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Abstract: The effects of noise and nonuniformity on dynamics of populations are relevant and timely subjects

of investigation. One form of variation is the time dependence of the reproduction rate (fitness), referred to

as “seascape” noise; another is time-independent intrinsic dependencies of fitness on location (in the parlance

of statistical physics, corresponding to annealed and quenched disorder, respectively). The former was studied

recently and demonstrated to lead to novel universality classes for extinction and growth. To reduce the gap

between this theoretical model and reality, we develop a new formalism for seascape noise where growth and

migration parameters are inhomogeneous. In this formalism, we consider several subpopulation classes: each

class consists of patches with similar properties, but patches for different classes are different. Employing a

generalized mean-field approach, we self-consistently find distributions for numbers of each subpopulation in

steady-state. Interestingly, we find that extinction is characterized by a critical exponent which depends on the

characteristics of the subpopulation with the largest noise-to-migration ratio, regardless of the relative size of

this subpopulation. Growth is now governed by a generalized Richards law, with an effective exponent varying

with population size.
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1. Introduction

Population dynamics has garnered diverse interest over the past few decades, with appearances in

fields such as cancer research [1], forestry [2], pandemic modeling [3], wealth modeling [4], and many

others. The multitude of data sets have been fitted to a number of empirical models [5] which call for

good justification. Indeed, despite a rich literature on mathematical models for population growth [6–

12], this field remains a fertile ground for theoretical explanations of the origins of various empirical

models [2]. The simplest model of population growth is the logistic equation:

dy

dt
= µy − ay2 , (1.1)

describing a population of size y(t) that initially grows exponentially at rate µ (fitness), until resource

limitation leads to saturation at y(t → ∞) = µ/a .

While most empirical models focus on the behavior of an average population, there is underlying

stochasticity that must be accounted for. One source of variation is due to the intrinsic randomness
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in reproduction events (whether a member of the population has zero, one, or several off-springs); this

gives rise to the so-called demographic noise [13–15] and leads to interesting phenomena such as noise-

stabilization [16], reversing the effect of deterministic selection [17], robust pattern formation [18], and

rare extinction events [19, 20]. Mathematically, the magnitude of demographic noise is proportional

to the square root of the population size, and it is thus most influential in small populations. A

typical population is also distributed among a number of different locations, with subpopulation at

location i indicated by yi(t) (for example, birds in archipelagos, microorganisms in soils, and cells in

vivo). Including migrations between the different locales, as well as demographic noise, now generalizes

Eq. (1.1) to

dyi
dt

= µyi − ay2i +
∑
j

Mij(yj − yi) +
√
yi ηi(t) , (1.2)

with Mij being the rate of migration from patch j and patch i , and ηi(t) being a Gaussian noise of

zero mean and unit magnitude. (As µ → 0, the extinction process of the population is known to be

described by a corresponding directed percolation universality class [21].)

The focus of this work, however, is on extrinsic (e.g., environmental) factors that cause the

reproduction rate itself to vary from location to location, and from time to time. Extending analogy

from a random landscape, this type of time-dependent variation is referred to as seascape noise. Due

to variations of the fitness term, this type of noise is mathematically expressed as a term proportional

to the local population size yi [22, 23], leading to coupled stochastic differential equations of the form

dyi
dt

= µyi − ay2i +
∑
j

Mij(yj − yi) + σyiηi(t) , (1.3)

with σ2 being the variance of the seascape noise.

The presence of seascape noise can significantly alter the behavior of the population: Refer-

ence [22] considered a “mean-field” setting with complete connections between N sites described by

Mij = D/N , in the limit of N → ∞ . In the absence of seascape noise, it is easy to check that the

steady-state mean behaves in the same way as the logistic equation, i.e. y =
∑N

i=1 yi/N = µ/a . The

average population vanishes linearly on approach to the extinction threshold for µ → 0. If there

is no demographic noise, large seascape noise changes the extinction critical behavior from y ∝ µ1

to y ∝ µβ , with a critical exponent β = 2D/σ2 (for σ2 > 2D ). Furthermore, in this regime, the

probability distribution of the population broadens to the extent that the variance diverges, a feature

not present with demographic noise.

