〈Ψ′j | which we write as

〈Ψ′j |Ψ′i〉amplitude . (6.2)

But why should this amplitude (6.2) have anything to do with the inner product (6.1)? If we expand

the state |Ψ′i〉 into energy eigenstates, then these different eigenstates evolve with different factors∑
n

Cn|En〉 →
∑
n

Cne
−Enτ |En〉 . (6.3)

So the states |Ψ′i〉 and 〈Ψ′j | in the amplitude (6.2) will have to be different from the states |Ψi〉 and

〈Ψj | in the inner product (6.1). If we evolve the states in the amplitude through a large time τ →∞ ,
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then we will end up with just the vacuum states at the middle of the cylinder, as the coefficients of

all higher energy states are subleading.

But now consider not a simple CFT but a theory of gravity on our 2-d cylinder; the string world

sheet theory is an example of such a gravity theory. The physical states then all have the same energy

since they satisfy the momentum and Hamiltonian constraints (in terms of the stress tensor modes

L0, L̄0 )

(L0 − 1)|Ψ〉 = 0 , (L̄0 − 1)|Ψ〉 = 0 . (6.4)

Thus, any state from the physical Hilbert space does not suffer a change in the relative weights of its

parts as it evolves down the cylinder and after absorbing a suitable power of eτ , we can identify |Ψ′i〉 ,
〈Ψ′j | with |Ψi〉 , 〈Ψj | . Thus, the inner product (6.1) in this case can be written as an amplitude of

the type (6.2).

Now suppose the 2-d gravity theory describing our cylinder is allowed to have topology change.

This means that the 1-dimensional circle describing the spatial sections of the cylinder can break

up into two such circles and vice versa. The evolution of the state on the cylinder can now have

handles, as depicted in Figure 13(c). Note that the physical quantity that we need for the definition

of entanglement entropy is an inner product like (6.1); recasting this as an amplitude (6.2) is just

something that we have done for our present purposes.

(a) (b) (c)

Figure 14: In (a), states are shown on their respective circles. In (b), the states evolve in Euclidean time in a
2-dimensional gravity theory, with all topology changes allowed. This is shown as cylinders with handles. In
(c), we show handles which surpass the cylinders and join two different cylinders. This is forbidden, as we argue
in text.

Now we come to the crucial step. Suppose we wish to compute the second Rényi entropy S2(A).

For this purpose, we create two copies of the bra/ket pair, as in Figure 14(a), and identify the segments

along the subset B of each bra/ket pair. The further traces in the second line of (5.18) then give

Tr[(ρA)2] , which we then use in (5.9) to compute S2(A). But now suppose someone wishes to rewrite
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this computation using path integrals. The bra and ket states for each copy are created by a time

evolution, similar to the evolution we did for the string world sheet to write (6.1) as an amplitude

(6.2).

This time evolution can have handles on the 2-d worldsheet if the Hamiltonian allows for topology

change, but there will be no handles that connect the 2-d manifolds of one bra/ket pair to the manifolds

for the other bra/ket pair. This is because the time evolution over these 2-d manifolds was just a trick

to reproduce the inner products needed for the computation of Tr[(ρA)2] and in this trace the only

delta functions are the ones given in (5.18). If we use a path integral to reproduce this result for

Tr[(ρA)2] , then we can only have those handles that arise in the evolution that gives rise to the states

in Figure. 14; we cannot include any other kinds of handles at will.

To summarize, we have seen that entanglement entropies are a property of a given state; the

dynamics of the theory is not involved. There is no natural appearance of a path integral in the

computation of entanglement entropies, since the path integral describes the dynamical evolution of

states. We can however use the path integral as a trick to recast the computation of a quantity such

as Rényi entropy. However, while this path integral may manifest handles within the computation of

each copy of the density matrix, there are no handles between different copies; i.e. we find no analogue

of a ‘replica wormhole’.

6.2. The Gibbons-Hawking computation

Let us consider the Gibbons-Hawking computation of entropy, starting from first principles; this

will allow us to see the differences between the Gibbons-Hawking computation and the Euclidean

arguments for the Page curve. The Gibbons-Hawking argument proceeds in the following steps:

(A) First consider any quantum system, not necessarily one with gravity. We assume that the

system is described by a Hilbert space H and a Hamiltonian H . The eigenstates of this

Hamiltonian satisfy

H|ψi〉 = Ei|ψi〉 , (6.5)

and their time evolution is governed by

|ψi(t)〉 = e−iHt|ψi(0)〉 . (6.6)

Note that this is Lorentzian time evolution. Now we analytically continue to Euclidean

time using t→ −iτ and consider the quantity

Z(β) = Tr[e−βH ] =
∑
i

e−βEi . (6.7)

From this quantity, we can extract the entropy using the standard expressions of statistical

mechanics. We write the temperature T , free energy F and average energy 〈E〉 as

T =
1

β
, F = −T logZ , 〈E〉 = − ∂

∂β
logZ , (6.8)

from which the relation F = 〈E〉 − TS can be used to find the entropy S .
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(B) We now note that the analytic continuation t → −iτ applied to the evolution (6.6) gives

the evolution

|ψi(τ)〉 = e−Eiτ |ψi(0)〉 . (6.9)

The trace we need in (6.7) then implies that the quantity Z is a one-loop path integral with

period β for the loop. Note that so far the steps we have outlined hold for any quantum

theory.

(C) Now we specify to the gravity theory. Following the steps above, we make a periodic

identification of Euclidean time with period β . The full path integral for the exact theory

with this identification should give the entropy S that we seek. Since quantum gravity is

complicated, we find that we do not know how to carry out this full path integral. However,

we observe that there is a saddle point of the classical action for the Euclidean geometry

(3.8), with M related to β via β = 8πGM . We make an assumption that this saddle point

will give a good leading order approximation to the full path integral of the exact quantum

gravity theory. With this, following the steps above, we find

S = 4πGM2 =
A

4G
≡ Sbek , (6.10)

where A is the area of the black hole horizon.

We have recalled this well-known Gibbons-Hawking computation to emphasize the fact that in

steps (A) and (B) we were setting up a computation that makes sense for any quantum theory. Then

we come to the gravity theory and do a saddle point evaluation of the quantity that we had already

defined; i.e. the one-loop path integral Z . This yields the entropy Sbek . Our belief in the assumption

in (C) is bolstered by the fact that the result (6.10) agrees with the Lorentzian computation of entropy

that was already known.11

The assumptions in the recent Euclidean computations of the Page curve appear to be funda-

mentally different in the following way. The prescription (5.20) changes what we call a Rényi entropy,

replacing this entropy by a different quantity. Thus, we will not be starting with a definition for the

Rényi entropy that is standard for all systems, whether gravitating or not. We have looked at the role

of topology change for (1+1)-dimensional quantum gravity and, at least for this case, we have found

that topology change does not imply the prescription (5.20). Thus, our arguments indicate that the

recent computations of the Page curve seem to be addressing a quantity that is not the entanglement

entropy that is described by the usual Page curve.

6.3. Wormholes that represent entanglement

In the above discussion, we have looked at the exact gravity theory and asked if the replacement (5.20)

can arise from the possibility of topology change in this exact theory. We did not find any motivation

for (5.20) from the possibility of topology change in the exact theory in our discussion using (1+1)-

dimensional quantum gravity. We now ask a different question: is it possible that when we are

computing the correct Rényi entropy (∼ Tr(ρ2) for the second Rényi entropy) in the exact theory,

11Hawking’s Lorentzian calculation showed that the hole emits a temperature T = 1/(8πGM) ; putting this in the
standard thermodynamics relation TdS = dE gives S = Sbek = A/(4G) .
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there is an emergence of an approximate saddle point of the effective theory that does yield something

resembling (5.20). The result of our analysis below will be that we will not find the emergence of a

prescription like (5.20). To see the kind of effective descriptions that we will investigate, consider the

Figure 15: The sewing procedure. In (a), two states, |ψi〉(1) and |ψi〉(2) , are defined on the circle forming the
boundary of the respective sphere. In (b), the sum 6.11 generates a connection (‘wormhole’) between the two
states, shown as the tube connecting the two spheres.

‘sewing’ procedure in 2-d CFTs. In Figure. 15(a), we depict two spheres. In each sphere we cut a hole

and at the boundary of each hole we place the same state |ψi〉 . Then we consider the combination

|Ψ〉 =
∑
i

Ci|ψi〉(1)|ψi〉(2) , (6.11)

where the superscripts (1), (2) denote the two different spheres. The state |Ψ〉 is entangled between

the two spheres, but we have no Hamiltonian connection between the two spheres. With an appropriate

choice of the Ci and |ψi〉 , the sum in (6.11) generates a ‘sewing’ of the two spheres, where the spheres

are now joined by a ‘wormhole’ as in Figure 15(b). The length of the wormhole can be altered by

changing the coefficients Ci .

What can we use the manifold in Figure 15(b) for? The entanglement in the state (6.11)

generates correlations between the two spheres, so if we compute a correlator between the two spheres

the result will be generically nonzero

〈φ(z1)φ(z2)〉 6= 0 , (6.12)

where z1 and z2 are patches on the first and second sphere, respectively. If φ represents a high-

dimension field, then the correlator may be well approximated by the action of a geodesic joining

z1, z2 along a path that goes through the wormhole. More generally, a path integral over the field φ

on the sewn manifold will yield the correlator (6.12).

Note that the correlator (6.12) just measures the correlations that we established between the

two spheres by taking an entangled state (6.11). There was no Hamiltonian connection between the

two spheres to start with, so if we had switched to a Lorentzian theory on the two spaces (with an

entangled state between them) then we could not send a signal from one space to the other through

such a wormhole. This is the issue we discussed in Section 4.3, where it was noted that Euclidean

connections between manifolds did not help with the problem of resolving the information paradox –

a problem arising from dynamical evolution in the Lorentzian section.

At the present time, our interest is in looking for a Euclidean path integral prescription that

may yield the Rényi entropy. So in line with the above example of sewing, we ask the following.
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Suppose we see that there are 1-dimensional segments in our (1+1)-dimensional gravity theory on

which the states are entangled in the manner (6.11). Then we may try to add a wormhole connection

between these segments to represent this entanglement, as in the above example of sewing. Can such

a connection give rise to a prescription like (5.20)?

We refer again to the depiction in Figure 10(b) of the states in the computation of the second

Rényi entropy S2(A) = Tr(ρ 2
A). Let the two entangled subspaces be A and B , and let the overall

entangled state be of the diagonal form

|Ψ〉 =
1√
N

N∑
I=1

|ψi〉A|χi〉B , (6.13)

We see then the following identifications in Figure 10(b):

• The state labeled ψi2 on one copy of the subset A is equal to the state ψi′1 on the next copy

because of the matrix multiplication in Tr(ρ 2
A).

• The index on the state ψi2 becomes equal that of the state χj2 on that subset B if we have

taken the entangled state (6.13).

• The index of the state χj′1 is equal to that of the state ψi′1 again because we have taken the

entangled state (6.13).

From the above, we conclude that the state χj′1 will equal the state χj2 . Following the rough idea

of sewing that we saw above, we can be tempted to then draw a manifold M1 connecting the line

segments containing the states χj′1 and χj2 . Similarly, we can repeat similar arguments and also

draw a connecting manifold M2 between the segments containing the states χj′2 and χj1 , since the

states on these segments are again the same. We note that these connections M1,M2 do arise in the

computation of (Tr(ρA))2 , for which we have Figure 11 (in particular the right-hand side). So do we

have a suggestion that ‘sewing’ entangled segments will give something like (Tr(ρA))2 ?

The answer is no, for the following reason. In our computation where we start with the Rényi

entropy S2(A) = Tr(ρ 2
A), we have a trace that identifies the state χj′2 with the state χj2 . This

identification arises from the definition of one copy of the density matrix ρA . Similarly, we have an

identification between χj′1 and χj1 from the other copy of ρA . If we were to remove these identifications

then, yes, we would get (Tr(ρA)2). However, we cannot arbitrarily remove the identifications and so

do not get the prescription (5.20).

More generally, the issue we face is the following. The idea behind the replica wormhole is that

we should fix the way we trace over the different states outside the gravity region, but allow all possible

ways of joining manifolds inside the gravity region. How then do we know that the quantity we end up

computing has anything to do with the (second) Rényi entropy S2(A) = Tr(ρ 2
A)? Any entanglement

entropy is a property of the entangled state that we start with. The state we are interested in is the

entangled state of radiation and the remaining hole. In a Euclidean formulation, we do not know how

to ensure that this state is the one whose entanglement we are computing. In fact if we do a sum

over all manifolds without boundary in the gravity region, then we have no place to input which state
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in the gravity region we are interested in considering. We have tried various ways to start with a

situation that does compute the Rényi entropy S2(A) = Tr(ρ 2
A), but have not been able to map this

to a computation where a replica wormhole appears and gives the modification (5.20).

6.4. Modeling the evaporation of coal

We now describe a nice computation of Rényi entropies performed in [35] which gives a set of diagrams

that seem to resemble replica wormholes. However, as we will argue below, this resemblance is

superficial and the computation of [35] cannot be used to support the idea of replica wormholes

in gravity.

