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Abstract: Within the framework of Monte Carlo simulations, we investigate the magnetic and magnetocaloric

properties of a nanocomposite particle composed of ferromagnetic core and shell layers. We found that

isothermal magnetic entropy change may exhibit two peaks associated to two different phase transitions of

the core and shell layers. We paid particular attention to the microscopic details of the core/shell interface.

Our results suggest that for the large values of the interface exchange coupling, the full width at half maximum

is expanded at the expense of the low temperature peak of isothermal entropy change |∆SM | whereas the high

temperature peak is found to be more or less insensitive to varying exchange coupling. Besides, our simulations

yield that magnetocaloric properties of the particles with a cubic core are enhanced in comparison with those

composed of truncated cuboctahedral, spherical, octahedral, and asteroid shaped cores.
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1. Introduction

In recent years, investigations of magnetocaloric properties of a variety of magnetic compounds and

composite materials have attracted glowing interest in theoretical and experimental research [1]. The

magnetocaloric effect (MCE) is a phenomenon in which a magnetic material’s temperature can be

greatly enhanced by applying a magnetic field under adiabatic conditions. The removal of the field,

on the other hand, produces a negative change in the sample’s temperature. In order to quantify

the magnetocaloric performance of a magnetic material, one can utilize some important figures of

merit such as adiabatic temperature change ∆Tad , isothermal magnetic entropy variation ∆SM , and

refrigerant capacity (RC) which can be calculated using the following relations [2, 3]:

∆Tad = −
∫

T

C

(
∂M

∂T

)
T

dh, (1)

∆SM = −
∫ (

∂M

∂T

)
T

dh, (2)

RC = −
∫ T2

T1

∆SM (T )hdT. (3)
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In above equations, Cdenotes the total heat capacity including the magnetic, lattice, and electronic

contributions, T is the temperature, h stands for the applied field strength, and M is the spontaneous

magnetization. RC basically measures how much heat is transfered between the cold T1 and hot T2

ends of the refrigerant material. Based on the above equations, the materials exhibiting broadened

entropy versus temperature curves and enhanced maximum entropy change near room temperature

are regarded as promising candidates for technological applications. In this regard, elementary Gd

exhibits a temperature variation of ∆Tad = 14.3 K in the presence of fields such as 7 T [4]. Besides,

it exhibits ∆SM = 10 J/kg.K with magnetic field variation from 0 to 5 T [5]. With these properties,

Gd is the best known magnetocaloric element with enhanced refrigerant properties around its room

temperature Curie point. However, from a commercial point of view, since it is a rare earth element,

its resource efficiency does not fulfill the requirements as a raw material to be used in active magnetic

refrigeration appliances. Hence, seeking new materials exhibiting large ∆SM and RC values in the

vicinity of room temperature is a vital task. In order to overcome this point, composite materials

exhibiting two or more phases can be synthesized to improve the MCE properties defined in Eqs.

(1)–(3).

From the experimental point of view, a number of magnetic composite materials exhibiting

multipeak ∆SM versus temperature curves were synthesized by researchers all around the globe [6–

11]. A double-peak structure in the same curves was also theoretically predicted for magnetic bilayers

[12]. In a conventional ferromagnet, reference temperatures arising in Eq. (3), i.e. the upper and the

lower bounds of the temperature range correspond to the temperatures at which ∆SM = 0.5∆Smax
m

with δTFWHM = T2 − T1 is called the full width at half maximum (Figure 1a). In case of multiphase

composites, T1 and T2 in Eq. (3) correspond to lower bound of low temperature peak and higher

bound of the high temperature peak, respectively (Figure 1b) [9, 13]. In order to expand δT and

RC, considerable research activity is also currently devoted by several research groups using various

methods, including nanostructuring and developing nanocomposites [13]. For instance, Franco and

coworkers [14] investigated the field dependence of Co, Co-Ag, and Ni-Ag core-shell nanoparticles.

Gorria et al. [15] found that the full width at half maximum for ball-milled Pr2Fe17 nanoparticles is

60% greater than that of the bulk alloy. Similarly, Hueso and colleagues [16] showed that MCE in

La0.67Ca0.33MnO3−δ nanoparticles can be experimentally tuned by means of the particle size.

In the present work, we introduce a model to simulate the magnetocaloric properties of a three-

dimensional composite nanoparticle with core/shell morphology exhibiting multipeak ∆SM (T ) curves.

Particular emphasis is placed on the influence of the interfacial interactions and interface morphology.

For this aim, the paper is organized as follows: In Section 2, we introduce our model and simulation

details. Our numerical results and related discussions are given in Section 3. Finally, Section 4 is

devoted to our conclusions.