There is in principle no reason for the saturation term to take the quadratic form S(y) = −ay2 .

Indeed, other forms have appeared in the literature, all capturing the same qualitative behavior in

which the population size increases monotonically with time and saturates at the root of µy+S(y) = 0.

Notably, the Richards growth equation has S(y) ∝ −yγ , with a fractional exponent γ fitted to the

data [11, 12]. Originally introduced in describing plant growth [24–26], the Richards equation

dy

dt
= µy − ay γ , (1.4)

has been used in diverse contexts including modeling of pandemics [3, 27–30], bacterial growth [31],

marketing [32], fisheries [33–35], forest growth [36–39], and agriculture [40, 41]. However, in the

174



TRAN and KARDAR/Turk J Phys

context of critical phenomena, introducing a nonanalytic term at the outset is not legitimate. It is

appropriate to extend the growth law by the inclusion of additional analytic terms in the expansion

S(y) = −ay2+a3y
3+a4y

4+ · · · , but a nonanalytic term ∝ yγ requires justification. In Reference [23],

it was shown that Eq. (1.4) emerges naturally upon averaging over migrating populations subject to

seascape noise, as in Eq. (1.3) for any such analytic S(y).

While an intriguing connection, the above result [22, 23] relies on the assumption of equivalency

between all sites with the same average growth parameters µ and S(y), as well as Mij = D/N for

migration between any pair. Even though this is a typical assumption [42–46]), persistent differences

between different locales are an important feature of a biological landscape, and can give rise, even

in equilibrium, to qualitative long-term, behavioral changes [4, 13, 47–50]. The present work aims to

include some effects of persistent inhomogeneity through a generalization of the equivalent neighbor

model to include several classes of patches. Patches belonging to each class have identical properties

but are distinct from other patches, and migration rates may also depend on pairs of classes. As

expected, the behavior of the overall population is influenced by the distinct properties of its subpop-

ulations. Interestingly, the relative size of a subpopulation is less important than the degree of its

fitness variability and migration to other subgroups.

The following sections present the above formalism and some of its applications. In Section 2, we

analytically derive the steady-state distribution for each class; these are wide, power-law distributions

with diverging moments. We construct a set of master consistency equations and use them to find

the equilibrium mean population as well as higher moments. In Section 3, we consider an extinction

scenario where the average reproduction rate goes to zero and derive the dependence of the population

mean on the statistics of the growth and noise factors. To highlight such dependence, we use numerical

analysis on the extinction of a population with an “exotic” subpopulation (with a large noise-to-

connection ratio). In Section 4, we employ a seasonal-growth model (alternating between growth

and migration stages) to explain how Richards-like nonanalyticity emerges from a mean-field theory.

Section 5 concludes with an overview.

2. Model & formalism

Our model considers ℓ population classes labeled by a Greek index α ∈ {1, . . . , ℓ} . The number of

patches in each class is set such that

pα = lim
N→∞

Nα

N
, (2.1)

with Nα being the number of patches in class α , and N =
∑

αNα being the total number of patches

in the entire population. All patches among a class α have equal average growth parameters µα and

aα and are internally fully and equally connected. Next, let Mαβ denote the migration rate between

any patch i in class α and any patch j in class β , which is the same for all pairs i ∈ α and j ∈ β .

This matrix is symmetric, Mαβ = Mβα , so that the total population is conserved under the effect of

migration. We also scale the connection strengths as Mαβ = Dαβ/N for some fixed Dαβ , to obtain a

proper limit when N → ∞ .