It is possible to get a result that superficially resembles the replica wormhole computation in

the following way. Starting with a normal radiating body like a piece of coal, write a path-integral

expression for the normal Rényi entropy (i.e. without any prescription modifying the definition of

the Rényi entropy). In this path integral, one may find that certain paths dominate. For one such

dominating path, the value of the action (S0 ) for the segment of the path joining a pair of replica copies

may cancel the value of the action for a different segment of the overall path. We can represent this

cancellation by a schematic diagram that links the different copies involved. Such a linkage diagram

will have a superficial visual similarity to the different ‘replica wormholes’ that are assumed to be

saddle points of the gravity path integral in the wormhole paradigm. The following shows that these

linkage diagrams and the replica wormholes are different things:

(a) The computation of [35] starts with assuming that one has a normal body like a piece of

coal. However, such a normal body does not have the semiclassical low-energy dynamics of

a black hole horizon where we get entangled pairs (1.2). Thus the computation of [35] can

be taken as an explanation for why the Page curve comes down for a normal body; it tells

us nothing about any theory of the black hole where we require the production of (1.2).

(b) Now suppose we do assume that the black hole horizon has an effective semiclassical descrip-

tion where we get (1.2). The computations of [35] do not assume any nonlocal interactions

between the hole and its radiation. Thus the effective small corrections theorem of Section 2
tells us that in this situation the Page curve cannot come down. This is counter to the goal

of the computation of [35].

(c) Thus, the crucial issue in all such computations is the following. If we perform any com-

putation for the Page curve in the wormhole paradigm, then we have to also check if the

effective semiclassical horizon behavior (1.2) holds for the system being analyzed. If we do

not demonstrate (1.2) then we may just as well be describing the Page curve of a normal

body, which is known to come down at the end of the evaporation process by the computation

of Page [34].

6.5. Summary

Let us summarize what we have seen in this and the previous two sections on the Page curve. Quantum

gravity should certainly allow the possibility of topology change: such topology change leads, for

example, to handles in the evolution of a string world sheet. However, we have not found handles

between different replica copies. The reason is that each replica is an independent copy of the theory,
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and while the dynamics can generate handles within any one theory, this same dynamics cannot

generate handles between different copies of the theory.

In this context, an example that is often cited is that of the Gibbons-Hawking computation.

Here one starts with a path integral where the Euclidean time circle has a period β and then that

the saddle point is a ‘cigar’ with a novel topology where the Euclidean time circle shrinks to zero size.

This situation might suggest that saddle points can somehow appear with topologies that were not

built into the original path integral. Let us see the origin of this new topology in some detail and then

we will see that the case of a wormhole between replicas is different. To understand the Gibbons–

Figure 16: The Gibbons-Hawking-fuzzball understanding. In (a), all the states along the horizontal red slice
are taken and weighted by e−βE to compute the path integral. In (b), the same path integral is calculated in a
different way; states along the circle τ are evolved along the horizontal direction. In (c), the cylinder is shown
closed with a cap, assuming only vacuum state survives after evolution by a long enough Euclidean time.

Hawking case, let us look at a toy example that resembles the Gibbons-Hawking computation. In

Figure 16, we show a 2-dimensional CFT on a cylinder. In Figure 16(a), we compute the path integral

by taking all the states along the horizontal slice and weighting them with e−βE . Here one can think

of the complicated states defined along the horizontal line as black hole microstates, so that we are

computing the path integral for the black hole. In Figure 16(b), we note that we can compute this

path integral in a different way. Now we use the other channel: we define states on the τ circle and

evolve them along a ‘time’ in the horizontal direction. If the horizontal direction of the cylinder is

long, then only the vacuum state survives in this channel. Thus, we can ‘cap-off’ the cylinder as

shown in Figure 16(c), where this cap generates the vacuum state. We, therefore, see that the path

integral can be obtained by a ‘cigar’ geometry.12 This way of understanding the Gibbons-Hawking

computation in terms of fuzzballs was discussed in [36] and follows the discussion by Hawking in [37].

In all of the above, we started with a path integral in Figure 16(a) which was the correct path

integral for counting the states of the black hole. A similar situation occurs for the Hawking–Page

transition [38]. For this transition we again have just one copy of the gravity theory, and are required

to do a path integral over all manifolds that end on the boundary of AdS. For different values of the

Euclidean time compactification ∆τ = β , we can have different topologies for the saddle point: one

where the τ circle remains nonzero everywhere, and one where it shrinks to zero and generates a cigar

geometry. However, if we start with two different replica copies of AdS, then the starting path integral

has no paths that go from one copy of AdS to another. In this case, we do not see how one could get

a saddle that connects the replica copies.

12We still have to answer why in the black hole case, the analogue of the horizontal direction in Fuigure 16(a), is long.
The reason is that we have gtt → 0 as r → rh ; this effectively generates the disc geometry of Figure 16(c). Using the
usual map between disc and cylinder coordinates, this disc maps to a cylinder that is effectively infinite on the left side.
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The reason this discussion is crucial is for the following. Suppose one argues that topology

change should generate a wormhole between replicas and that this means that we should replace the

Rényi entropies by new quantities, as per (1.10). Since these new quantities are not the original Rényi

entropies, how do we know that we are computing the Page curve and not some other quantity?

Ultimately, the effective theory must emerge from the exact theory by some map geff = F [gexact]

and the rules for whether replica copies should be connected or not emerges from this map. The

exact theory does not have a connection between replicas, since these are independent copies of the

theory. But why should the effective variables geff have connections between replicas? Usually

effective variables are just a low-energy subset of the exact variables and such a choice will not give a

connection between replicas.

The reason why we need to be vary careful to find the source of an ansatz like (1.10) is the

following. With the black hole, we always have the cigar geometry that computes the Bekenstein

entropy. If we replace the Rényi entropy by a new quantity which brings in the cigar geometry,

then this new quantity might just be computing the Bekenstein entropy, at least for some domain of

parameters.13 In that case, the replacement (1.10) would amount to using a prescription which replaces

the entanglement entropy with the Bekenstein entropy. As the hole evaporates the Bekenstein entropy

goes to zero and so it might appear that the entanglement has come down. However, then the whole

question hinges on why we could make the replacement (1.10). After all, if we were allowed to say

that one cannot entangle with the black hole by more than the Bekenstein entropy, then there would

be no puzzle with the Page curve; as the hole evaporates, the entanglement would automatically go

to zero. In fact, the whole information paradox can be restated as a mismatch between the Euclidean

computation (which implies a maximal entanglement Sbek ) and the Lorentzian computation where we

can get an entanglement that is arbitrarily larger than Sbek .14 Thus, we should be careful that we

are not doing the following: (i) making an ansatz that somehow replaces the entanglement entropy

by Sbek and then (ii) arguing that since Sbek goes to zero as the hole evaporates, the Page curve goes

down to zero.

7. Postulating nonlocalities

We have seen above that abstract arguments using semiclassical gravity do not allow us to show that

the Page curve for a black hole will come down like that of a normal body. Furthermore, the effective

small corrections theorem makes it impossible to get semiclassical dynamics (1.2) around the horizon

if we do not use any kind of nonlocality between the hole and its radiation. In Section 1, we looked

at several ways in which one might postulate some kind of nonlocality for the gravity theory. We

now look in more detail at these possibilities, illustrating our understanding of various proposals by

making very simple bit models to illustrate the essential idea of the proposal.

Recall that if we are dealing with an effective theory, then we cannot postulate an arbitrary

set of rules for this effective theory. We have seen in Section 2 that the effective variables geff must

descend from the exact variables gexact by a map geff = F [gexact] (eq.(1.11)). This map then forces

the dynamics of the effective theory to descend from the dynamics of the exact theory as in (1.12)

and also any quantity in the exact theory maps to a definite quantity in the effective theory through

13E.g. when the replica saddle is argued to dominate.
14We can get the entanglement of the traditional Lorentzian hole to be arbitrarily larger than Sbek by feeding the hole

at the same rate that it evaporates, or by looking near the endpoint of evaporation where the entanglement is large but
Sbek goes to zero.
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a map like (1.13). Thus, any nonlocality in the effective theory must arise either from a nonlocality

in the exact theory or from a nonlocal definition of variables for the effective theory. We proceed as

follows:

(i) In Section 7.1 we will consider the postulate that the exact theory does not have any nonlocal

interactions between the radiation R and the remaining hole, but that the effective variables

geff are made by combining degrees of freedom of the exact theory from both the region

r < 10 rh and the radiation region. In this case, we find that these effective variables have

the property that acting on the exact bits in the radiation region changes the observations

that would be made by an experimenter at r = 5 rh . Note that this is not the behavior that

we expect from radiation from a piece of coal.

(ii) We then turn to the case that there are nonlocal effects between the radiation and the hole

in the exact theory. In Section 7.2, we describe explicitly an experiment that will check

whether the radiation from the hole is in a pure state or in a state that is entangled with

the hole. This experiment will allow us to be precise about what we mean by the exact

degrees of freedom at infinity: these are just the bits that are measured by an experimental

apparatus far from the hole. We consider three types of nonlocal effects:

(A) Nonlocal interactions between the black hole interior of one copy and the black hole

interior of another copy. A simple model for such effects is of the following form. The

interior of the hole in one black hole disconnects as a ‘baby universe’ and joins to the

interior of another black hole. We will see that trying to bring the Page curve down

using such effects leads to a violation of unitarity in the black hole interior. This

possibility (A) is discussed in section 7.3.

(B) Nonlocal interactions between one region near spatial infinity and another, well sepa-

rated region near spatial infinity. Such nonlocal effects violate the conventional notion

of locality in physics. This possibility (B) is discussed in section 7.4.

(C) Nonlocal interactions between the inside of the hole and the region spatial infinity.

Such ‘wormhole’ effects will also violate the conventional notion of locality in physics.

This possibility (C) is discussed in section 7.5.

7.1. Nonlocal definition of effective variables

One of the common ideas in the wormhole paradigm is the following:

(NL1) First assume that in the exact theory, the black hole radiates like a piece of coal. This

means that in this exact theory the black hole satisfies the conditions (C1)–(C3) in

Section 1.1.1. Thus, there are no significant interactions of the radiated quanta with the

remaining coal once these quanta leave the region r > 10 rh and the degrees of freedom

defining the radiation at infinity are distinct from the degrees of freedom defining the hole

in the region r < 10 rh . The Page curve comes down to zero at the end of the evaporation

process like the Page curve of a normal body.
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(NL2) It is possible to take some combination of the exact bits making up the radiation and the

exact bits of the remaining hole to define a set of low-energy effective degrees of freedom

around the horizon radius rh . These effective degrees of freedom should reproduce semi-

classical dynamics around the horizon, i.e. (1.2) and (1.7). Very little need be demanded

from these effective variables, only the conditions of (EFF4) listed in Section 1.1.4. This

effective semiclassical dynamics is then argued to be what was somehow seen in Hawking’s

original computation of entangled pairs, while the exact dynamics of the theory is similar

to the burning of coal. Thus, the argument goes, the exact quantum gravity theory can

resolve the information paradox even though Hawking’s computation showed a problem

with monotonically growing entanglement.

We will see that the above scenario with (NL1) and (NL2) is actually not possible. We will see that

trying to achieve (NL2) forces an interaction linking the radiation to the hole, so the situation is not

like that of burning coal: condition (C1) of Section 1.1.1 is violated. We are forced to a picture where

we have to:

(NLa) Collapse the radiation to a dense form, perhaps making a second black hole out of this

radiation.

(NLb) Argue that this black hole is connected to the original hole by a wormhole that provides

an alternate path of interaction between the hole and the radiation.

Such a picture, comprised of (NLa) and (NLb), has been suggested by Maldacena [17]. We do not

believe that (NLa) and (NLb) are actually the case in string theory, but we will not discuss this issue

here; our goal will be to argue that (NL1) and (NL2) are not possible as a picture of what can happen

and that any such attempt must end up in something like (NLa) and (NLb).

7.1.1. How can we differentiate such a black hole from coal?

Let us begin with a very basic question. Suppose the black hole satisfies property (NL1). Then in its

exact description it behaves just like a piece of coal. However, for a piece of coal we have no analogue

of (NL2); i.e. we do not expect that by using some combination of radiation and coal degrees of

freedom we can see a smooth horizon. Thus, we see an immediate problem with the proposal of (NL1)

and (NL2): how can we get (NL2) for the degrees of freedom describing the hole and its radiation, but

not for those describing the coal and its radiation? One might try to say the following: perhaps the

bits that come out of a black hole are entangled with the remaining hole in some special way, which

is different from the entanglement between the bits emitted from a piece of coal and the remaining

coal. But we will now see that this is not possible since all possible entangled states of the black hole

radiation can be obtained by emission from a normal body like a piece of coal.

Consider a box containing N atoms of a gas, with each atom having two spin states ± . Let

this box sit for a long time t , so that the atoms collide multiple times and reach a state where their

spin states are entangled in a generic way. Now open a small hole in this box such that the atoms

escape one by one to infinity. After n spins have emerged, the overall state of the radiation and the

spins remaining in the box has the form

|Ψ〉 =

2N−n∑
i=1

2n∑
j=1

Cij |χi〉|ψj〉 , (7.1)
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where the {|ψj〉} are a basis of 2n spin states of the form |±± · · · ±〉 for the n spins in the radiation

and {|χi〉} are a basis of 2N−n spin states of the form |± ± · · · ±〉 for the N − n spins remaining in

the box. We now explore different values of the time t for which the atoms are allowed to interact

before the hole is opened. By the ergodic hypothesis, the state |Ψ〉 evolves through a dense subset of

all allowed spin states for the N atoms, with the same uniform measure that is used in the analysis

by Page of the Page curve for a normal body [34]. Therefore, as we explore different values for t , we

get a dense subset of all the allowed values of the coefficients Cij .