2. Model and formulation

We consider a three dimensional, ferromagnetic nanoparticle composed of a core which is surrounded

by a shell layer (see Figure 2). The Hamiltonian defining our model can be written as

H = −Jc
∑
<i,j>

SiSj − Jsh
∑
<k,l>

SkSl − Jint
∑
<i,k>

SiSk − h
∑
n

Sn, (4)

where Si = ±1 is a pseudo spin variable which resides on the nodes of a simple cubic lattice. The

first term represents the interactions between the magnetic moments located at the particle core. The
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Figure 1. Schematic illustration of variation of magnetic entropy change as a function of temperature for (a)
single phase ferromagnets, (b) composite ferromagnets composed of two different magnetic materials.

second and the third terms respectively denote the interactions between shell spins and those located at

the core-shell interface. The last term stands for the Zeeman term. Note that the angular brackets in

Eq. (4) represent summations carried out over the nearest neighbor spins whereas the last summation

is over all the lattice sites. In order to calculate the magnetic properties, we use Monte Carlo simulation

method based on the conventional single-spin update scheme [17, 18]. In order to mimic the finite

size of the particle, free boundary conditions were imposed in all directions. Simulations have been

carried out over 5000 Monte Carlo steps per spin after discarding 20% for thermalization. We start

from a disordered high temperature configuration, and the temperature is gradually decreased down

to T = 0.01Jc . In order to reduce the statistical errors, 10 independent sample realizations were

considered at each temperature step. Due to the reduced translational symmetry at the surface we

set Js = 0.5Jc , and for the interface we also assume a ferromagnetic coupling (Jint > 0).

In order to study the interfacial effects, the simulated particle is composed of a ferromagnetic

core with a varying shape whereas we assume a spherical shell. In this regard, the distance between

any spin Si and central spin S0 is given by [19, 20]

Dp(S0, S1) = (|x0 − x1|p + |y0 − y1|p + |z0 − z1|p)1/p. (5)

According to Eq. (5), we can define independent parameters pc and ps which are called the metric

order of the particle core and shell, respectively. Clearly, if the spin-spin distance defined by Eq. (5)

with p = pc is lower than the core radius then the spin Si is assigned to the core part, otherwise it is

located at the shell region.

In order to reveal the influence of the interfacial morphology on the magnetic properties, we fix

the metric order of the particle shell as ps = 2.0 which corresponds to a spherical shape in Euclidian

geometry. On the other hand, metric order of the particle core is an adjustable parameter which may

evolve from asteroid to octahedral, spherical, and cubic shapes with increasing metric order of the
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Figure 2. 2D cross-sections of the simulated particles with different interface morphology: (a) asteroid, (b)
octahedral, (c) spherical, and (d) cubic.

core (cf. Figure 2). In this process, the total particle size and shell thickness values are kept fixed

as R = 15.0 and Rs = 4.0 with core radius Rc = R − Rs , all measured in terms of unitary lattice

spacing. Structural properties of the particle, i.e. the variation of the number of lattice sites associated

to different parts of the particle are presented in the Appendix (cf. Figure 6).
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In addition to the magnetocaloric properties defined in Eqs. (1)–(3), we have also calculated

the following magnetic quantities during our simulations:

Thermal averages of the core, shell and total magnetizations are given by

Mc =
1

Nc
⟨
Nc∑
i=1

Si⟩, Ms =
1

Ns
⟨
Ns∑
j=1

Sj⟩, MT =
1

NT
⟨
NT∑
k=1

Sk⟩, (6)

where NT = Nc +Ns is the total number of spins acting in the system.

Finally, the zero field magnetic susceptibility can be calculated using the relation

χT =
1

kBT

(
⟨M2

T

〉
−
〈
MT ⟩2

)
. (7)

In the calculations, we also set kB = 1 for simplicity.

3. Results and discussion
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Figure 3. Variation of magnetic entropy change of a spherical particle as a function of temperature. (a)
Influence of magnetic field on the overall particle is emphasized for h = 0.1Jc, 0.5Jc, 1.0Jc with a variety of
values of the interface coupling Jint . (b) Individual contributions of core and shell parts for a fixed magnetic
field strength with a variety of Jint values. Since the curves corresponding to the core contribution overlap
with each other, we omit the color codes to avoid any confusion in the figure.

First of all, let us consider a spherical particle with pc = ps = 2.0. As shown in Figure

3a, |∆SM | versus temperature curves exhibit two maxima. Both maxima of ∆SM curve becomes

enhanced with increasing field. This result is well known in the literature. The less known outcome

which can be deduced from Figure 3 is that the lower maximum becomes rounded with increasing

interface coupling Jint whereas the higher maximum is less affected by increasing Jint . As seen from

Figure 3b, lower temperature peak of ∆SM originates as a result of magnetic behavior of the shell
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layer whereas the higher temperature peak is associated to the magnetism of the core. As a result of

the reduced translational symmetry of the shell layer, the critical behavior of the particle is governed

by the core. Hence, with increasing Jint , the shell layer becomes more coupled to the particle core.