We then solve for the stationary probability distribution of the subpopulations and their mo-
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ments, starting from rewriting Eq. (1.3) for any patch i ∈ α as

dyiα
dt

= µαy
i
α − aα(y

i
α)

2 +
∑
β

∑
j∈β

Mαβ(y
j
β − yiα) + σαy

i
α ηiα(t) . (2.2)

In the N → ∞ limit,
∑

j∈β y
j
β/N over patches in class β approaches yβ Nβ/N , such that the above

equation becomes

dyiα
dt

= µαy
i
α − aα(y

i
α)

2 +
∑
β

Dαβpβ(yβ − yiα) + σαy
i
α ηiα(t) , (2.3)

From the above stochastic equations, we can construct corresponding Fokker-Planck equations for

probability distributions ρα(yα), with α = (1, · · · , ℓ), as

∂ρα
∂t

= −∂yα

[(
µαyα − aαy

2
α +

∑
β

Dαβpβ(yβ − yα)
)
ρα − σ2

α

2
∂yα(y

2
αρα)

]
. (2.4)

The distributions are coupled to each other, but only through the averages {yα(t)} . The stationary

distributions are found by setting the probability currents – the terms in the square parentheses – to

0, which (following division by σ2
α/2) leads to the ordinary differential equations

0 = y2αρ
′
α +

(
2 +

∑
β

CDαβ
pβ − Cµα

)
yαρα −

∑
β

CDαβ
pβyβρα + Caαy

2
αρα , (2.5)

where we have set CDαβ
= Dαβ/σ

2
α , Cµα = µα/σ

2
α , and Caα = 2aα/σ

2
α . Let us now set

CDα =
∑
β

CDαβ
pβ =

2

σ2
α

∑
β

pβDαβ ,

(y0)α =

∑
β CDαβ

pβ yβ∑
β CDαβ

pβ
=

∑
β pβDαβ yβ∑
β pβDαβ

,

(2.6)

the first is a measure of migrations (into or out of class α to noise in this class; the second is a weighted

average of the input to α by migration. In terms of these parameters, the Fokker-Planck equations

become

0 = y2αρ
′
α + (2 + CDα − Cµα) yαρα − CDα(y0)αρα + Caαy

2
αρα . (2.7)

These equations admit solutions in the form of power-laws with cutoffs at small and large values: a

(not normalized) distribution proportional to

ρ̂α(yα) = e−CDα (y0)α/yαy
−2−CDα+Cµα
α e−Caαyα . (2.8)

For subgroup α , the upper cutoff, set by Caα only depends on characteristics of α ; the intermediate

power-law is influenced by migration to other subgroups through CDα , while the coupling to average
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behaviors of other classes is only felt through the lower cutoff. Integrating over ρ̂α(yα) yields the

m-th (not normalized) moment

⟨ymα ⟩ = 2

[
Caα

CDα(y0)α

] 1+ωα−m
2

K1+ωα−m(2xα) , (2.9)

with xα =
√
CaαCDα(y0)α , ωα = CDα −Cµα , and Kγ being a modified Bessel function of the second

kind.

In the Nα → ∞ limit, the empirical mean yα equals the mean of the distribution ρα(yα), given

by

yα ≃ ⟨yα⟩ =
xα
Caα

Kωα(2xα)

Kωα+1(2xα)
. (2.10)

This set of ℓ equations is sufficient to solve, either numerically or analytically under some approxima-

tions, for the ℓ unknowns yα , which permits the calculations of all higher moments.

In a quasi-steady state, averaging Eq. (2.3) over all patches cancels all noise terms (in the large

N limit) and migration terms (due to their symmetry), resulting in

d

dt

∑
α

pαyα =
∑
α

pαµαyα −
∑
α

pαaα ⟨y2α⟩ , (2.11)

suggesting that nonanalytic behaviors emerge from nonanalytic dependence of ⟨y2α⟩ on yα .