Now consider the black hole. Suppose the total number of quanta that will be emitted by the

hole is N . Consider the point in the evaporation process where n < N quanta have been emitted.

The entangled state of this radiation must be of the form

|Ψ̃〉 =
M∑
i=1

2n∑
j=1

C̃ij |χ̃i〉|ψ̃j〉 , (7.2)

where |ψ̃j〉 describe the 2n states |±± · · · ±〉 of the radiation and |χ̃i〉 are some states describing the

black hole. We do not know the number of states M describing the hole, but for any M and any C̃ij

we can get a state of the box of gas (7.1) that is arbitrarily close to (7.2). We do this by taking N

such that

2N−n > M . (7.3)

Then since the space of Cij in (7.1) is ergodically explored, we can get the entanglement structure of

(7.2) by taking an N satisfying (7.3) and waiting for an appropriate time T before opening the hole

in the box. Thus, we see that there can be nothing special about the entangled state of the radiation

originating from a black hole; any form of the entanglement of this radiation can also be produced by

radiation from an ordinary body, such as a box of gas. So we are back to our original question: if some

combination of bits in the radiation and the hole can give rise to an effective semiclassical description

at the horizon yielding the pair production (1.2), then why should we not get a similar semiclassical

horizon behavior for a radiating piece of coal or box of gas?

The answer is, of course, that we cannot both (i) take a model for the black hole in which it

radiates like a piece of coal and (ii) take some combination of bits from the radiation and the hole

and make effective bits that describe a semiclassical approximation to the traditional black hole. Let

us explore this issue in more detail, since it has been a source of confusion in the field.

7.1.2. The kinematics of effective bits

Let us, therefore, take a look at how we might make effective degrees of freedom/bits. First consider a

piece of coal. Suppose this coal emits a photon which has two spin states denoted by |0〉b and |1〉b .15

In a typical emission (relatively early in the evaporation), this photon will be close to maximally

entangled with the remaining coal. Thus, there will be two orthogonal states |χ1〉 and |χ2〉 of the

remaining coal such that the overall state of the radiation and coal is

|Ψ〉 ≈ 1√
2

(
|χ1〉|0〉b + |χ2〉|1〉b

)
. (7.4)

15We have labeled the photon states with a subscript b in line with our earlier notation that the radiation quanta are
called b .
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Suppose someone were now to suggest the following. If we define

|χ1〉 ≡ |0〉c , |χ2〉 ≡ |1〉c , (7.5)

then surely we have the total state

|Ψ〉 ≈ 1√
2

(
|0〉c|0〉b + |1〉c|1〉b

)
. (7.6)

This looks like the entangled pair (1.2). So have we not shown that the surface of coal can actually

be described by a semiclassical horizon through which objects will fall smoothly? The answer is no,

of course not; if we shine photons on the coal they will scatter back off the surface of the coal, they

will not pass smoothly through a horizon. So what is wrong with the map (7.5)? The answer is that

we can always make a map like (7.5) between states, but what is important is the dynamics of these

states. Just relabelling the states in the manner (7.5) to get (7.6) does not mean that the coal has a

smooth horizon, since the bit c does not have the correct Hamiltonian interaction with the bit b to

generate a vacuum state at a horizon.

The same situation holds if we consider a photon which has been emitted past the halfway point

of evaporation. Let the states of the photon again be denoted |0〉b and |1〉b . This time the photon is

close to maximally entangled with the early radiation. Thus, there are two states |χ̃1〉 and |χ̃2〉 such

that the entangled state of the photon is described as

|Ψ̃〉 ≈ 1√
2

(
|χ̃1〉|0〉b + |χ̃2〉|1〉b

)
. (7.7)

Making the map

|χ̃1〉 ≡ |0〉c , |χ̃2〉 ≡ |1〉c , (7.8)

we get something of the form (7.6). But again this does not mean that the piece of coal has a

semiclassical horizon that photons will fall through; if we shine photons on the coal, they will scatter

back.

The above observations are of course very obvious, but they are key to understanding why no

effective semiclassical variables at the horizon can be made just by taking combinations of the radiation

and black hole degrees of freedom.

7.1.3. Using the dynamics of the bits at r < 10 rh

We have seen above that, (i) for a normal body like a piece of coal we cannot get the semiclassical

dynamics of the horizon just by using appropriate combination of bits from the radiation and the

remaining coal and that, (ii) any entangled state of the radiation bits can be reproduced to an

arbitrarily good approximation by radiation from an ordinary body. We call the above attempts

kinematical in nature, since we have played with the states of the radiation and the coal, but have

not used any dynamical information about how these bits interact. This part of the discussion has

already been useful, since it tells us that purely kinematical attempts at getting semiclassical horizon

behavior using the radiation and the remaining hole will not work.

Let us now consider the dynamics of the various degrees of freedom in the above discussion. First

consider those of the radiation. Suppose the black hole emits N � 1 bits in its entire evaporation
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process. Then the energy of the typical quanta is small, much below the Planck scale. We also have

an arbitrary amount of space to manipulate these radiation quanta; in particular, we can increase

their wavelengths so that they become just like the quanta emitted from a piece of coal. Therefore,

we do not a priori have any nontrivial dynamics of these radiation quanta that would be different

from the dynamics of the radiation quanta originating from coal. Let us then start by focusing on

the dynamics of the degrees of freedom in the region r < 10 rh . Here someone can say: we do not

know the dynamics of a black hole, so these bits do not have to behave like the bits in a piece of coal.

Perhaps we can then have the following situation:

(i) We make effective fields from all of the quanta in the region r < 10 rh , as well as the radiation

bits bi . These effective fields describe low-energy dynamics around a semiclassical horizon;

i.e. we have (1.2) and (1.7) in a region rh < r < 10 rh of this effective semiclassical geometry.

(ii) We check the fact that we have an effective semiclassical description in the region rh <

r < 10 rh as follows. We send a beam of photons from a source at r = 5 rh and check

for a scattered beam at a different angular location, again at r = 5 rh (we depict this in

Figure 17). With the photon beam being a coherent wave with wavelength λ ∼ rh , if the

horizon is the semiclassical one then a large part of this beam will be absorbed, while if we

have structure at the horizon then there will be a strong scattered beam.

Figure 17: Experiment inside 10 rh . In (a), we depict the semiclassical horizon, where a beam of photons (red)
sent by an observer (purple) from r = 5 rh is absorbed at the horizon. In (b), we depict that if the horizon has
structure, the beam sent can be collected by another observer at a different angular location of r = 5 rh .

Let us now see what the consequences are of such a claim. For the effective semiclassical horizon, the

effective bits near this horizon are entangled in a state of the form

|Ψ〉1 =
1√
2

(
|0〉b,eff |0〉c,eff + |1〉b,eff |1〉c,eff

)
. (7.9)

Now we modify the spins of the quanta bi at infinity whilst keeping them in their low-energy state,

where they have negligible interactions between each other. Since the effective bits at the horizon
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involve the bi at infinity, there has to be some modification of the state |Ψ〉1 of the effective bits at

the horizon. For the sake of argument, suppose this manipulation of the bi changes the state of the

effective bits at the horizon to

|Ψ〉2 =
1√
2

(
|0〉b,eff |1〉c,eff + |1〉b,eff |0〉c,eff

)
. (7.10)

The state |Ψ〉2 does not give the local semiclassical vacuum at the horizon and the incident beam we

send towards the horizon will scatter and be picked up by the detector. It does not matter of course

what |Ψ〉2 is, all that matters is that there will have to be some manipulation of the bi which will

change the state |Ψ〉1 to some other state. This is because only the state |Ψ〉1 gives the local vacuum

at the horizon through which objects all through smoothly. Thus, we conclude the following:

If we accept (i) and (ii) above, then by manipulating the radiation bits bi at infinity, while keep-

ing them in a low-energy state, we will change the observations that an experimenter at, say, r = 5 rh
will make about the hole.

We consider one more aspect of this argument. Suppose someone were to dispute the above con-

clusion in the following way. We have changed the state of the bi to change the state at the horizon,

but the apparatus we used to detect the nature of the horizon was at r = 5 rh and this apparatus

can also be considered to be made of the effective bits that are used for the low-energy semiclassical

dynamics around the horizon. Could it be that when we change the state of the radiation quanta

bi , we change the state at the horizon and the state of the measuring apparatus, so that overall the

observations of the experimenter appear to be unchanged?

We can, however, easily see that such a line of argument cannot succeed. Consider the Hamil-

tonian H describing the horizon region, including the apparatus at r = 5 rh and let |En〉 be the

eigenstates of this Hamiltonian. Suppose we start with an eigenstate |E1〉 describing the smooth

horizon along with a particular state of the apparatus; this corresponds to some states of the (exact)

bits in the region r < 10 rh and the radiation bits bi . Now we change the state of the bi . Since the bi
are involved in the construction of the state around the horizon, there has to be some change of the

bi which will change the state around the horizon. Suppose the new state is

|Ψ〉 = α1|E1〉+ α2|E2〉+ · · · 6= |E1〉 . (7.11)

The change from |E1〉 to |Ψ〉 has to be detectable by local observations in the region around the

horizon. Thus, we are back to our conclusion above, that manipulating the bits bi at infinity will

change the observations of an experimenter near the horizon. Such a change does not happen for a

piece of coal: manipulating the radiation quanta will not change the observations of an experimenter

near the coal who is scattering photons off the coal. Thus, we would reach the following conclusion:

There are two different kinds of photons bi at infinity, those emitted by normal objects and those

emitted by black holes. Manipulating the state of the photons from coal will not affect any observations

in the interior region containing the coal, but manipulating the state of the photons from a black hole

will change the observations in the interior region containing the hole.
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7.1.4. Using dynamics of the radiation bits at infinity

In Section 7.1.3, we have assumed that the radiation bits bi were low-energy quanta; this is the case

for the typical quantum that is radiated by a large black hole. However, we can consider the situation

where we squeeze these bits bi into a small region so that the new state is |Ψ〉b . Now the bi may

interact with each other and we cannot just treat their state kinematically as we did above. To get

any dynamics different from the case of coal we have to squeeze the bi to a state which is not a state

of normal matter. For the purposes of our discussion, we will call this state a ‘black hole state’.

All the steps in our analysis from Section 7.1.3 remain unchanged. We again conclude that if

we squeeze the bi into a different state |Ψ′〉b , then this difference can be detected by observations

of the hole performed by an experimenter sitting outside the hole at, say, r = 5 rh . The only differ-

ence compared with before is that this time we can argue that the interactions between the bi that

have been squeezed together can generate effects that are not present when the bi are low-energy,

well separated quanta. The quanta bi are far separated from the region r < 10 rh , so how will any

interactions between the squeezed bi manage to affect the dynamics around the hole? The only way

this can happen is if we postulate that a shorter path opens up between the radiation and the region

hole, i.e. a wormhole. Thus, we have the following picture:

Suppose we collapse the radiation degrees of freedom bi into a black hole state |Ψ〉b . Suppose fur-

ther that we can use the bits in r < 10 rh and the bits bi in this state |Ψ〉b to get effective variables

that yield the semiclassical vacuum at the horizon. Then if we collapse the bits bi to a different state

of the black hole |Ψ′〉b , this difference will change the observations of an experimenter at r = 5 rh who

is scattering a photon beam off the hole.

7.1.5. Summary

There have been attempts to have the following picture of the black hole: (i) the hole radiating like

a piece of coal as seen from outside and, (ii) using some combination of bits in the radiation and the

bits in the region r < 10 rh to get ‘effective bits’, in terms of which one sees semiclassical low-energy

dynamics at the horizon. We have seen that this set of goals cannot be met:

(a) Suppose we just use the kinematical properties of the bits, i.e. we just use different

combinations of bits in the radiation and in the hole to get our effective bits. Then

these effective bits cannot reproduce semiclassical horizon dynamics. The reason is that

every entangled state of the hole and the radiation can be reproduced to an arbitrary

approximation by radiation from a box of gas, for which we should not find a smooth

horizon.

(b) We can try to bypass the above conclusion by saying that the bits in the hole have a dynamics

that is special and that this dynamics can somehow enable a semiclassical horizon in terms

of the effective bits. However, then we find that there are two kinds of photons at infinity;

those radiated by a piece of coal and those radiated by a black hole. Manipulating the

former does not change the observations that an experimenter may make in the vicinity of

the black hole, while manipulating the latter will change these observations.

(c) We can try to bypass the conclusion in (b) by arguing that the effective semiclassical behavior

at the horizon only arises when we squeeze the radiation quanta to a small scale, where novel
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physical effects start; we can consider this process as similar to collapsing the radiation

quanta to a black hole. However, collapsing the radiation to a different state of the hole

will destroy the semiclassical behavior at the horizon of the original hole. We can picture

such models as saying that a wormhole opens up between the original hole and the radiation

that has been collapsed to form a second hole. Models of this type have been suggested by

Maldacena [17].

(d) We note that in the cases (b) and (c), the radiation does not behave like the radiation from

coal; manipulating the radiation from coal has no effect on observations near the coal. Thus

overall we find no model where the black hole radiates like a piece of coal as seen from outside

and yet an effective semiclassical horizon dynamics can be obtained using some combination

of bits in the radiation and in the hole.

