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Received: 21.09.2022 � Accepted/Published Online: 11.10.2022 � Final Version: 25.10.2022

Abstract: A consistent variational derivation of the Majorana 4-spinor field equations coupled to Einstein’s

theory of gravitation is given. The equivalence of the first and the second order variational field equations

is explicitly demonstrated. The Lagrange multiplier 2-forms we use turn out to be precisely the Belinfante-

Rosenfeld 2-forms that are needed to symmetrize the canonical energy-momentum tensor of the Majorana

spinor.
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1. Introduction

E. Majorana considered in a historic paper in 1937, a derivation of the Dirac equation where the

electrons and the positrons are treated in a symmetric way [1]. He made use of a self-conjugate

representation of the γ -matrices that we now call the Majorana realization. Furthermore he treated

the fermion fields in terms of anticommuting variables. Such a theory has no conventional classical

interpretation. However, it makes it possible to derive the Dirac equation by a variational principle.

In a particular Majorana realization of γ -matrices as generators of the real part of the Clifford algebra

Clif(1, 3) over space-time, all components of the 4-spinors turn out to be real. As such they correspond

to electrically neutral fermion fields whose quantization may be achieved on a real Hilbert space [2–4].

A candidate constituent particle for a Majorana spinor is a neutrino [5]. It should be noted in

the present approach that there is no need to distinguish a separate antineutrino of opposite chirality:

a neutrino coming out together with an electron in β -decay would have a negative helicity while that

coming out together with a positron in inverse β -decay would have a positive helicity. In fact, as

already noted by Majorana himself, the Majorana nature of neutrino can be tested in neutrino-less

double β -decays [6]. Such processes violate the lepton number conservation by terms proportional to

the Majorana mass of the neutrino. Thus, the Majorana nature of a neutrino emerges as the most

natural explanation for the surprisingly small observed value of neutrino masses. Furthermore, the

nonconservation of the lepton number L leads to speculations that the decay of supermassive Majorana

neutrinos in the very early Universe may have given a rise to an asymmetry in L that transforms

to the present-day observed baryon number B asymmetry by virtue of the B − L conservation [7].
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Several laboratories around the world support experiments to detect neutrino-less double β -decay,

with no success up till now. A new generation of experiments called CUORE is on its way in Italy to

resolve this question. A possible discovery would also provide a natural answer to the dominance of

matter over antimatter in our universe [8].

Our main goal in this paper is to provide a consistent derivation of the coupled field equations

of a Majorana neutrino and Einstein’s theory of gravitation. We make essential use in our calculations

of the anticommuting nature of the spinor components. Einstein’s theory of general relativity is a

theory of gravitation determined by the semi-Riemannian geometry of a 4-dimensional spacetime.

The coupled field equations of the theory may be obtained by field variational principle from an

action. It is well known that the second order principle where the metric variations of the Levi-Civita

connections are taken into account; and the first order (Palatini) where independent variations of the

action relative to the metric and connection yield, in these cases, the same set of field equations. The

fact that the connection is Levi-Civita may be imposed by the method of Lagrange multipliers. In the

following, both the first and the second order variational approaches are given and the resulting field

equations are derived and then compared.

2. The action

The field equations will be derived from the action

I[e, ω, ψ, λ] =

∫
M

L, (2.1)

where the Lagrangian density 4-form is given by

L =
1

2
Rab ∧ ∗(ea ∧ eb) + i

2
ψ̄ ∗ γ ∧∇ψ +

i

2
m(ψ̄ψ) ∗ 1, (2.2)

where m is the Majorana mass. The basic field variables are the g -orthonormal basis 1-forms

{ea|a = 0, 1, 2, 3} in terms of which the spacetime metric reads

g = ηabe
a ⊗ eb = −e0 ⊗ e0 + e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3; (2.3)

the metric-compatible connection 1-forms {ωa
b} so that ωab = −ωba. The Cartan structure equations