3. Extinction behavior

For a single class, the steady state population y vanishes when the net reproduction rate µ → 0, as

y ∝ µβ . The critical exponent β = 2D/σ2 is governed by Cµ ≪ CD . For multiple classes with distinct

{µα} (some of which can be negative), all classes go extinct at the same point, because species with

positive growth can act as sources – via migration – to species with negative growth. For simplicity

of calculation, we still assume that the range of {µα} is much smaller than the scale set by migration.

In this limit (as shown below), extinction occurs when the mean growth rate µ =
∑

α pαµα goes to 0.

We further assume that the system has reached the steady state given by Eq. (2.8). The extinction

transition is then characterized by the vanishing of {yα} as a function of the environmental factors

{pα, µα, σα} .
We derive the extinction critical behavior by considering the asymptotic behavior of the right

hand side of Eq. (2.10) in the (y0)α → 0 limit (or equivalently xα → 0). Given the nonanalytic

power law distribution in Eq. (2.8), it is not surprising that the expansion near x = 0 of Kω/Kω+1 is

nonanalytic:

Kω(2x)

Kω+1(2x)
≃ x

(
1

ω
+

x2

ω2(1− ω)
+

Γ(−ω)

Γ(1 + ω)
x2ω
)

. (3.1)

In the x → 0 limit, the dominant correction term in the parentheses switches from x2 for ω > 1 to
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x2ω for ω < 1. Combining this with an approximation for Cµ ≪ CD , we rewrite Eq. (3.2) as

yα = (y0)α

[
1 +

Cµα

CDα

− γα(y0)
qα
α

]
,

qα = min(1, ωα) ,

γα =

{
CaαCDα
ωα(ωα−1) if ωα > 1 ,

−ωα
Γ(−ωα)
Γ(1+ωα)

(CaαCDα)
ωα if ωα < 1 .

(3.2)

As the second and third terms in the square bracket are small corrections, Eq. (3.2) suggests yα ≈ (y0)α
for all α , and therefore

yα ≈ y for all α , (3.3)

for some average population y . Intuitively, because migration is symmetric and dominates both the

growth and loss terms (when yα is small), the balance of migration – to and from – forces the mean

of all subpopulations to be equal in steady state. Even subgroups with zero (or negative) µ , that if

isolated would have gone extinct, are replenished by migration from the reproducing classes, as long

as the migration strength is nonzero.

Including small variations, (yα − y)/y ≪ 1, among the different classes, we linearize Eq. (3.2)

around y to find the average population (full derivation in Appendix A).

y =

( ∑
α pαµα

pα0γα0

∑
β Dα0βpβ

)1/qα0

,

α0 ≡ argmin
α

qα .

(3.4)

Interestingly, this result implies that as the mean production rate vanishes, the mean population goes

extinct as y ∝ µβ with exponent β = 1/qα0 . Thus, the fate of the entire population (as quantified by

the critical exponent) is linked neither to the subpopulation with the largest or smallest fitness nor

the largest subpopulation (with the highest pα ), but to the subpopulation with the largest noise-to-

migration ratio (α0 ). The larger this ratio, the higher the critical exponent and the faster the average

population decays.

To gain insight into this delicate dependence on an exotic subpopulation, we consider Eq. (2.11)

in the extinction limit. The growth term on the left admits an effective growth rate (
∑

α pαµα) y ,

which behaves similarly in the limit y → 0 for all subpopulations. However, unlike the means, the

second moments behave differently. We use Eq. (4.4) to find

⟨y2α⟩ ∝

{
y2 for ωα > 1 ,

y1+ωα for ωα < 1 .
(3.5)

The difference in the scaling law of the second moments suggests that for a small population size, the

population loss from class α0 with the smallest ωα dominates the loss from other subpopulations,

hence the importance of class α0 in Eq. (3.4).
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4. Generalized growth law

We next consider the evolution of the population size with time. Absent an explicit solution to the

time-dependent Fokker-Planck equation, we appeal to a ‘seasonal growth model’ in which a population

alternates between two distinct behaviors, separating an on-site reproduction phase from a stochastic

exploration phase. As shown below, this model motivates the usage of a quasi-steady state and

therefore Eq. (2.11).