7.2. The experiment

In the above section, we have seen some ways that nonlocal effects have been postulated for black

holes. To understand the role of these nonlocal effects on the entanglement entropy, we set up the

gedanken experiment that answers the basic question of the information paradox: is the state of the

radiation pure or mixed (i.e. whether or not the total state was entangled or not)?

Consider a black hole B that radiates away, so that we are left with a collection of radiation

quanta R . We wish to know if R is in a pure or mixed state. How will we check which of these is

the case? This is the relevant question to ask at this point, since the following has been an argument

relevant to the wormhole paradigm [39]: to check the purity of the radiation R we need to take

many identical instances of an experiment where the black hole is formed and allowed to evaporate.

Normally we would assume that these different instances of the experiment can be well separated in

space or time (or both), so we do not need to think of any interaction between them. However, in

one approach to the wormhole paradigm, it is argued that these different instances of the experiment

will interact with each other. It has also been suggested that such nonlocal effects should lead to the

prescriptions like (1.10). To understand what this means, we recall what measurements we need to

do to check for entanglement.

Before we come to the black hole, we start with a simpler case. Consider a system of just two

spins and take these spins to be well-separated; we can call one spin B and the other R . The overall

system B ∪ R is assumed to be in a pure state. We wish to know whether R by itself is in a pure

state or if it is in a mixed state (and thus entangled with B ). An example of a pure state for R is

one where the overall state |Ψ〉 of B ∪R is

|Ψ〉factorized =

(
1√
2

(
| ↑〉B − | ↓〉B

))( 1√
2

(
| ↑〉R + | ↓〉R

))
, (7.12)

and an example of an entangled state on B ∪R is

|Ψ〉entangled =
1√
2

(
| ↑〉B| ↓〉R − | ↓〉B| ↑〉R

)
. (7.13)

For our experiment, we have access to the spin R but not to the spin B . We also assume that we

have access to several identically prepared copies of the state |Ψ〉 of the system B ∪ R . How should

we check if the state of R is pure or mixed?
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We proceed as follows. We pass the spin R through a Stern-Gerlach apparatus oriented in the

z direction and see if the the spin comes out (deflected by the magnetic field) in the upper or lower

path. We repeat this process with several instances of the identically prepared state. For each of the

two example possibilities (7.12) and (7.13), we will find that a fraction 1
2 of the time the spin R will

be in +z direction and 1
2 of the time it will be in the −z direction. Therefore, so far we have not been

able to learn if the state of R is pure or mixed. Now we try other orientations of the Stern-Gerlach

experiment. Suppose we orient the apparatus along the x direction. Then for the entangled singlet

state (7.13) we will still find that 1
2 of the time the spin R emerges along the +x direction and 1

2 of

the time in the −x direction. For the pure state (7.12), however, we would find that the spin is along

the +x direction every time. We would thus conclude that in (7.12) the spin R is in a pure state

(and we would have found this state as being along the +x direction). Similarly, we would conclude

that in (7.13) the spin R is maximally entangled with B , since all orientations of the Stern-Gerlach

give the same probabilities ±1
2 of emerging in the two branches.

We thus see that given many identically prepared copies of a system in quantum mechanics, we

can do experiments on one part (R) to check if this part is entangled or not with the remainder of

the system (B ). In a similar manner, we can check the purity of radiation from a piece of coal. In the

case of the coal, R will consist of n � 1 spins which generate a N = 2n -dimensional Hilbert space.

To check the purity of R we will need to measure a large number of identically prepared copies of

R ; this number will typically be some power of N . Such a measurement may seem complicated, but

we are talking here as a matter of principle so it does not matter how many times we need to repeat

the experiment. To summarize, for the radiation from any piece of coal we are in a position to check

the purity of R (when the coal has full evaporated) by measurements performed on a suitably large

number of identically prepared copies of the system.16

Let us now set up the experiment with black holes that will check the purity of Hawking radiation.

We collapse a star to create a black hole with mass M � mp . We let this hole evaporate to radiation

R . We detect the state of this radiation by a complicated set of Stern-Gerlach apparatii placed far

from the hole. We can repeat this experiment in an identical way as many times as we wish, so that

we have many identically prepared states of the system. The question now is: will the measurements

show that the radiation R is entangled or not? Let us contrast the situation between the fuzzball and

wormhole paradigms:

(a) The fuzzball paradigm: Here the collapse of the star creates an object that is just like

a piece of coal. There are no effective variables where we get any approximation to pair

creation like (1.2). The region far from the hole has ‘normal’ physics; i.e.

(i) Degrees of freedom far from the hole are independent of degrees of freedom in the

hole.

(ii) There are no long-distance nonlocal effects in the region far from the black hole.

The Page curve has the form of that of a normal body and the state of the radiation R at the

end of the evaporation is pure. This purity will be manifested in the above experiment by the

16If we look at only a fraction of the n spins that make up the radiation R , then we will not be able to determine if R
is pure or not. Thus, measurements that look at just a fraction of the spins do not have any bearing on the information
paradox.
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measurements done by the Stern-Gerlach apparatii. Different instances of the experiment

can be taken to be well separated in space and/or time and there will be no interaction

between the bits describing these different instances of the experiment.

(b) The wormhole paradigm: This time we require that there be effective variables which

yield an approximation to semiclassical physics at least for the description of a few created
pairs at a time:

|ψeff 〉pair =
1√
2

(
|0〉b,eff |0〉c,eff + |1〉b,eff |1〉c,eff

)
+O(ε) . (7.14)

Now the effective small corrections theorem severely limits one’s choices. If we want the hole

to radiate like a piece of coal; i.e. to satisfy the conditions (i) and (ii) listed in (a) above,

then the Page curve will not come down. Suppose we do want the Page curve to come down

at the end of evaporation. Then we have to violate at least one of the conditions (i), (ii).

At the end of Section 7, we listed three different kinds of nonlocality that can be proposed.

We will now look at each of these proposal one by one.

7.3. Nonlocal effects between black hole interiors: baby universes

Suppose we say that the region near asymptotic infinity has ‘normal’ physics. This means that degrees

of freedom at infinity are independent of the degrees of freedom in the black hole region and also that

there are no long-distance nonlocal interactions in this region, far from the hole. We can still say

that the interior of black holes is a novel kind of region and so new postulates can be made for the

dynamics of this interior region.

We will investigate postulates of the following kind. When the black hole evaporates, its interior

detaches from the parent spacetime as a ‘baby universe’. Thus, this baby universe contains the initial

matter that fell in to make the hole, as well as any negative energy members {ci} of the Hawking

pairs that fell into the hole later.

If we stop at this point, then we just have one version of the well-known remnant scenario, where

the remnant here takes the form of a baby universe. In such a remnant scenario, the radiation R is

not in a pure state; it is entangled with the matter in the baby universe and this mixed nature of R

will manifest itself in the experiment described in Section 7.2. However, we now extend the argument

further. We have seen that to determine whether R is pure or not, we have to take many instances

of the experiment. Let the number of these instances be K , then each of these instances produces a

baby universe. We argue that once the baby universe has detached from the parent spacetime, it does

not have any memory about which instance of the experiment it came from. Thus, if two of the K

baby universes are in the same state, we should treat these systems as if they were ‘identical particles’.

This fact introduces a relation between the different instances of the experiment. There was no such

relation between different instances when we were looking at the evaporation of a piece of coal. It

is then argued that this novel aspect of black hole dynamics with baby universes may help resolve

the information paradox. In fact this relation between different instances of the experiment looks

somewhat similar to the prescription (5.19) where one seeks to link different replica copies. Models

using baby universes in this kind of manner have been considered, for instance, in [40, 41].

As we will see below, such dynamics using baby universes violates unitarity of evolution in the

black hole interior. We will see this violation explicitly, but we first note why such a loss of unitarity
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is naturally expected by what we know from the effective small corrections theorem. Consider the K

different instances of the experiment as being carried out at widely separated locations. Define the

total black hole region as the union of the regions r . 10 rh around each hole and the far region to be

the union of the remainder of the spacetimes. Let Stotalent be the total entanglement entropy between

the total interior region and the far region.

We can now immediately extend the effective small corrections theorem to this situation with

K holes. Suppose that around the horizon of each hole we have effective variables in which we see

semiclassical dynamics at least for the creation of a few pairs in the state

|ψeff 〉pair =
1√
2

(
|0〉b,eff |0〉c,eff + |1〉b,eff |1〉c,eff

)
+O(ε) . (7.15)

Note that the baby universe model described above has the assumption that physics is ‘normal’ in the

region far from the hole – we are only changing the dynamics in the interior regions of the K holes.

We then have all the conditions needed for the effective small corrections theorem, now for the case

where we have K black holes. The theorem will tell us that the entanglement of the exterior region

with the total interior region will grow as

StotalN+1 > StotalN +K ln 2−K(ε1 + ε2) . (7.16)

To see that (7.16) holds, one just has to repeat the steps in the derivation of the effective small

corrections theorem listed in Section 2.1. In particular, note that all we need to prove (7.16) is that

the evolution in the union of the K black hole regions be unitary. If bits leave from the interior of

one black hole and join the interior of another black hole, then this will not affect the derivation of

(7.16).

Note that processes like topology change do not by themselves affect the derivation of the

(effective) small corrections theorem, as long as these processes preserve the unitarity of evolution in

the black hole interior. We had noted this fact in the discussion of Section 4.2. The creation of a
baby universe is a particular case of such a breaking of the slice, where the segment containing all the

{c} quanta breaks off as a baby universe at the endpoint of evaporation. If this creation of the baby

universe was a unitary process, then the effective small corrections theorem would yield (7.16) and

the Page curve would not come down. However, we will now see that if baby universes with the same

content behave like ‘identical particles’, then there is a violation of unitarity in the evolution. To see

this violation of unitarity, consider the following simple model that illustrates the essential issue.17

In Figure 18(a), we depict K black holes, all well separated. Now we consider the following
steps:

1. An entangled pair is created at the horizon of each hole in the state

|ψ〉pair =
1√
2

(
|0〉b|0〉c + |1〉b|1〉c

)
. (7.17)

These quanta lead to an entanglement between the region outside the horizons and the

region inside the horizons equal to

K log 2 . (7.18)

17To present the essential idea, we let the baby universe contain just one bit, but the issue remains the same when we
let the baby universe contain ∼ Sbek bits as we expect it to.
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Figure 18: Non-unitarity in baby universes. In (a) we see spatial slices of K different black holes with the
region to the left of the horizon representing the black hole interior. In (b) a part of the interior breaks away
and forms a baby universe.

We can understand this value as follows. The K quanta of type b outside the horizons

have 2K possible states and they are maximally entangled with the

N1 = 2K , (7.19)

states of the K quanta of type c inside the horizons.

2. In this step, we break off the interior regions of the slices. This generates K different ‘baby

universes’, each of which contains a c quantum. The state of this c quantum can be 0 or

1. Two baby universes with the same state of the c quantum will be in the same state

and we treat them as identical bosonic particles. Then, the number of possible states of

the K baby universes is computed as follows. The number of baby universes where the c

quantum is 0 can be 0, 1, . . . ,K so there are K + 1 possible choices. Thus, the number of

possible states of the K baby universes is

N2 = K + 1 . (7.20)

Now we see the problem: the N1 states at step 1 have been mapped to N2 states at step 2. However,

N2 < N1 , (7.21)

for K > 1. Thus, the evolution ‘kills’ some states, which means that it is not unitary. We took a

very simple example above to show the essence of the problem, but the same problem arises when we

use effective bits |b〉eff , |c〉eff instead of |b〉, |c〉 and if we take more complicated rules for splitting off

baby universes.
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To summarize, we already knew from the effective small corrections theorem that the Page curve

cannot come down in any model that manifests effective semiclassical dynamics (7.17) at the horizon,

assumes infinity is ‘normal’ and requires evolution in the black hole interior to be unitary. In the baby

universe model described above one did want the Page curve to come down, so one must give up on

one of the other conditions. From the analysis of the model we see that the model violates unitarity

of evolution in the union of the black hole interiors.

7.4. Nonlocal effects between different regions near spatial infinity

Let us now consider the possibility that there are nonlocal interactions between the radiation sets

produced by different black holes. The idea behind postulating such an interaction is the following.

Our question is whether the radiation R produced by a black hole is in a pure state or not. To check

the purity of R , we need to take many instances of the experiment where we produce and evaporate

identical black holes. If the radiation Ra from these different experiments (labeled by a) interfere with

each other in some way (Figure 19), then this fact would impact the standard method for checking

entanglement. This, in turn, might offer some way out of the problem of the monotonically growing

Page curve. But we immediately notice an important feature that emerges from any such line of

Figure 19: Radiation of different regions near spatial infinity separated by very long distances. The arrow shows
the interfering such experiments.

reasoning. It is true that the number of instances Ninstances of the black hole experiment we need

will be large, if the radiation R contains a large number of quanta. However, this number Ninstances

is still a finite number. On the other hand, the separation D between the different instances can be

taken to be arbitrarily large. Thus, for sufficiently large D , different instances of the experiment will

not be near each other; rather, they will be separated by an arbitrarily large distance. Thus, whatever

interaction we postulate between different instances Ra of the radiation, must be an interaction that

does not fall off with the distance between the radiation sets.

