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Abstract: LHCb collaboration has recently announced the observation of a doubly charmed tetraquark T+
ccūd̄

state with spin parity JP = 1+ . This exotic state can be explained as a molecular state with small binding

energy. According to conventional quark model, both D+D0∗ and (D0D+∗) multiquark states are expected

to have the same mass and flavor in the exact SU(3) symmetry. However, since the quark masses are

different, SU(3)(SU(2)) symmetry is violated; hence, the mass and flavor eigenstates do not coincide. The

mass eigenstates can be represented as a linear combination of the flavor eigenstates, which is characterized

by the mixing angle θ . In the present work, the possible mixing angles between the Tcc states are calculated.

Moreover, the analyses are extended for all the possible tetraquarks scenarios with two heavy and two light

quarks within the molecular picture although those states have not been observed yet. Our prediction on

mixing angle between doubly charmed tetraquark states shows that SU(3) symmetry breaking is around 7%

maximally.
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1. Introduction

According to the constituent quark model (CQM) proposed by Gell-Mann [1] and Zweig [2], baryons

are formed from three-quarks (qqq) and mesons are consisted of quark and antiquark pairs (q̄q).

This model has been very successful in classifying the hadrons. Many new hadrons predicted by this

model have subsequently been observed with the advances of the accelerators’ technologies. However,

many states of the hadrons predicted by the quark model are still waiting to be discovered and form

the major research area of the hadron spectroscopy. In 2003, BELLE collaboration announced the

discovery of a new exotic hadron X(3872) in the decay channel of B0 → J/Ψπ+π−K whose properties

could not be explained by the CQM [3]. This discovery was later verified by BABAR [4], CDF [5],

D0 [6], LHCb [7], and CMS [8] collaborations. This unexpected observation increased the interest in

exotic hadrons, and more than twenty exotic hadronic states have been discovered at accelerator and

flavor factories till now [9]. These exotic states have been observed either as tetraquarks (two quarks

and antiquark pairs qqq̄q̄ ) or as pentaquarks (four quarks and an antiquark qqqqq̄ ). All the exotic
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hadronic states discovered up to now contained a pair of heavy valence quarks (either c̄c or b̄b). No

exotic state with a single heavy quark has been observed yet [10].

The theoretical attempts for the explanation of the unexpected states can be categorized into

two main approaches [11, 12]. The exotic states can be tightly bound color-singlet tetraquark state

(Q̄Qq̄q ) formed by two heavy (Q̄Q) and light ( q̄q ) quark-antiquark pair states bound by a gluon.

This framework is named as diquark model in the literature [13–15]. Another idea is that these exotic

states are weakly bound molecular states of two mesons (for tetraquarks) or a meson and a baryon

(pentaquarks) [12, 16, 17]. The mass and decay widths of the exotic hadrons can be calculated in

diquark and molecular state models, which needs to be confirmed with the experiments. The properties

of the exotic states both from the theoretical and experimental perspectives are discussed widely in

the literature (see reviews [12, 18–21]).

One of these exotic hadrons, namely, very narrow T+
cc tetraquark state in the D0D0π+ spectrum

recently has been observed by LHCb collaboration [22, 23]. This is the first experimental evidence

of the open double charmed tetraquark with ccūd̄ quark configuration. The spin-parity of T+
cc state

is determined as JP = 1+ and the measured mass of the tetraquark T+
cc is located at (−273 ± 61 ±

5+11
−14) keV just below the D0D+∗ mass threshold. For this reason, the molecular picture is quite

attractive for studying the properties of the T+
cc state [24–31].

The interactions between D0D∗+ and D+D∗0 are practically the same. Hence, if T+
cc were

described as the D0D∗+ molecule, there should also exist the other partner molecule D+D∗0 . It is a

well-known fact that the mixing takes place if two states have the same total angular momentum and

parity, i.e. JP . Since the states, D0D∗+ and D+D∗0 carry the same JP , mixing between these two

states is expected. A similar argument can also be made about the existence of mixing angles between

the QQq̄1q̄2 states, where Q is the heavy c(b) quark, q1 and q2 are the light u, d and s quarks by

anticipating the existence of Tbb states.

In the present work, we calculate the mixing angles between (q̄1γ5Q)(q̄2γµQ) and (q̄2γ5Q)(q̄1γµQ)

states within the QCD sum rules method by following the approach introduced in [32], assuming that

these states are molecular states. Possible measurement of the mixing angle can indirectly mimic the

nature of the tetraquark state as a hadronic molecule. The paper is organized as follows. In Section

2, the theoretical calculations on the mixing angle between tetraquark states are performed. Section 3

is devoted to the numerical analysis of this quantity, and the last section contains our discussion and

conclusion.