Let us assume that during the stochastic exploration phase, there is no reproduction and the

population changes only through the linear terms: migration and seascape noise. After a sufficiently

long time, the population reaches a steady distribution described by Eq. (2.8) for Cµα = Caα = 0,

given by

ρ̂α(yα) = y
−2−CDα
α e

−CDα
(y0)α
yα , (4.1)

an inverse, scaled Cauchy distribution with mean (y0)α . As before, self-consistency requires yα =

(y0)α , consistent with the condition imposed by the balance of migration: yα = y for all α and some

y (All subpopulations have the same mean by the end of the exploration phase, since without growth,

the net flux between any two classes, DαβNαNβ/N
∣∣yα − yβ

∣∣ , has to vanish in steady state).

Note the absence of an upper cutoff in Eq. (4.1) due to neglect of the saturating nonlinearities.

In actuality, there will be an upper cutoff Λα set by the duration of the exploration phase. We

also impose a lower cutoff Υα to implement the self-consistency condition, approximating to a pure

power-law distribution

ρ̂(yα) ∝

{
y
−2−CDα
α for Υα < yα < Λα ,

0 otherwise .
(4.2)

As long as Λα ≫ Υα , the mean of the distribution is ⟨y⟩ = (1 + CDα)Υα/CDα , so we set

Υα =
CDα

1 + CDα

⟨yα⟩ . (4.3)

We then integrate over Eq. (4.2) to find the m-th moment, which has two distinct behaviors depending

on the value of CDα :

⟨ymα ⟩ ∝

{
⟨yα⟩1+CDα for 0 < CDα < m− 1 ,

⟨yα⟩m for CDα > m− 1 .
(4.4)

For small CDα , with seascape noise dominating migration, nonanalytic behavior arises, initially for

the higher moments. The leading nonlinearity, however, remains as ⟨y⟩2 until CDα < 1, where it

is replaced by ⟨y⟩1+CDα . Importantly, in this regime, all higher moments (and hence any analytic

function) have average dependence as ⟨y⟩1+CDα .

The evolution of yα(t) during the reproduction phase is governed by the local growth and

saturation terms µαyα+S(y). This has to be averaged over the stationary distribution from the prior

exploration phase, and in particular the moments ⟨ymα ⟩ from Eq. (4.4). In a short growth time, we

find

∆⟨yα(t)⟩ ≃ (µα ⟨yα(t)⟩ − aα ⟨y2α(t)⟩+ · · · )∆t , (4.5)

179



TRAN and KARDAR/Turk J Phys

10 68 10 48 10 28 10 8 1012 1032 1052 1072 1092

Population Size y

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Gr
ow

th
 P

ar
am

et
er

 

Average Growth Exponent with Multiple Distinct Phases

Figure 1. The average exponent γ from the Richards growth model (defined in Eq. (4.9)) for a system
with three subpopulations – 10−6% with γ1 = 1.8, 20% with γ2 = 1.4, and 80% with γ3 = 1.1. Three
distinct regimes are visible. For small population size, the largest subpopulation contributes the most,
so γ ≈ 1.1. For a larger population size, the more exotic subpopulations have more effect, and γ
increases to 1.4 and 1.8.

to first order in ∆t , or equivalently,

∆⟨yα(t)⟩
∆t

= µα ⟨y⟩
(
1 + (−Aα + · · · ) ⟨y⟩CDα

)
,

Aα ≡ CDαaαΛα

1− CDα

[
CDα

(1 + CDα)Λα

]CDα

,

(4.6)

where we already substituted in ⟨yα⟩ = ⟨y⟩ ; the amplitudes arising from the higher order terms of

S(y) can be calculated in a similar manner. This leads to a change in the overall population by the

end of a growth phase, according to

y(t+∆t) =
∑
α

pαyα(t+∆t) . (4.7)
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The growth law for the entire population then takes the form

∂y(t)

∂t
=
∑
α

pαµα y(t)−
∑
α

pαAα y
CDα+1(t) , (4.8)

returning the form of Eq. (2.11).