If there were such an interaction in nature, would we not have detected it in some other way?

To escape this difficulty, we may postulate that this nonlocal interaction arises only between quanta

that have been radiated by black holes and not for example to quanta that have been radiated by a
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piece of coal. This possibility would, in turn, imply that there are two kinds of photons at infinity:

those that have been radiated by black holes and those that have been radiated by coal.

One may try to argue that the radiation from a black hole is very complicated, so that it would

be hard to detect the nonlocal interactions that one has postulated. However, black hole radiation

is not more complicated than the radiation from a piece of coal. The only relevant microscopic scale

for black hole physics is the Planck scale. A black hole with M ∼ 100mp should manifest the general

physics expected from a large black hole, since 100� 1. Such a hole will emit ∼ 104 radiation quanta.

On the other hand, a piece of coal radiates ∼ 1023 photons. In any case we are asking a question of

principle here and it is immaterial how difficult it is to actually measure the nonlocal interaction that

has been postulated.

7.5. Nonlocal effects between the hole and its radiation

We begin in Section 7.5.1 with a discussion of the idea that a holographic approach can help resolve the

paradox. Here the exact theory is described by some holographic bits at infinity, while the spacetime

bits are approximate effective bits, which need not be exactly independent between the hole and the

radiation. One might then think that this non-factorization of degrees of freedom between the hole

and infinity might help resolve the information puzzle. However, we will see that there is a difficulty

with this: the bit at infinity has to behave like a ‘normal’ bit to accord with experiments and then we

are back to the monotonically rising Page curve.

Then we look for possible models where nonlocal effects between the hole and the radiation

could have an impact on the Page curve. As noted in Section 1, there are two kinds of models in

this category. The first is where we have nonlocal Hamiltonian interactions between the radiation and

the hole. We give a bit model of this type in Section 7.5.2. The second approach is where we try to

identify bits between infinity and the hole. We give a model that attempts to get such an identification
in Section 7.5.3.

The Hawking process produces entangled pairs. We have previously written these pairs using

states |0〉b, |1〉b and |0〉c, |1〉c . In this section, it will be more convenient to map these states to states

of an internal spin degree of freedom, which for convenience we call isospin. We let the map be as

follows:
|0〉b → | ↑〉b , |1〉b → | ↓〉b , |0〉c → | ↓〉c , |1〉c → −| ↑〉c , (7.22)

so that the entangled pair (7.17) transforms to a spin singlet

1√
2

(
|0〉b|0〉c + |1〉b|1〉c

)
→ 1√

2

(
| ↑〉b| ↓〉c − | ↓〉b| ↑〉c

)
. (7.23)

7.5.1. The difficulty with invoking holography

Suppose someone makes the following argument. The exact theory is described in a holographic way.

Since we are in asymptotically flat space, we are assuming that some form of flat space holography

exists; let us make this assumption. Then we say that spacetime itself arises as some approximate

construct made out of these holographic bits. In this spacetime let us look at the bits b, c that

are involved in the semiclassical picture of the black hole. Since spacetime emerges only as an

approximation, it may well be that the exact bits used to make b are not fully independent of the

exact bits that are used to make c . The small corrections theorem assumes that once the bit b is far
from the hole, then it is made of degrees of freedom that are independent of the degrees of freedom

343



GUO et al./Turk J Phys

making up the bit c . One would then argue that if b and c are not made of strictly independent

degrees of freedom when we write them out in terms of the exact holographic bits, then there may be

a possibility that the small correction theorem is bypassed and the Page curve somehow comes down.

However, there is a difficulty with any argument of this kind. We have to begin by asking: what

is the meaning of saying that the spacetime bits b and c are not exactly independent of each other?

In our spacetime analysis, we assumed that the bit b has two states; let us call these | ↑〉b and | ↓〉b .
The bit c also has two states | ↑〉c and | ↓〉c . Let the exact holographic states at infinity be |k〉H ,

where H denotes the fact that these are the holographic bits. We must then write

| ↑〉b =
∑
k

C1k|k〉H , | ↓〉b =
∑
k

C2k|k〉H , | ↑〉c =
∑
k

C3k|k〉H , | ↓〉c =
∑
k

C4k|k〉H . (7.24)

Now let us ask again: what is the meaning of saying that b and c are not exactly independent? The

dimension of the space formed by b and c in our spacetime picture was 2× 2 = 4. Regardless of how

we make the bits in a holographic picture, this dimension cannot become a slightly smaller number

3.9; it must remain 4 if we are to be close to the semiclassical picture. So (7.24) must describe 4

linearly independent combinations of the holographic bits |k〉H .

However, then what is the meaning of b and c not being independent? All we can say is

that the linear combinations (7.24) may not be exactly orthogonal, though they are orthogonal in

the usual spacetime picture of quanta. This idea of altering orthogonality runs into a problem with

observations. The bit b moves off to infinity, while the bit c stays in the vicinity of the hole. We can

now do experiments on the bit b to see if the states in (7.24) are orthogonal or not. Suppose we start

with the state
| ↑〉b| ↑〉c , (7.25)

and apply a magnetic field for the appropriate amount of time to b in order to rotate its spin to | ↓〉b .
Then we reach the state

| ↓〉b| ↑〉c . (7.26)

Now perform a measurement on b to check if it in the | ↑〉b state. In normal quantum theory, the

probability to find b in this state is zero because(
c〈↑ |b〈↑ |

)(
| ↓b〉| ↑c〉

)
= 0 , (7.27)

but if we change the dot products between the 4 states spanned by b and c then we can have(
c〈↑ |b〈↑ |

)(
| ↓b〉| ↑c〉

)
= ε 6= 0 . (7.28)

This will then force one to the conclusion that photons radiated from a black hole behave differently at

infinity than photons radiated from coal, as measured by experiments at infinity. The general problem

with any picture which tries to say that the true nature of bits is holographic and that spacetime is

only an approximate, emergent construct is outlined as follows:

(a) One might for instance imagine that spacetime is built of a tensor network. There is nothing

wrong with a tensor network, just as there is nothing wrong with modeling spacetime as a

cubical lattice of points with field variables on them.
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(b) However, for any such model, we must insist that the normal lab physics must emerge for

low-energy variables at infinity.

(c) Once we require this, it does not matter how we model our spacetime, the conclusion is

the same: the bits at infinity have to behave as degrees of freedom that are independent of

those in the hole.

(d) It is crucial that the hole has finite mass and so emits a finite number of particles, while

space itself is infinite; thus, we can take the finite number of emitted quanta as far away

from the hole and from each other as we want, and then analyze them by standard lab

apparatus at leisure. Since we have all the space and time to make measurements, we can

require that these quanta behave as normal quanta to arbitrary accuracy; in particular, they

cannot be made of degrees of freedom that are dependent of degrees of freedom elsewhere
in spacetime.

To us, it appears that this leaves no room for resolving the puzzle by saying that the exact bits are

holographic while the spacetime bits are approximate and not really independent between the hole

and infinity.

7.5.2. Using small nonlocal interactions

Suppose that at the horizon we create Hawking pairs in the usual way in the state

|ψ〉pair =
1√
2

(
| ↑〉b| ↓〉c − | ↓〉b| ↑〉c

)
. (7.29)

This is an entangled state, with an entanglement entropy of log 2 between b and c . An example of a

nonentangled state would, for example, be simply

|ψ̃〉pair = | ↑〉b| ↓〉c . (7.30)

We make a model where the entangled state |ψ〉pair changes to the nonentangled state |ψ̃〉pair
gradually, so that the effect is difficult to detect if we are looking at the b quantum for a time

that is short compared to the Hawking evaporation time. Let

σ+ =
1

2

(
σ1 + iσ2

)
, σ− =

1

2

(
σ1 − iσ2

)
, (7.31)

and consider the operator

Ô = σ−b σ
+
c − σ+

b σ
−
c . (7.32)

We see that

Ô | ↑〉b| ↓〉c = | ↓〉b| ↑〉c , Ô | ↓〉b| ↑〉c = −| ↑〉b| ↓〉c , Ô | ↑〉b| ↑〉c = 0 , Ô | ↓〉b| ↓〉c = 0 . (7.33)

For small ε , we find

eεÔ|ψ〉pair =
1√
2

(
(1 + ε)| ↑〉b| ↓〉c − (1− ε)| ↓〉b| ↑〉c

)
, (7.34)
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so that the state |ψ〉pair rotates slightly towards the nonentangled state |ψ̃〉pair . Our model will use

the nonlocal interaction generated by Ô between the hole and its radiation to bring the Page curve

down at the end of Hawking evaporation.

Let the total number of pairs created by the black hole be N . Consider the k th pair which is

created in the state

|ψ〉(k)
pair =

1√
2

(
| ↑〉bk | ↓〉ck − | ↓〉bk | ↑〉ck

)
. (7.35)

There are N − k further steps in the evaporation process after the creation of this pair. In each of

these steps we assume that the state of the bk, ck is modified by the action of the operator

e
1

N−k
π
4
Ôk with Ôk = σ−bkσ

+
ck
− σ+

bk
σ−ck . (7.36)

At the end of the evaporation process, the state of the bk and ck pair is

e
π
4
Ôk |ψ〉(k)

pair = | ↑〉bk | ↓〉ck , (7.37)

such that bk and ck are in a nonentangled state.

The above expressions describe the effect of our nonlocal interaction on one entangled pair. Let

us now write down the nonlocal interaction that acts on all pairs that are produced in the evaporation

process. After step n of the evaporation process we apply the following nonlocal operator to the

quanta {bi, ci} (with i = 1, . . . , n)

P̂n =

n∏
k=1

e
1

N−k
π
4
Ôk . (7.38)

We can see that as long as we are not near the endpoint of evaporation; i.e. that N − n � 1, the

change to any quantum bk at infinity over the timescale of one Hawking emission is small. The overall

change to all the quanta at infinity is not small in any one step, since each quantum bk suffers a

change. However, if we look only at a few b quanta and only over a time that is short compared to

the Hawking evaporation time, then we will find it hard to detect the change in the radiation quanta

b .

In this model, we have maintained the semiclassical Hawking pair creation at the horizon (7.29).

We have still managed to bring the Page curve down to zero at the end of the evaporation process,

by using nonlocal interactions between the hole and infinity. But we must note two things:

(a) The evaporation process is not like that of a piece of coal, since the state of the radiation

quanta has been modified after the quanta have receded far from the hole and it is this mod-

ification which removed the entanglement. Thus we violate condition (C1) of Section 1.1.1.

(b) We do not know of any effects in string theory that will create nonlocal effects like the one

we used in the above model.

7.5.3. Identifying bits between the hole and the radiation region

We had seen in Section 1.1.7 that one class of wormhole models seeks to argue that bits are not

independent between the region r < 10 rh and the distant radiation region. This argument then
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proceeds by noting that most models of black hole evaporation assume that bits in the black hole and

at infinity are independent and so such models are not relevant to the actual physics of black holes.

The argument may then continue by saying that in gravity the information is ‘in some way’ nonlocally

encoded and perhaps is already at infinity, so one should not worry about an information paradox (for

some arguments of this kind, see [42, 43]).

However, such arguments face some immediate difficulties. In the lab we can make two well

separated qubits and, to the accuracy of our lab measurements, these two behave as independent

degrees of freedom. One can certainly argue that quantum gravity effects can make some small

change to this independence – a change that is too small to have been observed in the lab so far.

However, then one has to answer the following questions:

(a) What exactly is the small change that we should make to independent bits so that they are no

longer independent and how will this change resolve the problem of growing entanglement?

It does not help to just say that the bits in the black hole and infinity are not exactly

independent and so all earlier arguments are incorrect. One has to show what the meaning

is of having bits that are not independent and to also show how in a lab setting one does

get approximately independent bits in agreement with experiments.

(b) These models also seek to maintain semiclassical dynamics around the horizon. However,

this dynamics gives rise to entangled pairs b, c . Such a pair has 2 × 2 = 4 independent

states. When the b quantum moves to infinity, it increases the entanglement of the radiation

with the hole by log 2. If we now wish to argue that quanta in the hole and at infinity

are not independent, then we have to require that this identification happen after c falls

deep into the hole; if we identify b and c while they are in the horizon region, then they

will not reproduce the 4-dimensional Hilbert space that is required by the semiclassical

approximation. Therefore, abstract arguments about bits not being independent do not

help; one has to show what exactly happens such that one gets approximately independent

bits at the horizon and yet avoids the monotonic growth of entanglement of the black hole

with its radiation.

(c) It also does not help to argue that in gravity the ‘information is somehow encoded at infinity’.

The information paradox can be cast as a precise question about observations of low-energy

quanta at infinity: we have described this experiment in Section 7.2. Qubits in the lab have

all the effects of quantum gravity acting on them since we cannot switch off quantum gravity

in the real world. Similarly, the radiation bits in the gedanken experiment of Section 7.2

have all the effects of quantum gravity acting on them. Any argument that the ‘information

is somehow at infinity’ has to be explicit about what happens to the radiation quanta when

they are passed through a Stern–Gerlach type apparatus at infinity and how the Page curve

measured by such an experiment will come down.