2. Determination of the mixing angles between the (q̄1γ5Q)(q̄2γµQ) and (q̄2γ5Q)(q̄1γµQ)

states

In determination of the mixing angles between the (q̄1γ5Q)(q̄2γµQ) and (q̄2γ5Q)(q̄1γµQ) states in the

framework of the QCD sum rules method, we start by considering the following correlation function,

Πµν = i

∫
d4xeipx

〈
0
∣∣∣T {

J (1)
µ (x)J̄ (2)

ν (0)
}∣∣∣ 0〉 . (1)

This correlation function can be written in terms of two independent invariant functions as,

Πµν(p
2) = (gµν −

pµpν
p2

)Π1(p
2) +

pµpν
p2

Π2(p
2) (2)
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where the first and second structures describe the contribution of spin-1 and spin-0 states, respectively.

Here J1µ and J2ν are the interpolating currents of the corresponding physical states that can be written

as linear combinations of unmixed states as

J (1)
µ (x) = cos θj(1)µ + sin θj(2)µ ,

J (2)
ν (x) = − sin θj(1)ν + cos θj(2)ν , (3)

where

j(1)µ (x) = (q̄a1γ5Q
a)(q̄b2γµQ

b) ,

j(2)ν (x) = (q̄a2γ5Q
a)(q̄b1γνQ

b) .

correspond to unmixed states. Here a and b are the color indices.

Now let us introduce the correlation function corresponding to the unmixed states, i.e.

Π̃ij
µν = i

∫
d4xeipx⟨0|jiµjjν |0⟩ (4)

where i and j runs from 1 to 2. Again separating the contribution of spin-0 and spin-1 states, this

correlation function can be written as

Π̃ij
µν(p

2) = (gµν −
pµpν
p2

)Π̃ij
1 (p

2) +
pµpν
p2

Π̃ij
2 (p

2) (5)

In the following discussions, we will only consider the coefficient of the structure (gµν − pµpν
p2

) since

all the considered states are assumed to have quantum numbers JP = 1+ .

The sum rules for the quantity under consideration can be obtained by calculating the correlation

function in two different regions, i.e. in terms of hadrons and in terms of quarks–gluons in the deep

Euclidean domain, and matching the results of the two representations of the correlation function. The

phenomenological part of the correlation function can be obtained by saturating it with hadron states

carrying the same quantum numbers as the interpolating current and then isolating the ground state

contributions. The currents J1µ and J2µ are created from the vacuum states of the corresponding

mesons, respectively; hence, the phenomenological part of the correlation function should be equal to

zero. In other words, the mixing angle is solely determined in terms of the quark and gluon degrees of

freedom. As a result, the mixing angle is free from the uncertainties coming from the hadronic part.

We now turn our attention to the calculation of the theoretical part of the correlation function.

Using Eqs. (1) and (3), we get

− sin θ cos θ Π̃(11)
µν + cos2θ Π̃(12)

µν − sin2θ Π̃(21)
µν + sin θ cos θ Π̃(22)

µν = 0 . (6)

Choosing the coefficient of the structure (gµν− pµpν
p2

), which only contains the contribution of JP = 1+

state, we get from Eq.(6),

sin θ cos θ
(
Π̃(22) − Π̃(11)

)
+ cos2θ Π̃(12) − sin2θ Π̃(21) = 0 .
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Dividing both sides to cos2θ (assuming that cos θ ̸= 0), and solving the quadratic equation for tan θ
we get

tan θ =
Π̃(22) − Π̃(11) ±

√(
Π̃(22) − Π̃(11)

)2
+ 4Π̃(12)Π̃(21)

2Π̃(21)
. (7)

We already noted that for obtaining the sum rules for the relevant quantity, the correlation function

(Eq. (1)) should be calculated in terms of quarks and gluons in the deep Euclidean region p2 ≪ 0

by using the operator product expansion (OPE). Its expression can be obtained by substituting Eq.

(3) into Eq. (1) and then using the Wick theorem. As a result, we obtain the correlation function in

terms of the light and heavy quark propagators and the light quark condensates. Thus, to express the

correlation function in terms of the quark and gluon degrees of freedom, we need the expressions of

the heavy and light quark propagators.