T a = dea + ωa
b ∧ eb, (2.4)

and

Ra
b = dωa

b + ωa
c ∧ ωc

b (2.5)

determine the torsion 2-forms {T a} and the curvature 2-forms {Ra
b} , respectively. The Hodge ∗-

map that takes p-forms to (4− p)-forms, 0 ≤ p ≤ 4, is fixed for a particular choice of the space-time

orientation by the invariant volume 4-form

∗1 = e0 ∧ e1 ∧ e2 ∧ e3 = 1

4!
ϵabcd e

a ∧ eb ∧ ec ∧ ed. (2.6)
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We are going to employ a Majorana (real) realization of the γ -matrices {γa} and let γ = γae
a. We

set

γ0 =

(
0 −σ1
σ1 0

)
, γ1 =

(
I 0
0 −I

)
, γ2 =

(
0 −iσ2

−iσ2 0

)
, γ3 =

(
0 I
I 0

)
,

so that

γ5 = γ0γ1γ2γ3 =

(
0 σ3

−σ3 0

)
. (2.7)

The charge conjugation matrix C should satisfy

C−1 = CT , C2 = −I, CγaC−1 = γa
T . (2.8)

We made the choice C = γ0 in our Majorana realization. Given a 4-spinor ψ , its charge conjugated

spinor is defined to be

ψC ≡ Cψ̄T
, (2.9)

where ψ̄ = ψ†C. A Majorana 4-spinor is by definition a self-charge conjugate 4-spinor:

ψC = ψ. (2.10)

In the Majorana realization of γ -matrices above, a Majorana spinor is a real spinor:

ψMajorana =


ψ1

ψ2

ψ3

ψ4

 ∈ R4. (2.11)

We also note that in a coordinate patch {xµ} , the spinor components {ψα|α = 1, 2, 3, 4} are odd-

Grassmann valued, real functions of all coordinates. That is they are each nilpotent and anticommute

among themselves:

ψαψβ + ψβψα = 0. (2.12)

The covariant exterior derivative of a Majorana 4-spinor is given by

∇ψ = dψ +
1

2
ωabσabψ, (2.13)

where σab =
1
4 [γa, γb] are the Lie algebra generators of the spin cover Spin(1, 3) of the local Lorentz

group SO(1, 3). In particular,

∗ (γ ∧ ∗∇) = (γ · ∇) (2.14)

is the Dirac operator on the real spin bundle over space-time.
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3. Variational field equations

3.1. Zero-torsion constrained, second-order variations

We impose the zero-torsion condition by the method of Lagrange multipliers so that the connection

1-forms are going to be the Levi-Civita connection determined up to local Lorentz transformations by

the metric. To that end we introduce a set {λa} of Lagrange multiplier 2-forms upon whose variations

the zero-torsion constraint is imposed on the geometry of space-time. Then the connection becomes

the Levi-Civita connection {ω̂a
b} . Let the constraint Lagrangian density 4-form be given by

LC = T a ∧ λa. (3.1)

Then, the variation of the total action density is given by

LT = L+ LC , (3.2)

reads up to a closed form as follows:

L̇T = ėa ∧ 1

2
Rbc ∧ ∗(ea ∧ eb ∧ ec) +

1

2
ω̇ab ∧ ∗(ea ∧ eb ∧ ec) ∧ T c

+ ėa ∧ i

2
m(ψ̄ψ) ∗ ea + ėa ∧Dλa +

1

2
ω̇ab ∧ (eb ∧ λa − ea ∧ λb)

+
i

2
ėa ∧ ψ̄ ∗ (eb ∧ ea) ∧ γb∇ψ − i

4
ω̇ab ∧ ψ̄ ∗ γ ∧ σabψ

+
i

2
¯̇
ψ ∗ γ ∧∇ψ +

i

2
ψ̄ ∗ γ ∧∇ψ̇ + T a ∧ λ̇a + im

¯̇
ψψ ∗ 1. (3.3)

(1) The variations of λ̇a impose the zero-torsion constraint

T a = 0, (3.4)

that implies that the connection is the unique Levi-Civita connection 1-forms ω̂a
b and the remaining

variational equations should be solved under this constraint.