While for a single class, the above result amounts to a justification of the Richards growth law,

for multiple classes the growth law is no longer simple and can include the sum of multiple fractional

growth terms. As y increases, smaller subpopulations (smaller pα) with larger exponent start to make

appearance. As a specific example, Figure 1 depicts the variation of an effective Richards exponent

for a population with three classes, defined through

A yγ =
∑
α

pα [Aαy
γα ] , with A ≡

∑
α

pα [Aα] . (4.9)

5. Conclusions

Given the diverse contexts for dynamics of evolving populations, it is important to explore the influence

of variability at different times and locations. This paper expands on previous works [22, 23] in

which variations in reproduction rate at different locations and times were considered in the form of

independent random noise. However, apart from this (seascape) noise, the different locations were

treated identically in their growth, saturation, and migration rates. This assumption made the problem

analytically tractable by a self-consistent (mean-field) approach. In this paper, we introduce a specific

form of inhomogeneity, by considering ℓ subpopulations with distinct average growth and saturation

rates, different scales of seascape noise as well as pair-wise migration rates.

The choice of model allows a generalization of the mean-field approach, with ℓ self-consistent

equations describing the subpopulation means {yα} and corresponding distributions {ρ̂α(yα)} . To

make sense of the results, let us note that for an isolated population, seascape noise leads to a

broad log-normal distribution ρ̂(y). Migration between sites and saturation effects tame the log-

normal distribution to a power-law form (in the long-time limit as supported by steady-states of the

Fokker–Plank equation). The easiest limit to justify analytically is in a quasi-steady state and when

migration and seascape noise are the dominant effects. The symmetric migration assumed in this work

then makes all subpopulations have the same average yα = y (to zeroth order), while their respective

distributions can be described by different power-laws. We can then follow the behavior of the single

parameter y in two cases of extinction and growth:

In the steady-state (long time) limit, extinction occurs when the mean reproduction rate van-

ishes. If the average reproduction rate µ =
∑

α pαµα is nonnegative, the growing subpopulations act

as sources to the decaying subpopulations through migration. As µ → 0, the common average popu-

lation vanishes as y ∝ µβ . For noiseless logistic growth β = 1, while seascape and migration modify

the exponent to a fractional β < 1. Interestingly, the value of the exponent β does not depend on

the population with the largest fitness, or on the subpopulation with the largest number of members.

Rather, it is dominated by the subpopulation with the largest noise-to-migration ratio. Effectively,

this subpopulation acts as a sink that rapidly diminishes the overall population.

Another interesting case is that of the growth of the average population y(t) to its final value.

For a single population, it was shown in Reference [23] that for a sufficient slow growth, the evolution
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of y(t) is described by the Richards law with a fractional exponent. In the inhomogenous case, the

overall growth is no longer described by a single fractional exponent, but rather by effective exponents

appearing at different scales, moving to larger values as the population size increases.

It is tempting to infer connections between our results and real world situations such as pandemic

modeling. Our results certainly indicate that noise and inhomogeneity can profoundly affect population

dynamics and lead to novel phenomena. However, various simplifying assumptions of the model (such

as symmetric migration, limiting inhomogeneity to a finite number of subgroups, ignoring demographic

noise, etc.) are also likely to constrain its applicability. Further work to go beyond these limitations

is certainly called for.
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[22] B. Ottino-Löffler and M. Kardar, “Population extinction on a random fitness seascape,” Physical Review

E 102 (2020) 052106.
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Appendix

A. Deriving extinction mean

In this appendix, we provide an analytic solution to Eq. (3.2), to first order approximation.