The light-quark propagators, to first order in the light quark mass, is calculated in [33, 34],

whose expression is given as

Sab
q (x) =

i/x

2π2x4
δab − mq

4π2x2
δab − ⟨q̄q⟩

12

(
1− i

mq

4
/x
)
δab − x2

192
m2

0⟨q̄q⟩
(
1− i

mq

6
/x
)
δab

+
i

32π2x2
gsG

ab
µν(σ

µν/x+ /xσµν)− 4π

39 210
⟨q̄q⟩⟨g2sG2⟩x2δab + · · · (8)

The heavy-quark propagator in x–representation is given as [35]

Sab
Q (x) =

m2
Qδ

ab

(2π)2

[
i/x
K2(mQ

√
−x2)

(
√
−x2)2

+
K1(mQ

√
−x2)√

−x2

]

−
mQgsG

ab
µν

8(2π)2

[
i(σµν/x+ /xσµν)

K1(mQ

√
−x2)√

−x2
+ 2σµνK0(mQ

√
−x2)

]

− ⟨g2sG2⟩δab
(32 28π)2

[
(imQ/x− 6)

K1(mQ

√
−x2)√

−x2
+mQx

4K2(mQ

√
−x2)

(
√
−x2)2

]
, (9)

where Gµν is the gluon field strength tensor, gs is the strong coupling constant, and K0 , K1 , and

K2 are the modified Bessel functions of the second kind.

The invariant functions Π̃(ij) can be related to their imaginary part (spectral density) with the

help of the dispersion relation,

Π̃(ij) =

∫ ∞

smin

ρ(ij)(s)

s− p2
ds , (10)

where smin = (2mQ +mq1 +mq2)
2 . The spectral densities ρ(12)(s) and ρ(21)(s) are calculated in this

work and their explicit expressions are presented in Appendix A. The spectral densities ρ(11)(s) and

ρ(22)(s) are already calculated in [36]. Performing the Borel transformation over the variable −p2 ,
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and assuming the quark hadron duality, we get from Eq. (10)

Π̃(ij)(B) =

∫ s0

smin

ρ(ij)(s)e−s/M2
ds , (11)

where M2 is the Borel mass parameter and s0 is the continuum threshold. Substituting Eq. (11)

into Eq. (7), we obtain the expression of the mixing angle in terms of the quark and gluon degrees of

freedom.

3. Numerical analysis

Having obtained the expression for the mixing angle, we are ready to perform the numerical analysis in

the framework of the QCD sum rules. For this purpose, we need the values of some input parameters,

which are presented in Table 1. For the heavy quark-masses, MS values are used.

Parameters Value

mu(2 GeV ) (2.2+0.6
−0.4) MeV [37]

md(2 GeV ) (4.7+0.8
−0.4) MeV [37]

ms(1 GeV ) (0.114± 0.021) GeV [37]

mc(mc) (1.28± 0.03) GeV [37]

mb(mb) (4.18± 0.03) GeV [37]

⟨ūu⟩(1 GeV ) (−246+28
−19 MeV )3 [38]

⟨d̄d⟩(1 GeV ) (1 + γ)⟨ūu⟩ GeV 3 [39]

m2
0 (0.8± 0.1) GeV 2 [40]

⟨g2sG2⟩ 4π2(0.012± 0.006) GeV 4 [40]

⟨s̄s⟩ (0.8± 0.2)⟨ūu⟩ [40]

γ −0.003÷ 0.01 [41]

Table 1: The values of the input parameters used in our calculations.

The sum rules contain two auxiliary parameters, namely, Borel mass square M2 , and the

continuum threshold s0 . Therefore, the so-called working regions of these two parameters must be

determined in a way that the mixing angle exhibits good stability with respect to the variation of

these parameters, respectively.

The lower and upper bounds of the Borel mass parameter M2 are determined by requiring that

the OPE should be convergent and pole contribution is dominant with respect to the continuum one.

In other words, the upper bound of M2 is obtained from the condition that the pole contribution

should be more than 50%, i.e.

pole contribution =

∫ s0
smin

ρ(s)e−s/M2
ds∫∞

smin
ρ(s)e−s/M2ds

> 0.5 . (12)
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To obtain the lower bound for M2 , we restrict the total condensate contributions to be less than

30% of the result, i.e. ∑
Πcondensates

i

Πtotal
< 30% (13)

These conditions lead us to the working regions of M2 that are presented in Table 2.