These results show that multiphase materials may exhibit enhanced magnetocaloric properties such

as two characteristic entropy peaks.
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Figure 4. (a), (b) magnetic susceptibility, (c) magnetization, (d) magnetic entropy change of a spherical
particle. The inset in (d) represents the full width at half maximum and the refrigerant capacity calculated
from the entropy curves.

The double peak character also shows itself in the magnetic properties of the particle. In Figure

4, again we consider a spherical nanoparticle model. Figures 4a and 4b show the variation of magnetic

susceptibility as a function of magnetic field and temperature for two scenarios, namely, for weak

(Figure 4a) and large interface coupling (Figure 4b). For Jint = 0.01Jc , core and shell parts become

independent of each other which manifests itself as two diverging sharp peaks in the temperature
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dependence of zero field susceptibility. These sharp peaks quickly become rounded with increasing

field. On the other hand, susceptibility behavior corresponding to Jint = 1.0Jc exhibits only one major

peak indicating the dominance of the core magnetization against the shell. Similar arguments also

hold for the magnetization profiles given in Figure 4c. It is clear that the core magnetization does not

depend on the varying interface coupling whereas the shell magnetization is sensitive to varying Jint , as

a result of the lack of the translational symmetry of the surface spins. Consequently, low temperature

peak of the |∆SM | curve can be adjusted by properly tuning the interface exchange coupling (Figure

4d). A close inspection of Figures 3b and 4d shows that the low temperature entropy peaks attributed

to shell part exhibit a small tendency to shift to higher temperature region with increasing Jint
values. The reason is the fact that the thermal variation of the shell magnetization becomes steeper

for lower values of Jint (for instance, please see Figure 4c). Consequently, isothermal entropy variation

calculated by Eq. (2) exhibits sharp peaks with peak positions shifted to the left for the shell part.

As the magnitude of Jint increases, shell magnetization exhibits smooth variation as a function of

temperature. Hence, the entropy peaks become broadened and shifted to high temperature region.

The inset in Figure 4d shows figures of merit of the MCE, namely the full width at half maximum

δT and RC curves, each of which tend to increase with increasing interface coupling. This finding

is one of the major results predicted by our simulations: For large values of the interface exchange

coupling, the operating temperature interval of the nanocomposite broadens at the expense of the low

temperature peak of |∆SM | which leads to enhanced RC values.
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Figure 5. Influence of the interface morphology on the thermal variation of total entropy change for (a)
Jint = 0.01Jc , (b) Jint = 1.0Jc . Different symbols correspond to different pc values. The insets show the full
width at half maximum and the refrigerant capacity calculated from the entropy curves.

As our last investigation, in order to see how the shape of the core/shell interface affects the

magnetocaloric properties, we monitor the evolution of |∆SM | versus temperature curves for varying

pc values. The results are displayed in Figure 5. As the shape of the particle evolves from asteroid

to cubic form, the high temperature peak becomes enhanced at the expense of the low temperature

maximum. However, the temperature span is enlarged and consequently it leads to an enhancement
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of δT and RC values. This behavior holds not only for weak Jint values, but also for large values of

the interface exchange coupling. As a result, we conclude that regarding the variation of δT and RC

values, MCE properties of the nanocomposites with cubic core are superior to those with the truncated

cuboctahedral, spherical, octahedral, and asteroid shaped cores. Besides, it may be possible to adjust

the temperature value at which the maximum entropy change occurs which makes the composite

material of practical importance for technological applications.

4. Conclusions

In conclusion, we have simulated the magnetic and magnetocaloric properties of a composite nanopar-

ticle system composed of a ferromagnetic core which is surrounded by a ferromagnetic shell. Our

results show that;

� The present system may exhibit enhanced magnetocaloric properties in comparison to regular

single-phase materials such as the origination of two characteristic entropy peaks.

� In case of a spherical particle, the full width at half maximum and the refrigerant capacity tend

to increase with increasing interface coupling.

� For large values of the interface exchange coupling, the operating temperature interval of the

nanocomposite broadens at the expense of the low temperature peak of |∆SM | which leads to

enhanced RC values.

� As an interface phenomenon, magnetocaloric properties of the particles with a cubic core are

enhanced in comparison with those composed of truncated cuboctahedral, spherical, octahedral,

and asteorid shaped cores.

Overall, our results show that it may be possible to fabricate nanocomposite materials with desired

refrigerant properties, by manipulating the microscopic details of the interface region of the particle.

We hope that the results presented in this work would stimulate future experimental studies on

the exploration of magnetocaloric research.
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functions of the metric order of the particle core, evolving from asteroid (pc < 1.0) to cube (pc >> 1.0).
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