(2) Einstein field equations follow from the variations ėa of co-frame 1-forms:

−1

2
R̂

bc ∧ ∗(ea ∧ eb ∧ ec) =
i

2
ψ̄ ∗ (eb ∧ ea) ∧ γb∇̂ψ +

i

2
m(ψ̄ψ) ∗ ea + D̂λa. (3.5)

(3) The Dirac equation satisfied by the Majorana 4-spinor is determined from the variations of the

Lagrangian density 4-form with respect to ψ . The relevant terms subject to the zero-torsion constraint
are

i

2
¯̇
ψ ∗ γ ∧ ∇̂ψ + ψ̄ ∗ γ ∧ ∇̂ψ̇. (3.6)

We open up the covariant derivative in the second term and use Majorana flip identities to write it as

ψ̄ ∗ γ ∧ ∇̂ψ̇ =
i

2
¯
dψ̇ ∧ ∗γψ − i

2
ω̂ab ∧ ¯̇

ψσab ∗ γψ. (3.7)
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Then we differentiate the first term on the right by parts, use γ -matrix identities and the zero-torsion

constraint to pass the covariant exterior derivative action on
¯̇
ψ at the left to the covariant derivative

action on ψ at the right. Then up to a closed form we get the variation

i
¯̇
ψ ∗ γ ∧ ∇̂ψ. (3.8)

Therefore, the massless Dirac equation satisfied by the Majorana 4-spinor field follows:

i ∗ γ ∧ ∇̂ψ + imψ ∗ 1 = 0. (3.9)

(4) The variation of the connections {ωa
b} gives the field equations

ea ∧ λb − eb ∧ λa = Σab, (3.10)

where

Σab = − i

2
ψ̄ ∗ γσabψ. (3.11)

This is a system of linear algebraic equations that can be solved uniquely for the Lagrange multiplier

2-forms λa. Let us hit both sides with the interior product operators ιa ≡ ηabιXb
. Then

λa + ea ∧ ιbλb = ιbΣba. (3.12)

We hit this expression with ιa once again so that

ιaλa =
1

4
ιaιbΣba. (3.13)

Now we use the γ -matrix identity

2γcσab = ηcaγb − ηcbγa + ϵabcdγ5γ
d; (3.14)

the Majorana flip identity

ψ̄γaψ = 0, (3.15)

satisfied by any odd-Grassmann valued (real) Majorana 4-spinor, and after a series of simplifications

we arrive at the final expression

λa =
i

8
ea ∧ (ψ̄γ5γψ). (3.16)

It is not difficult to verify that

D̂λa =
i

4
ea ∧ (ψ̄γ5γ ∧ ∇̂ψ). (3.17)
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Finally the Einstein field equations become

Ga =
i

2
ψ̄ ∗ (eb ∧ ea) ∧ γb∇̂ψ +

i

4
ea ∧ (ψ̄γ5γ ∧ ∇̂ψ) + i

2
m(ψ̄ψ) ∗ ea, (3.18)

where the Einstein 3-forms

Ga ≡ Gab ∗ eb = −1

2
R̂

bc ∧ ∗(ea ∧ eb ∧ ec). (3.19)

Here the Einstein tensor G = Gabe
a ⊗ eb is symmetric by construction. We look at the two terms

on the right hand side now. The first term gives the canonical energy-momentum tensor T [can] =

Tab[can]e
a ⊗ eb of the Majorana 4-spinor ψ :

τa[can] ≡ Tab[can] ∗ eb =
i

2
ψ̄ ∗ (eb ∧ ea) ∧ γb∇̂ψ +

i

2
m(ψ̄ψ) ∗ ea. (3.20)

The canonical energy-momentum tensor T [can] is asymmetric in general. In fact, we calculate its

skew symmetric part as

ea ∧ τb[can]− eb ∧ τb[can] =
i

2
ψ̄(ηacγb − ηbcγa)ψ ∗ ec. (3.21)

On the other hand, the skew symmetric part of the second term on the right hand side of the Einstein

field equations reads

ea ∧ D̂λb − eb ∧ D̂λa =
i

2
ea ∧ eb ∧ ψ̄γ5γ ∧ ∇̂ψ. (3.22)

Thus, adding the last two equalities side by side and using the γ -matrix identity

2σabγc = ηacγb − ηbcγa − ϵabcdγ5γ
d, (3.23)

we prove that the skew symmetric part of the total energy-momentum tensor of a Majorana 4-spinor

becomes

ea ∧ τb − eb ∧ τb =
i

2
ψ̄σab ∗ γ ∧ ∇̂ψ. (3.24)