On the other hand, the threshold value s0 is determined by requiring that the variation in the

obtained mass value of the considered hadron should be minimum. Using the working region of M2 ,

we find that mass sum rules exhibits very good stability on variation of the s0 that are presented in

Table 2.

s0 (GeV 2) M2 (GeV 2)

D+D0∗(D0D+∗) 20÷ 21 2.4÷ 2.9

D+D+∗
s (D+

s D
+∗) 20÷ 21 2.4÷ 2.9

D0D+∗
s (D+

s D
0∗) 20÷ 21 2.4÷ 2.8

B0B−∗(B−B0∗) 115÷ 120 8÷ 11

B0B0∗
s (B0

sB
0∗) 120÷ 125 8÷ 12

B−B0∗
s (B0

sB
−∗) 120÷ 125 8÷ 12

Table 2: The working regions of the Borel mass parameter M2 , and the continuum threshold s0 for
different tetraquark states in molecular picture.

Having the values of input parameters and working regions of M2 and s0 , we can perform

numerical analysis for the mixing angles. In the following figure, we present the dependency of the

mixing angle between D0D+∗
s and D+

s D
0∗ on Borel mass square at the fixed values of s0 . Similar

analyses are performed for all other mixing angles, and the results are collected in Table 3.

∆θ
◦
= |θ◦ − 45

◦ |

∆θD+D0∗↔D0D+∗ 0.20± 0.05

∆θD+D+∗
s ↔D+

s D+∗ 2.8± 0.8

∆θD0D+∗
s ↔D+

s D0∗ 3.1± 0.9

∆θB0B−∗↔B−B0∗ 0.019± 0.006

∆θB0B0∗
s ↔B0

sB
0∗ 0.36± 0.03

∆θB−B0∗
s ↔B0

sB
−∗ 0.37± 0.03

Table 3: The values of the mixing angles between possible tetraquark states.

The mixing angle between D+D0∗ and D0D+∗ system has been estimated within one boson

exchange framework [28]. However, the obtained value θ = ±30.8
◦
is considerably smaller than our
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result. It should be noted that the deviation from tan θ = ±1 is due to the isospin symmetry breaking,

and in our case, this violation is small for the D+D∗0 and D0D∗+ systems. Our results show that the

mixing angles that deviate relatively considerably from θ = ±450 are only for the DsD
∗ and DD∗

s

tetraquark systems.

s0 = 21.0 GeV 2

s0 = 20.5 GeV 2

s0 = 20.0 GeV 2

θ D
0
D
+
∗

s
↔

D
+ s
D
0∗

M 2 (GeV 2)

2.92.82.72.62.52.4

44.0

43.0

42.0

41.0

40.0

39.0

38.0

Figure: The dependency of the mixing angles between D0D+∗
s and D+

s D
0∗ on Borel mass square at

the fixed values of s0 .

4. Conclusion

Recently, LHCb collaboration announced the observation of a new type of hadronic state, Tcc ,

containing two charmed and anti-u and anti−d quarks in the D0D0π+ mass spectrum slightly below

the D0D∗+ threshold with quantum numbers JP = 1+ . Analysis conducted in [24, 25, 31] shows that

the molecular picture can successfully describe this exotic state. Moreover, the quark model predicts

the existence of similar states with two heavy quarks and the same quantum numbers. It is a well-

known fact that the states having the same quantum numbers in principle can be mixed. Inspired by

this fact, the mixing angles between tetraquark systems with two heavy quarks in the molecular picture

are calculated in the framework of the QCD sum rules method. Inspired by the discovery of Tcc state,

we also studied the mixing angles for B-meson molecules for the possible Tbb state that has not been

observed yet. Our predictions on the mixing angles show that the violation of isospin symmetry leads

to a very small deviation from 45
◦
, which corresponds to the exact isospin symmetry. The deviation

from 45
◦
is relatively large especially for DsD

∗ and DD∗
s systems. Hopefully, these findings will

be tested in future LHCb experiments as well as flavor factories and provide useful information for

understanding the inner structures of the tetraquark systems with two heavy quarks.
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BİLMİŞ/Turk J Phys

[40] B. L. Ioffe, “Condensates in quantum chromodynamics”, Phys. Atom. Nucl. 66 (2003) 30–43,

[hep-ph/0207191].

[41] X.-m. Jin, M. Nielsen, and J. Pasupathy, “Calculation of ⟨p|ūu−d̄d|p⟩ from QCD sum rule and the neutron
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A. The expression of the spectral densities

The spectral densities ρ12(s) that are calculated in this work are shown in this appendix. The

expressions of the ρ11(s) can be found in [36]. Note that the spectral density ρ21(s) can be obtained

from ρ12(s) by means of the replacement (d↔ u), respectively.

ρ
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12 (s) =

1
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αmin
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0⟨ūu⟩)
12 (s) =

m2
0⟨ūu⟩
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