We linearize this system of equations around y , to solve for both the average population y as

well as the subleading corrections, by setting

yα = y (1 + fα) . (A.1)

Here, y is the zeroth order approximation such that all the first order corrections fα ∝ ∆µ , the

variations of µα , as µ → 0 satisfy fα ≪ 1 (so there is freedom to choose a constraint F {fα} = 0).

Combining Eq. (3.2) and Eq. (A.1) gives

fα −
∑

β CDαβ
pβfβ

CDα

=
Cµα

CDα

− γα(y0)
qα
α , (A.2)

a set of coupled linear equations for fβ .

The average population y can be solved separately from the corrections fα . Multiplying both

sides of Eq. (A.2) by pαCDασ
2
α/2 and summing over all α gives∑

αβ

Dαβpαpβ(fα − fβ)

=
∑
α

pαµα −
∑
αβ

Dαβpαpβγα(y0)
qα
α .

(A.3)

The left-hand side of the above equation vanishes because Dαβ is symmetric. For the right-hand side,

to first order, we replace (y0)α with y . Moreover, as the limit of y → 0, only the term with the

smallest exponent, qα0 corresponding to class α0 , contributes to the sum over α . Omitting the other

terms gives:

y =

( ∑
α pαµα

pα0γα0

∑
β Dα0βpβ

)1/qα0

,

α0 ≡ argmin
α

qα .

(A.4)

We find the corrections fα by directly solving the set of linear equations in Eq. (A.2). We use

the constraint to set fα0 = 0 and obtain the following solution:

y =

(∑
β ̸=α0

Aα0βfβ + Cµα0

γα0CDα0

)1/qα0

,

fβ =

{
0 if β = α0

(A−1B)β otherwise
,

(A.5)

with the following short-hand notations:

α0 ≡ argmin qα ,

Aαβ ≡ δαβ − CDαβ
pβ/CDα , α ̸= α0 ,

Bα ≡ Cµα/CDα , α ̸= α0 .

(A.6)
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The two obtained expressions for y are equivalent, and the last step is to verify if all the fα ≪ 1.

B. A different scheme

There is an alternative interpretation of the logistic equation, in which the parameters aα are func-

tionally related to µα . In the standard scheme, aα is entirely independent of µα , and by varying µα ,

we also vary the capacity of the population. In the alternative scheme, population capacity K is kept

fixed, and the logistic growth equation takes the form

dy

dt
= µy

(
1− y

K

)
, (B.1)

which sets a = µ/K .

First, we discuss the difference in extinction behaviors of the two alternative schemes, focusing

on the one class case for simplification. Without seascape noise, Eq. (B.1) implies that the steady

state population makes a discontinuous jump:

y =

{
K if µ > 0 ,

0 if µ = 0 .
(B.2)

However, in the absence of demographic noise, the existence of large seascape noise, where σ2 >

2(D − µ), makes the transition continuous:

y = K · σ2

4D

[
−Γ(1 + ω)

Dω Γ(−ω)

]1/ω
· µ1/ω−1 ,

ω =
2(D − µ)

σ2
.

(B.3)

obtained by letting aα ∝ µα in Eq. (3.4). Figure 2 indicates that the closer σ2 is to 2D , the sharper

the transition.

The choice of a scheme also has important impact on the factional growth obtained in this

paper. For the second scheme in Eq. (B.1), a stochastic, uncorrelated noise η(t) added to µ not only

generates the seascape term proportional to y , but also an additional noise term proportional to y2 .

This extra noise term changes the power law behavior for the large tail of the population distribution,

and the investigation of such a noise term will be deferred to the future.
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Figure 2. Equilibrium population y versus growth parameter in the fixed-capacity model (visualiza-
tion of equation Eq. (B.3)). The curves for all three values of σ2/2D are negative, indicating a slow
extinction transition from the capacity K to zero. The smaller σ2/2D is, the less negative the slope
is and the harder it is to observe the extinction phase.
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