Therefore, the total energy-momentum tensor of ψ is symmetric on-shell. Since ea∧D̂λb+eb∧D̂λa = 0

by inspection, the symmetric part of the total energy-momentum tensor of ψ is read from the

symmetric part of the canonical energy-momentum tensor:

ea ∧ τb[can] + eb ∧ τb[can] = iηabψ̄ ∗ γ ∧ ∇̂ψ + imηab(ψ̄ψ) ∗ 1

− i

2
ψ̄(∗ebγa + ∗eaγb) ∧ ∇̂ψ. (3.25)

Then noting that ∗ea ∧ ∇̂ψ = −∇̂Xaψ ∗ 1, and working on-shell, we determine

Tab[sym] =
i

2
ψ̄(γa∇̂Xb

+ γb∇̂Xa)ψ + imηab(ψ̄ψ). (3.26)

as expected.
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3.2. Nonconstrained first-order variations

In this case the variations of the action density read

L̇ = ėa ∧ 1

2
Rbc ∧ ∗(ea ∧ eb ∧ ec) +

1

2
ω̇ab ∧ ∗(ea ∧ eb ∧ ec) ∧ T c

+
i

2
ėa ∧ ψ̄ ∗ (eb ∧ ea) ∧ γb∇ψ +

i

2
ėa ∧m(ψ̄ψ) ∗ ea

− i

4
ω̇ab ∧ ψ̄ ∗ γ ∧ σabψ

+
i

2
¯̇
ψ ∗ γ ∧∇ψ +

i

2
ψ̄ ∗ γ ∧∇ψ̇ + im

¯̇
ψψ ∗ 1. (3.27)

The coframe variations give the Einstein field equations

−1

2
Rbc ∧ ∗(ea ∧ eb ∧ ec) =

i

2
ψ̄ ∗ (eb ∧ ea) ∧ γb∇ψ + im(ψ̄ψ) ∗ ea (3.28)

while the variations of the connection 1-forms provide the field equations satisfied by the torsion

2-forms:

∗(ea ∧ eb ∧ ec) ∧ T c =
i

2
ψ̄ ∗ γ ∧ σabψ. (3.29)

These are linear algebraic equations that determine the torsion 2-forms uniquely as

T a =
i

4
∗ eab(ψ̄γ5γbψ). (3.30)

Then the contortion 1-forms will be

Ka
b =

i

8
∗ eabc(ψ̄γ5γcψ). (3.31)

The simplification of the Dirac equation needs some further manipulations. Variation of the action

density gives

i

2
¯̇
ψ ∗ γ ∧∇ψ +

i

2
ψ̄ ∗ γ ∧ (dψ̇ +

1

2
ωabσabψ̇). (3.32)

We use Majorana flip identities on the second term and get

i

2
¯̇
ψ ∗ γ ∧∇ψ +

i

2
d
¯̇
ψ ∧ ∗γψ − i

4
¯̇
ψσab ∗ γψ ∧ ωab. (3.33)

We now differentiate the second term by parts and use γ -matrix identities on the third term and get

our expression simplified to (up to a closed form)

i
¯̇
ψ ∗ γ ∧∇ψ +

i

2
¯̇
ψ ∗ eabγaψ ∧ T b + (closed form). (3.34)
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Therefore, our Majorana 4-spinor field ψ satisfies the variational (massless) Dirac equation

i ∗ γ ∧∇ψ +
i

2
T a ∧ ∗e b

a γbψ + imψ ∗ 1 = 0. (3.35)

We now note that connection 1-forms with torsion can be uniquely decomposed as the sum of the

Levi-Civita connection 1-forms, determined only by the metric and the contortion 1-forms determined

by our Majorana 4-spinor:

ωa
b = ω̂a

b +Ka
b. (3.36)

Then the curvature 2-forms can be similarly decomposed

Ra
b = R̂

a
b + D̂Ka

b +Ka
c ∧Kc

b. (3.37)

Therefore, the Einstein field equations can be written as

−1

2
R̂

bc ∧ ∗eabc =
i

2
ψ̄ ∗ (eb ∧ ea) ∧ γb∇̂ψ +

i

2
m(ψ̄ψ) ∗ ea +

1

2
D̂Kbc ∧ ∗eabc

+
i

4
ψ̄ ∗ (eb ∧ ea) ∧ γbKcdσcdψ +

1

2
Kb

d ∧Kdc ∧ ∗eabc. (3.38)