In what follows we will try to investigate the idea of ‘degrees of freedom not being independent between

the hole and the radiation’ by making simple bit models. In each case we find that the model runs

into difficulties, either with loss of unitarity or with quanta at infinity not behaving in accordance

with expected low-energy dynamics. It is certainly possible that the proponents of the idea of ‘non-

independent bits’ have different models in mind; in that case the discussion below should hopefully

trigger an investigation of explicit simple models to clarify what the proposed ideas are.
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We had noted in Section 1.1.7 that there were two ways in which we can seek to identify c with

b after c falls deep in the hole and b moves off to infinity. In method (i), we simply identify the states

of these two bits, which drops the 4-dimensional Hilbert space to a 2-dimensional Hilbert space via

the identification

|0〉b|0〉c → |0〉b|0〉c , |1〉b|1〉c → |1〉b|1〉c , |1〉b|0〉c → 0 , |0〉b|1〉c → 0 . (7.39)

This is a nonunitary evolution and we will not explore this model further.

In method (ii), we keep all 4 states of the b, c pair, but introduce a nonlocal interaction which

raises the energy of 3 of the states. Then the low-energy space has a relation between the states of

the b, c bits. We now explain this model in more detail and note that the consequence of such an

interaction is that the b bit at infinity will not behave like a normal bit in experiments.

Consider again just one entangled pair, with the states | ↑〉b , | ↓〉b for the radiation bit and

| ↑〉c , | ↓〉c for the bit in the black hole. There are 4 states overall for this system. We can write these

states as a singlet and a triplet of isospin

J = 0 , M = 0 : |0, 0〉 =
1√
2

(
| ↑〉b| ↓〉c − | ↓〉b| ↑〉c

)
,

J = 1 , M = 1 : |1, 1〉 = | ↑〉b| ↑〉c ,

J = 1 , M = 0 : |1, 0〉 =
1√
2

(
| ↑〉b| ↓〉c + | ↓〉b| ↑〉c

)
,

J = 1 , M = −1 : |1,−1〉 = | ↓〉b| ↓〉c .

(7.40)

Now suppose we add a nonlocal interaction between the b and c quanta such that the triplet state is

raised to a very high energy. Then the low-energy physics can access only the singlet state and in this

state the spin of the b quantum is tied the spin of the c quantum. We may, therefore, regard this as

a situation where the radiation bit b has been ‘identified’ with the bit in the black hole c . As we will
now see, however, imposing such an identification will affect the dynamics of the radiation bit b in a

way which will make it behave in a way that is different from what we would expect for normal bits

at infinity; i.e. bits that have not emerged as members of Hawking pairs radiated by the black hole.

We will consider Hamiltonians that are invariant under isospin rotations; such Hamiltonians on

the b, c pair of spins can be written as

H = AI +B ~σ(b) · ~σ(c) , (7.41)

where A and B are real-valued constants. We define the total isospin

~σ(T ) = ~σ(b) + ~σ(c) , (7.42)

which gives the identity

~σ(b) · ~σ(c) =
1

2

(
(~σ(T ))2

)
− 3I . (7.43)

Let J denote the angular momentum quantum number of the total isospin; thus, J = 0 for the singlet

and J = 1 for the triplet. We have (~σ(T ))2 = 4J(J + 1), giving (~σ(T ))2 = 0 for the singlet and
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(~σ(T ))2 = 8 for the triplet. We can raise the energy of the triplet by assuming an interaction between

the b and c quanta of the form

Hwormhole = A
(
~σ(T )

)2
with A > 0 . (7.44)

In the limit where we take A to be large, the triplet will be inaccessible to low-energy dynamics. The

quanta b, c can then be said to be ‘identified’ since knowing the state of one of them gives the state of

the other as determined by the form of the singlet J = 0 in (7.40). Let us now look at the dynamics

that we get by including such an interaction. The b quantum is at r � M near asymptotic infinity,

while the c quantum is in the black hole. We are now interested in the dynamics of a b quantum

which is connected to a c quantum by a wormhole through an interaction of the form (7.44). In the

absence of the wormhole interaction, let us assume that the dynamics of the b quantum is given by a

Hamiltonian H
(b)
normal . If b is connected by a wormhole to c , then the total Hamiltonian is

Htotal = H
(b)
normal +Hwormhole . (7.45)

As a concrete example, we take

H
(b)
normal = Bσ(b)

z , (7.46)

and so

Htotal = A
(
~σ(T )

)2
+Bσ(b)

z . (7.47)

We wish to compute the action of the evolution operator

U(t) = e−itHtotal , (7.48)

on the states (7.40). Note that

σ(b)
z |0, 0〉 = |1, 0〉 , σ(b)

z |1, 0〉 = |0, 0〉 , (7.49)

and so the singlet state does not remain a singlet under the action of σ
(b)
z . For an infinitesimal time

interval dt , we obtain a matrix in the 2-d space spanned by {|0, 0〉, |1, 0〉} . We have

U(dt)|0, 0〉 =
(

1− idtA
(
~σ(T )

)2)(
1− idtBσ(b)

z

)
|0, 0〉

=
(

1− idtA
(
~σ(T )

)2)(|0, 0〉 − idtB|1, 0〉) = |0, 0〉 − idtB|1, 0〉 , (7.50)

U(dt)|1, 0〉 =
(

1− idtA
(
~σ(T )

)2)(
1 + idtBσ(b)

z

)
|1, 0〉

=
(

1− idtA
(
~σ(T )

)2)(|1, 0〉 − idtB|0, 0〉) = |1, 0〉 − idtB|0, 0〉 − idtsA|1, 0〉 . (7.51)

Thus, the effective Hamiltonian in the 2-d space spanned by {|0, 0〉, |1, 0〉} is

Heff =

(
0 B
B 8A

)
, (7.52)
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with the eigenvalues

λ = 4A+
√

16A2 +B2 , λ = 4A−
√

16A2 +B2 . (7.53)

We now see that if there is a quantum near spatial infinity that does not have the wormhole interaction

(7.44), then we would obtain expressions similar to the above with A = 0. Since we need A to be

large in the wormhole interaction, we see that the eigenfrequencies obtained in the evolution operator

U will be very different for the cases with and without the wormhole interaction.

8. The requirements for a bit model of the wormhole paradigm

We have investigated several bit models for the wormhole paradigm. In these models, we have explicitly

seen the nonlocalities required in the exact theory between the region r < 10 rh and the region near

infinity. It is important to explore these and other such models, since any nonlocalities claimed for the

exact theory must ultimately be shown to exist as effects in string theory or whatever other theory of

gravity one has in mind.

In this section, we will give explicitly the requirements for any bit model of the wormhole

paradigm. As we have noted at the start of this article, it is very possible that our bit models do

not capture what some of the proposed models are saying. However, any such proposed model, when

recast in its essential terms of a bit model, must satisfy the criteria listed below. Recasting the model

in these terms will make manifest the requirement of nonlocality.

In Appendix B we give, as an example, a bit model for Hawking pair creation at the horizon.

For the wormhole paradigm, we have effective fields instead of the semiclassical fields used by Hawking

and so we have to replace the bits in Appendix B with effective bits. The bit model must, therefore,

have the following features:

(1) For the wormhole paradigm, we require a smooth horizon in some effective variables. Con-

sider a mode of the effective field straddling the horizon. When this mode has wavelength

r . rh/10, say, then this mode is in approximately the vacuum state. In the bit model

of appendix B we model this mode at this stage by two coupled harmonic oscillators. The

state of these coupled oscillators must be the vacuum state. Thus, we need the analogue of

(B.17):

â†eff,i|0〉eff,a = 0 , i = 1, 2 . (8.1)

(2) The requirement of low-energy semiclassical dynamics at the horizon gives, say, an effective

scalar field satisfying �φeff ≈ 0. With these dynamics, the field mode in (1) above stretches

as it evolves along the horizon. When the wavelength of the mode becomes & rh , a pair

of on-shell quanta beff , ceff emerge from this mode. In the bit model using two harmonic

oscillators in (1) above, the two oscillators are decoupled since they correspond to parts of

the mode that are well separated. Following the steps in appendix B, we must then get the

effective field analogue of (B.27)

|0〉eff,a = Ce−
a

4ω2
b̂†eff ĉ

†
eff |0〉eff,b ⊗ |0〉eff,c . (8.2)
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(3) The requirements (1), (2) spell out in bit model terms what it means to have semiclassical

dynamics (1.2) at the horizon. We now add the other requirement of the wormhole paradigm:

the bits at infinity have a Page curve that comes down at the end of the evaporation process.

In our investigations, we have not found any bit model for the wormhole paradigm which involves

the black hole radiating like a piece of coal as seen from outside; this is expected since the effective

small corrections theorem of Section 2 forbids this possibility. We have found models of the wormhole

paradigm where there are nonlocal Hamiltonians between the region r < 10 rh and infinity, or a

nonlocal transfer of bits from r < 10 rh to infinity through a wormhole.

There has been a quite some confusion on what the wormhole paradigm is saying and so it

is particularly important to have a picture in terms of the simple bit model described above. In

particular, it is important to note that effective semiclassical dynamics at the horizon needs both

conditions (1) and (2) above: (1) tells us that how the modes should be entangled at the horizon if

they are to generate a smooth manifold and, (2) tells us the consequence of the dynamics �φeff ≈ 0.

Thus, (1) and (2) together incorporate Hawking’s observation that a smooth horizon leads to the

creation of entangled pairs.

These observations are important for models of the following kind. Suppose we say that our

effective description gives a smooth horizon in the region rQES < r < rh , where rQES is the radius

of a quantum extremal surface. Suppose we also say that the region r < rQES is an ‘island’ where

the degrees of freedom are some combination of the radiation modes {b} at infinity.18 It may seem

that with these two statements we have maintained a smooth horizon and also allowed ourselves a
departure from semiclassical physics in the region r < rQES inside the hole. However, here we will

face a conflict with the semiclassical dynamics conditions (1) and (2) above. The smoothness of the

horizon will give (8.1) and then (2) will give the entangled pairs (8.2) that move into the island. The

crucial point is that the dynamics �φeff ≈ 0 forces the fact that the ceff quanta falling into the island

are made out of the same oscillator degrees of freedom that gave the horizon modes yielding (1). This

follows from the analogue of (B.21) for the effective modes

f1âeff,1 + f∗1 â
†
eff,1 + f2âeff,2 + f∗2 â

†
eff,2 = g1b̂eff + g∗1 b̂

†
eff + g2ĉeff + g∗2 ĉ

†
eff . (8.3)

Thus, we cannot make an arbitrary choice of what the ceff quanta in the island are, or what they are

entangled with; in particular we cannot say that these ceff quanta are made of the bits describing

the earlier radiation quanta {b} . We need some explicit nonlocal interactions that transfer the

entanglement from the ceff falling into the island to the radiation quanta at infinity.

9. Discussion

Let us summarize our observations. The information paradox stems from two observations:

(i) The no-hair results imply that the quantum state around the horizon is the local vacuum

state |0〉 .

18The quanta beff must reduce to exact quanta b when they reach infinity since we assume that physics at infinity is
‘normal’.
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(ii) Such a vacuum state |0〉 produces entangled pairs in the state

|ψ〉pair =
1√
2

(
|0〉b|0〉c + |1〉b|1〉c

)
, (9.1)

giving rise to a monotonically increasing entanglement entropy Sent between the radiation

and the remaining black hole.

These arguments can be made precise by adding the result of the small corrections theorem:

(iii) Small corrections to the state of the created pairs

|ψ〉pair =
1√
2

(
|0〉b|0〉c + |1〉b|1〉c

)
+O(ε) , ε� 1 , (9.2)

cannot resolve the problem, since we get for the entanglement after N steps of pair creation

Sent(N + 1) > Sent(N) + ln 2− 2ε . (9.3)

The only assumption in obtaining (9.3) is that the radiated quanta b have no relevant

interaction with the remaining hole after they move to distances r � rh from the hole; this

assumption just mirrors the behavior of photons that are radiated from a piece of burning

coal.

The fuzzball paradigm resolves the information paradox by violating (i). Explicit construction of

brane bound states in string theory yield horizon-sized quantum ‘fuzzballs’ which are microstates

with no horizon. Thus, we do not get the vacuum |0〉 around a horizon that was used in the Hawking

computation and fuzzballs radiate from their surface like a normal body, not through pair creation.

Thus, the Page curve comes down to zero at the end of the evaporation process as it would for a piece

of burning coal.

The wormhole paradigm does not seek to resolve the information paradox as stated in (i)-(iii).

Instead, it starts by assuming that some hitherto unknown quantum gravity effects cause the Page

curve in the exact theory come down to zero at the end of the evaporation process. The goal of the

paradigm is to see how such a behavior of the Page curve can be made compatible with dynamics

where semiclassical low-energy dynamics emerges in some approximation around the horizon: i.e. that

effective pair production occurs in the state

|ψeff 〉pair =
1√
2

(
|0〉b,eff |0〉c,eff + |1〉b,eff |1〉c,eff

)
+O(ε) . (9.4)

However, such a goal runs into an immediate issue. Suppose we require that the effective quanta beff

and ceff are made from the degrees of freedom in the region around the hole (say r < 10 rh ) and also

that there are no relevant nonlocal effects connecting the hole to the distant region (say r > 100 rh ).