It is not difficult to check that

1

2
D̂Kbc ∧ ∗eabc =

i

4
ea ∧ (ψ̄γ5γ ∧ ∇̂ψ). (3.39)

Therefore, the first, second and third terms on the right hand side above add up to the symmetric

stress-energy-momentum 3-forms of the Majorana spinor. The sum of the fourth and fifth terms gives

a particular quartic self-coupling of the Majorana spinor. We explicitly work it out to be

3

64
(ψ̄γ5γbψ)(ψ̄γ5γ

bψ) ∗ ea. (3.40)

In a similar way, the Dirac equation decomposes as

i ∗ γ ∧ ∇̂ψ + imψ ∗ 1 + 3

16
(ψ̄γ5γψ) ∧ γ5 ∗ γψ = 0. (3.41)

4. Concluding comments

(A) As far as the coupled field equations are concerned the zero-torsion constrained variations of the

action density 4-form

L =
1

2
Rab ∧ ∗(ea ∧ eb) + i

2
ψ̄ ∗ γ ∧∇ψ +

i

2
m(ψ̄ψ) ∗ 1

+
α

4
(ψ̄γ5γψ) ∧ (ψ̄γ5 ∗ γψ) + T a ∧ λa, (4.1)
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and the unconstrained (i.e. with nonvanishing torsion) variations of the action density 4-form

L′ =
1

2
Rab ∧ ∗(ea ∧ eb) + i

2
ψ̄ ∗ γ ∧∇ψ +

i

2
m(ψ̄ψ) ∗ 1

+
β

4
(ψ̄γ5γψ) ∧ (ψ̄γ5 ∗ γψ) (4.2)

yield the same field equations provided their parameters are related by

α = β +
3

16
. (4.3)

Of course, the coupling of spinning matter to space-time geometry in these two cases may differ and

needs further considerations.

(B) A short remark concerning the physical interpretation of our Lagrange multiplier 2-forms is in

order. Consider a generic matter Lagrangian density 4-form

Lmatter(ψ, e, ω̂), (4.4)

whose gravitational couplings are described through its dependence on both the coframe and the

connection. The coupling of Dirac, Weyl or Majorana spinors to gravity provide familiar examples of

such couplings. On the other hand, nonminimal couplings of electromagnetic fields to gravity described

by generic terms of the type RF 2 in the Lagrangian density 4-form provide rather unfamiliar examples.

Then the variational derivatives

δLmatter

δea
≡ τa(matter) (4.5)

give the energy-momentum 3-forms of matter for which the corresponding canonical energy-momentum

tensor is non-symmetric in general. Similarly

δLmatter

δωab
≡ Σab(matter) (4.6)

gives the angular momentum 3-forms of matter. We construct the 2-forms

λa = ιbΣba −
1

4
ea ∧ ιcιbΣbc (4.7)

so that

D̂λa = D̂(ιbΣba) +
1

4
ea ∧ d(ιcιbΣbc). (4.8)

Then the energy-momentum tensor corresponding to the sum

τa(matter) + D̂λa, (4.9)

is symmetric. This is the Belinfante-Rosenfeld procedure [9, 10] for the construction of a symmetric

energy-momentum tensor when the matter Lagrangian density 4-form carries an explicit dependence
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on the connection 1-forms. We will not repeat the proof that the conservation laws associated with

both the canonical tensors and the symmetric tensors remain the same [11]. Our main observation

here is that our Lagrange multiplier 2-forms λa are nothing but the well-known Belinfante-Rosenfeld

2-forms.

(C) Under local Pauli-Gürsey (chiral) rotations

ψ → eθγ5ψ, (4.10)

there exists an axial vector current density

J5 =
i

4
(ψ̄γ5γψ), (4.11)

such that

∗d ∗ J5 = im(ψ̄γ5ψ), (4.12)

on-shell. J5 is conserved for a massless-neutrino. The generic quartic self-coupling of Majorana

neutrinos takes the form J5 ∧ ∗J5.
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