Then we can make a simple adaption of the small corrections theorem to obtain the ‘effective small

corrections theorem’ where the Hawking quanta b and c in (9.2) are replaced by effective quanta beff

and ceff . One then finds that the requirement of (9.4) implies that the Page curve of the exact theory

must keep rising monotonically.
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The wormhole paradigm seeks to get around this problem by using various kinds of nonlocal

effects between the region around the hole r < 10 rh and the distant radiation. Different approaches

have suggested different kinds of nonlocalities, so it is useful to keep track of the aspects (A1)–(A4)

listed at the start of Section 1.

It is sometimes said that in the wormhole paradigm we assume the ‘central dogma’: that, as

seen from outside, the black hole radiates like a piece of coal. However, a piece of coal satisfies

the properties (C1)-(C3) listed in Section 1.1.1 and these properties say that there are no relevant

nonlocal interactions between the coal and its distant radiation. If we assume that there are no such
interactions, then the only kind of nonlocality we are left with is where we use both variables at

r < 10 rh as well as variables in the radiation region to make the low-energy effective variables near

the horizon. However, as we saw in Section 7.1, with such a construction of effective variables we

are forced to the following situation: if we manipulate the exact bits in the radiation at infinity, then

we can alter the dynamics that is observed in experiments in the black hole region r < 10 rh . Some

authors have noted this behavior as a feature of the wormhole paradigm, but others have not noted

this nonlocality explicitly.

Other approaches to the wormhole paradigm invoke nonlocal Hamiltonian interactions between

the hole and its distant radiation. A bit model for such nonlocal interactions can be made where
observations of only a few radiation quanta for a short time will make it hard to see the nonlocality,

while the Page curve still comes down to zero at the end of the evaporation process (Section 7.5.2).

We do not, however, know of any such nonlocal effects in string theory. It should be also noted that

such models do not satisfy the ‘central dogma’ since the region outside a piece of coal does not have

any relevant nonlocal effects with the coal.

We also investigate several other models which have been proposed. In each case we either

find nonunitarity of evolution, or the fact that radiation quanta at infinity will behave differently in

experiments from radiation quanta obtained from a piece of coal.

There have been suggestions that simple semiclassical computations with gravity can tell us that

the Page curve will come down like the Page curve of a normal body. We have argued that such is not

the case: we did not find any way to obtain a decreasing Page curve from gravity without inputting

this decrease via some feature of the exact quantum gravity theory. In our investigations of (1+1)-

dimensional quantum gravity, we found that the possibility of topology change in gravity does not

imply that there should be a wormhole connecting different replica copies. Rather, the prescription

(1.10) that is used in the Page curve argument was an independent postulate that replaces the Rényi

entropy by a different quantity. It is the curve stemming from this different quantity that comes down,

not the Page curve deduced from the original Rényi entropies. Thus, we note a difference between the

semiclassical Page curve arguments and the Gibbons–Hawking computation of black hole entropy: in

the Gibbons–Hawking computations the starting point is a path integral that gives the entropy for

any quantum system, while our investigations so far indicate that this starting point is itself altered

in the semiclassical Page curve arguments.

Thus, we have to go further and ask for the origin of a prescription like (1.10). We have

noted that Euclidean path integrals can be used as a ‘trick’ to generate entangled states, but that

these tricks should be distinguished from true interactions that we may introduce in the theory. The

essential constraint arises from the map geff = F [gexact] (eq.(1.11)) between the exact variables of the

gravity theory and the effective semiclassical variables; this map then determines the dynamics of the

effective theory (1.12) as well as the form of quantities like the Rényi entropy through a relation like
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(1.13). The wormhole paradigm does not seek to give the map geff = F [gexact] , but any modification

to definition of the Rényi entropies that we have for the effective theory must stem from some feature

of the exact theory via the map (1.11). We noted that due to the effective small corrections theorem,

this map cannot be one where the effective degrees of freedom are obtained from some combination of

the degrees of freedom in the region r < 10 rh (and no nonlocal interactions are introduced between

the hole and its radiation). Thus, some fundamental nonlocalities between the hole and its radiation

need to be introduced to get a prescription like (1.10) used in the Page curve argument. We do not

have an understanding of what nonlocalities can give (1.10), but we explored different possibilites that

have been suggested in the wormhole literature and noted that they have nontrivial consequences for

observations on the radiation at infinity.

We note that there have been quantum mechanical models made to explain the possibility of

having traversable wormholes [44, 45]. In our understanding, such models seek to find a semiclassical

gravity model having a wormhole, where this wormhole gives an effective description of quantum

teleportation between two entangled quantum systems (which have a classical communication channel

also present between them). In the discussion of teleportation in [45] one adds a bilocal operator

between the two regions of the form

eig̃OLOR , (9.5)

where OL and OR are operators on the two different systems and g̃ is a constant. The corresponding

effect in the wormhole paradigm for black hole evaporation would be a bilocal operator that connects

the region r < 10 rh to the region near infinity. Such an operator would be like the bilocal operator

that we had in the model discussed in Section 7.5.2, where interactions between the hole and infinity

were invoked bring the Page curve down. In the model of Section 7.5.2, we had an interaction

Ô = σ−b σ
+
c − σ+

b σ
−
c , (9.6)

where b was an exact quantum near infinity and c was an exact quantum in the region r < 10 rh .

Thus, if we could extend the teleportation model to the problem of black hole evaporation, then

we would be saying: (i) the exact theory has a nonlocal interaction between the region r < 10 rh
and infinity and (ii) there is an effective semiclassical description of this exact nonlocal interaction

where the horizon is smooth and the information appears to escape to infinity through a semiclassical

wormhole. Note that the nonlocal interaction in the exact theory makes the hole different from a piece

of coal: the nonlocal interaction violates condition (C1) of Section 1.1.1. Note that the following is

impossible by the effective small corrections theorem: (i’) the hole evaporates like a piece of coal (no

nonlocal interactions in the exact theory between the region r < 10 rh and infinity and, (ii’) in an

effective description we get a wormhole transporting information out to infinity through a wormhole.

In establishing that this combination of requirements (i’) and (ii’) is impossible, it is important to

note that at infinity the semiclassical description of quanta has to agree with the exact description,

since we define quanta at infinity by experiments done at infinity.

It has been suggested that the nonlocalities of the wormhole paradigm are somehow automat-

ically present in string theory or perhaps in any theory of quantum gravity. We do not believe such

is the case. We hope to discuss this issue in a separate article. Here we just note that in the fuzzball

paradigm there are no such nonlocalities between the fuzzball and its radiation: the fuzzball indeed

radiates just like a piece of coal and there are no effective variables where we get the semiclassical
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dynamics (9.4). Thus, the fuzzball paradigm gives a natural and conceptually simple resolution of the

information paradox.
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A. Some details of the fuzzball paradigm

In this appendix, we review some aspects of the fuzzball paradigm.

A.1. How fuzzballs differ from the traditional hole

Let us first recall the set-up used in Hawking’s original computation which yielded the information

paradox [1]. Classically, the black hole spacetime is a vacuum outside of the central singularity. At

the quantum level, one assumes that physics is semiclassical outside a Planck radius of the singularity

r = 0, so away from this singularity we need to consider only small fluctuations hµν around the

classical background ḡµν

gµν = ḡµν + hµν , |hµν | � 1 . (A.1)

Consider for concreteness a solar-mass black hole; then the horizon radius is rh ≈ 3 km. For a ball-

shaped region around the horizon with radius rb � rh , say rb = 100 m, the state of our quantum

fields in this ball ( |ψ〉) is close to the local vacuum state |0〉 . Thus, we write

〈0|ψ〉 = 1− δ1 , |δ1| � 1 . (A.2)

With this state, the natural evolution of quantum fields on curved space gives the creation of entangled

pairs in the state

|ψ〉pair =
1√
2

(
|0〉b|0〉c + |1〉b|1〉c

)
+O(ε) . (A.3)

This pair creation leads to the information paradox.

A fuzzball is in principle no different from a normal body like a planet or star; one may call it

a ‘string star’. Thus, we do not have (A.1) and in particular we do not have a vacuum region around

r = rh . If we draw a ball-shaped region of radius rb � rh and consider the state |ψ〉 in this region,

then this |ψ〉 will not be at all close to the vacuum. Thus, we write

〈0|ψ〉 = 1− δ2 , |δ2| ∼ 1 . (A.4)

Further, we will not have the evolution giving the pair creation (A.3); the emission from the fuzzball

will depend on the details of the particular fuzzball state that we have taken.
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A.2. Construction of fuzzball microstates

The relation (A.4) and the consequent absence of (A.3) characterize the fuzzball paradigm. However,

this characterization just defines what a fuzzball is. To establish that the fuzzball paradigm resolves

the information puzzle one has to show that in string theory the microstates of black holes actually

have this fuzzball nature. In particular, one has to understand how states in string theory bypass the

traditional no-hair theorems and constraints like the Buchdahl theorem. Constructing examples of

fuzzballs and understanding their nature has been a key task of the fuzzball program.

Interestingly, this ‘fuzzball construction’ requires one to use all the detailed properties of string

theory. If one makes a numerical error in the tension of a brane or in the relation between the string

coupling g and Newton’s constant GN , the fuzzball structure can collapse, develop closed time like

curves, or have singularities that do not correspond to valid brane sources in string theory. However,

when all computations are done correctly for any microstate, then one has always found a fuzzball

rather than a black hole with horizon.

Roughly speaking, one can think of the fuzzball as a region where the compact directions are

not trivially tensored with the noncompact ones. In [15] it was shown how the structure of fuzzballs

bypasses the assumptions of the traditional no-hair theorems. In [46] a toy model was used to observe

how Buchdahl-type theorems are bypassed.

It is sometimes claimed that the fuzzball paradigm is not fully established because the fraction

of microstates that have been explicitly constructed is small. But this is an incorrect argument. For

the simplest black hole – the 2-charge extremal hole – all microstates have been constructed and are

found to be fuzzballs [3, 5, 6]. For more complicated holes, one cannot currently find all microstates in

closed form. Instead, one constructs specific examples of fuzzballs corresponding to different corners

of configuration space [7–12]. By now, so many of these corners have been explored that it does not

look possible for any state in string theory to not be a fuzzball.

More precisely, we construct fuzzball states the way we would construct states of black-body

radiation. For black-body radiation, we can explicitly write down the quantum wavefunction for the

case where we have a few photons and we can also explicitly write a classical electromagnetic field to

describe the limit where we have many many photons but distributed only over a few Fourier modes.

The qualitative nature of the generic case (where we have many photons with occupation number ∼ 1

per mode) can be inferred from these limits. Similarly, we can construct fuzzballs which have a few

quantum string excitations around a classical geometry (see for example [47–49]) and also the limit

where we have a large number of excitations in the same state (see for example [50] where it was

found that a large number of strings in the same state yield a new classical geometry). In both limits

the microstates are fuzzballs with no horizon. We construct these limits as a demonstration that the
no-hair theorem is broken in string theory. Note that a fuzzball is a quantum state of the full string

theory; it is not a classical geometry, though for special states which are close to being coherent states

one might be able to describe the fuzzball by giving the geometry that corresponds to the expectation

value of the supergravity fields in the coherent state.

The argument for the fuzzball paradigm is completed by using the (effective) small corrections

theorem: if any microstate did have the horizon behavior (A.4), then the information paradox cannot

be resolved without an order unity violation of causality in string theory (i.e. without an introduction

of nonlocal interactions between the hole and its radiation).
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A.3. Understanding the fuzzball resolution to the information paradox

There has existed a certain misconception about the information paradox itself. This misconception

has prevented people from understanding how the fuzzball construction program has resolved the

information paradox.

Consider the following two connected beliefs: (i) we can assume, without working to demonstrate

it, that some complicated string interactions will change the semiclassical black hole to a complicated

quantum gravitational mess that will radiate like a piece of coal and, (ii) the goal of the information

paradox is, therefore, to explain how effective semiclassical behavior will emerge from this quantum

mess. Neither of these two beliefs are correct.

The information paradox arose because the no-hair results indicated that the black hole horizon

has the vacuum state |0〉 in its vicinity. This vacuum gives the pair creation (A.3) and leads to the

problem of monotonically growing entanglement entropy. Perturbative string theory does not help in

resolving this problem; a string loop falls through the horizon like any other object would fall and the

horizon returns to the state |0〉 . Non-perturbative string theory might change this situation, but the

whole issue is to find out if and how this happens. The fuzzball construction accomplishes precisely

this task, showing that microstates in string theory break the no-hair theorem by having sources of

extended objects, a non-product structure of compact and noncompact directions, etc., with different

mechanisms appearing in different duality frames. This demonstration that the no-hair theorem is

violated in string theory by the fuzzball construction resolves the information paradox. But as noted

in Section A.2, the fuzzball structure utilizes all the precise details of string theory. Thus the belief

(i) is incorrect and misses the whole point of what we need to do to resolve the paradox.

As noted above, people with the above two beliefs asked for more fuzzball constructions before

they would accept the fuzzball resolution. Why was that? After all, we do not construct all possible

states of planets to agree that planets do not have an information paradox. Once we have understood

how the no-hair theorems are broken in string theory, we should accept that the paradox is over. One

may certainly study more and more fuzzballs to learn about the beautiful physics of these objects, but

removing the paradox itself needs only a set of examples demonstrating that the central assumption

– the vacuum |0〉 at the horizon – need not hold in string theory.

The reason why people with the beliefs (i) and (ii) wanted to see more and more fuzzballs

constructed was the following. They noted that the examples of fuzzballs which had been constructed

behaved just like pieces of coal with no horizon. However, by belief (ii), they expected that when

more general fuzzballs were constructed, the generic fuzzball would exhibit the effective semiclassical

behavior (2.3). But the effective small corrections theorem tells us that this is not even possible! If the

effective behavior (2.3) emerges for some microstates, then in the exact theory these microstates cannot

radiate like a piece of coal. Thus, the belief (ii) is incorrect and has led to people not understanding

that the fuzzball constructions have already told us how the information paradox is resolved in string

theory.

A.4. Fuzzball complementarity

A common question about fuzzballs is the following. Given that the entire interior of the hole has been

replaced by a fuzzball structure and that the semiclassical approximation (2.3) cannot be obtained in

any effective variables, is the traditional black hole geometry of any relevance at all?

The effective semiclassical modes (2.3) refer to the dynamics of modes that have energy E ∼ T ,
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where T is the temperature of the hole; this is because the typical Hawking quantum will have an

energy of the order of the temperature of the hole. The effective small corrections theorem says that

the low-energy approximation (2.2) cannot arise as an effective description of the fuzzball; else the

Page curve will not come down in the exact string theory description of the fuzzball. However, this

still leaves open the possibility that there could be simple effective dynamics for infalling objects with

energy E � T , and that this effective dynamics reflects the geometry of the traditional hole. Here

one does not mean that infalling objects with energy E � T will fail to see the fuzzball structure and

travel on the traditional metric of the hole. Rather, an infalling object with E � T excites collective

modes on the space of all fuzzball configurations, and it may be possible to interpret this using the

effective geometry of the traditional hole. This possibility is called fuzzball complementarity [22, 23].

We do not know if the conjecture of fuzzball complementarity is true. It was shown in [51] that

this conjecture is not ruled out by the firewall argument [52]. In [53], a bit model was given to show

how the evolution in the space of fuzzball states could be mapped to effective radial infall. A physical

picture of collective modes on the space of fuzzballs emerges from the ‘vecro’ hypothesis [54]. The

investigation of fuzzball complementarity is an interesting and important direction to pursue; however,

it is crucial to note that the dynamics of E � T modes has no bearing on the information paradox.

The rising Page curve describes the entanglement of the quanta radiated by the hole and these are

necessarily quanta with E ∼ T . Whether a simple effective dynamics emerges when E � T quanta

fall into the hole is a different question (it is sometimes called the infall problem).

The wormhole paradigm is concerned with the Page curve and thus is concerned with the

Hawking quanta which have E ∼ T . The effective small corrections theorem says that if the

semiclassical behavior (2.2) and (2.3) emerges in some code subspace, then in the exact theory the

black hole cannot radiate like a piece of coal as seen from outside; i.e. one will need nonlocal effects

between the hole and infinity.

B. A bit model for Hawking pair creation at the horizon

B.1. The divergence of trajectories at the horizon

Let us begin by describing the basic physics that leads to pair creation at the horizon of a black hole.

We will first see how geodesics on the two sides of the horizon diverge away from each other. We will

then make a toy model for the quantum vacuum and see how this divergence of trajectories leads to

the creation of entangled particle pairs. Recall the Schwarzschild metric

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2

(
dθ2 + sin2 θdφ2

)
, (B.1)

where in this appendix we set Newton’s constant to one. We wish to consider particles that are trying

to escape from the hole. The particles that can escape most easily are massless particles, moving

outwards radially at the speed of light. For such trajectories the only nonzero displacements are

dt, dr and we must have ds2 = 0. There are three cases to consider:

(i) Suppose the particle starts a little outside the horizon, at r = 2M + ε . Then we have from ds2 = 0

dr

dt
= ±

(
1− 2M

r

)
. (B.2)
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u

rr = 2M

Figure 20: The divergence of null geodesics either side of the black hole horizon at r = 2M . Precisely along
the horizon, the geodesic is radially stable. Here u is the Eddington–Finkelstein coordinate defined in (3.2).

To have the particle go outwards, we take the positive sign. Let us ask for the time it takes for this

particle to escape to a location rf that is away from the horizon∫ rf

2M+ε

dr

1− 2M
r

=

∫ T

0
dt . (B.3)

This gives

T ≈ 2M log
1

ε
, (B.4)

and so the particle does ultimately escape, but the time to escape becomes large as ε goes to zero.

(ii) Suppose the particle starts a little inside the horizon, at a position r = 2M − ε . We then have

dr

dt
= ±

(
1− 2M

r

)
= ∓

(
2M

r
− 1

)
. (B.5)

Let us compute the time for the particle to reach a position rf that is away from the horizon

0 < rf < 2M . This needs the negative sign in the above relation and we find∫ rf

2M+ε

dr
2M
r − 1

=

∫ T

0
dt , (B.6)

giving

T ≈ 2M log
1

ε
. (B.7)

Thus, the particle escapes the vicinity of the horizon, but again the time to escape becomes large as
ε goes to zero.

We see that a small region straddling the horizon gets stretched to a large region after we wait for a

sufficiently long time. In fact, we can start with an arbitrarily small region

|r − 2M | < ε , (B.8)
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and see that after a time the region will stretch to a size ∼M which describes the length scale of the

Schwarzschild geometry. This persistent stretching at the horizon is what will lead to the evaporation

of the hole. Quantum fields on spacetime can be modeled by a set of coupled harmonic oscillators.

When a slice stretches, the distance between neighboring points increases. This makes the coupling

between the corresponding oscillators weaker. This change of coupling can convert a vacuum state of

the oscillators to a state that contains pairs of excitations. But excitations of the oscillators describing

the quantum field correspond to particles. Thus we will find that the stretching of slices seen above

will lead to the creation of particle pairs from the vacuum. We can make a bit model of pair creation

using just two oscillators as follows.

We consider two oscillators, one on each side of the horizon. These oscillators will be coupled

to each other, the way neighboring oscillators are coupled in quantum field theory, and we will let the

initial state of the system be the ground state of the coupled oscillator pair. We have seen above that

geodesics on the two sides of the horizon separate away from each other. We will model this effect

by removing the coupling between the oscillators at some time t = 0.19 We will find that the two

oscillators will now have pairs of excitations and the overall states will be entangled between the two

oscillators. This state has all the features of the full quantum problem that will be relevant to the

information paradox, so this is a useful toy model.

Let the oscillator φL denote a wavemode just inside the horizon and the oscillator φR a mode

just outside the horizon. On the ‘earlier’ time slice the wavemodes are close to each other and their

corresponding oscillators should be coupled. At late times, the modes are far from each other, and

the corresponding oscillators should be almost decoupled. We let the oscillators be coupled for t < 0

and decoupled for t > 0. Thus, the Lagrangian is

L =
1

2
φ̇2
L +

1

2
φ̇2
R −

1

2
ω2φ2

L −
1

2
ω2φ2

R − aφRφL , t < 0

=
1

2
φ̇2
L +

1

2
φ̇2
R −

1

2
ω2φ2

L −
1

2
ω2φ2

R , t > 0 . (B.9)

B.2. The state for t < 0

We can decouple these two oscillators by going to a new basis

φ1 =
1√
2

(
φL + φR

)
, φ2 =

1√
2

(
φL − φR

)
, (B.10)

which gives two uncoupled oscillators with frequencies

φ1 : ω1 =
√
ω2 + a , ω2 =

√
ω2 − a . (B.11)

The oscillator with variable φ1 has creation and annihilation operators â1, â
†
1 and the oscillator with

variable φ1 has creation and annihilation operators â2, â
†
2 . We wish to match our notation as closely

as possible to the notation of quantum field operators on curved space. On a (1+1)-dimensional

spacetime we would have an infinite line of points where a scalar field φ would be defined. In place

of this, in our toy model, we now just have two points. In place of the field modes f(t, x) at time t

19Of course in the black hole the coupling changes over a Kruskal time of order the horizon radius, but replacing this
by a sudden change of coupling captures the physics with only changes of factors of order unity.
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on this line x , we now have a function of t defined on two points. We write functions on this 2-point

space using a 2-component vector (a, b), with a corresponding to φL and b corresponding to φR .

We, therefore, define two-component functions

f1 =
1√
2ω1

e−iω1t 1√
2

(1, 1), f2 =
1√
2ω2

e−iω2t 1√
2

(1,−1) . (B.12)

The inner product between modes f and g is

(f, g) = i[f∗ · ∂tg − ∂tf∗ · g] , (B.13)

and they are normalized as

(fi, fj) = δij , (f∗i , f
∗
j ) = −δij , (f∗i , fj) = 0 . (B.14)

Now consider the ‘field operator’

φ̂ =
(
φ̂1, φ̂2

)
. (B.15)

Since the oscillators have been decoupled in the φ1, φ2 basis, we can expand the field operator just

the way we did for a single oscillator

φ̂ = f1â1 + f∗1 â
†
1 + f2â2 + f∗2 â

†
2 . (B.16)

We start with the vacuum state for these coupled oscillators

â†i |0〉a = 0 , i = 1, 2 . (B.17)

B.3. Evolution for t > 0

At the late time slice the field modes on the two sides of the horizon are well-separated and the

coupling between them is weak. We have modeled this by letting the oscillators corresponding to

these modes be decoupled for t > 0. The analogue of the modes (B.12) is

g1 =
1√
2ω
e−iωt(1, 0) , g2 =

1√
2ω
e−iωt(0, 1) . (B.18)

Note that we also have

(gi, gj) = δij , (g∗i , g
∗
j ) = −δij , (g∗i , gj) = 0 . (B.19)

The same field operator φ̂ can be written as

φ̂ = g1b̂+ g∗1 b̂
† + g2ĉ+ g∗2 ĉ

† , (B.20)

and so we have

f1â1 + f∗1 â
†
1 + f2â2 + f∗2 â

†
2 = g1b̂+ g∗1 b̂

† + g2ĉ+ g∗2 ĉ
† . (B.21)
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B.4. Matching at t = 0

As we did in the case of the single oscillator in the Heisenberg picture, we wish to express the conditions

(B.17) (which define our state |0〉a ) as conditions involving the oscillators {b̂, b̂†, ĉ, ĉ†} . This will then

allow us to express the state |0〉a in terms of b̂†, ĉ† excitations. We take the inner product (g1, · ) on

both sides of (B.21). This gives

b̂ = (g1, f1)â1 + (g1, f
∗
1 )â†1 + (g1, f2)â2 + (g1, f

∗
2 )â†2

=
ω + ω1

2
√

2
√
ωω1

â1 +
ω − ω1

2
√

2
√
ωω1

â†1 +
ω + ω2

2
√

2
√
ωω2

â2 +
ω − ω2

2
√

2
√
ωω2

â†2 ,

ĉ = (g2, f1)â1 + (g2, f
∗
1 )â†1 + (g2, f2)â2 + (g2, f

∗
2 )â†2

=
ω + ω1

2
√

2
√
ωω1

â1 +
ω − ω1

2
√

2
√
ωω1

â†1 −
ω + ω2

2
√

2
√
ωω2

â2 −
ω − ω2

2
√

2
√
ωω2

â†2 . (B.22)

While we can find the state |0〉a in terms of b̂† and ĉ† for any value of the coupling a , the algebra is

a little simpler for a� ω2 . In this limit we have, keeping the leading order expression for each term,

ω1 ≈ ω +
a

2ω
, ω2 ≈ ω −

a

2ω
. (B.23)

Then we have for the operators and their conjugates

b̂ ≈ 1√
2
â1 −

a

4
√

2ω2
â†1 +

1√
2
â2 +

a

4
√

2ω2
â†2 ,

ĉ ≈ 1√
2
â1 −

a

4
√

2ω2
â†1 −

1√
2
â2 −

a

4
√

2ω2
â†2 ,

b̂† ≈ 1√
2
â†1 −

a

4
√

2ω2
â1 +

1√
2
â†2 +

a

4
√

2ω2
â2 ,

ĉ† ≈ 1√
2
â†1 −

a

4
√

2ω2
â1 −

1√
2
â†2 −

a

4
√

2ω2
â2 . (B.24)

Now we note that the combination

b̂+
a

4ω2
ĉ† , (B.25)

has only annihilation operators â1 and â2 . Thus,(
b̂+

a

4ω2
ĉ†
)
|0〉a = 0 , (B.26)

which has the solution

|0〉a = Ce−
a

4ω2
b̂†ĉ† |0〉b ⊗ |0〉c . (B.27)

We see that if we have two oscillators with the same frequency, weakly coupled together and then we

remove the coupling suddenly, the ground state of the initial system becomes an entangled state of

the two uncoupled oscillators.
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B.5. The entangled nature of the final state

We can now see the entangled nature of the state (B.27). We can expand the exponential in (B.27)

to find

|0〉a = C

[
|0〉b ⊗ |0〉c −

( a

4ω2

)
|1〉b ⊗ |1〉c +

( a

4ω2

)2
|2〉b ⊗ |2〉c + . . .

]
. (B.28)

Thus, the above model with two oscillators gives a bit model for Hawking radiation. When the

wavelength of the mode is small compared to the horizon radius (say λ ∼ rh/10), the parts of the

mode that are just inside and just outside the horizon are strongly coupled and such coupled modes

are described by the oscillators (B.16). When the wavelength of the mode is large (λ & rh ) then

the inside and outside parts are weakly coupled and are described by the mode expansion (B.20).

The relation (B.21) relates these two mode expansions and encodes the essence of the Hawking pair

creation process.
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