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Abstract: We consider a generalized Langevin equation (GLE) in which the deterministic force, the mass and

the friction kernel are configuration-dependent, i.e. general nonlinear functions of the reaction coordinate. We

introduce a projection operator that allows for a self-consistent Markovian embedding of such GLEs. Self-

consistency means that trajectories generated by the Markovian embedding are described by a GLE with the

same configuration-dependent deterministic force, mass and friction kernel. Using the projection operator, we

derive a closed-form relation between the parameters of the Markovian embedding Langevin equations and the

parameters of the GLE. This is accomplished by applying the projection operator formalism to the system of

Markovian embedding stochastic equations.
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1. Introduction

Generalized Langevin equations (GLEs) have been proven to be a useful tool in the coarse-grained

stochastic modeling of many-body dynamics [1–13]. One of the reasons for this is that GLEs can

be derived from first principles using projection operator methods [14–20]. Although many different

forms of GLEs can be derived, the general structure can be written as

Ät =
F (At, Ȧt)

M(At)
−
∫ t

0
dsΓ(As, Ȧs, t− s) + FR(t). (1.1)

In Eq. (1.1), At denotes a general observable, e.g., the position of a tagged particle or the distance

between clusters of particles. For the sake of clarity, we denote the time dependency of observables

by a subscript, e.g., At , and derivatives with respect to (w.r.t.) time as dots, e.g., Ȧt . The first

term on the r.h.s. of Eq. (1.1) is a deterministic force F divided by the effective mass M of the

observable [21, 22]. This part of the GLE depends on the values At and Ȧt at the present time t , i.e.

it represents a Markovian contribution. The second term introduces a coupling to past values at time

s ≤ t , and, therefore, is referred to as the memory term. The memory kernel Γ(As, Ȧs, t−s) is usually

maximal at s = t and decreases as t− s rises. The function FR(t) depends on the initial state of the

entire system and is typically interpreted as a random force. The actual dependencies of the functions

F,Γ and FR on their arguments are determined by the choice of the projection operator [19, 20].
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Various data-based methods to estimate these functions from time series data have been introduced
[4, 19, 20, 22–27]. In principle, the GLE in its general form of Eq. (1.1) is exact. Approximations

enter when generating trajectories from the GLE. By choosing FR(t) to be a random process, the

exact GLE is mapped onto a stochastic model that can be simulated [28, 29].

In future work, we will discuss GLE simulations via Markovian embedding in the presence of a

nonlinear friction kernel, i.e. when Γ(As, Ȧs, t − s) → Γ(As, t − s)Ȧs , but in which the mass M is

assumed to be constant in At . In this paper, we consider the more general case where the effective

mass may also depend on At . We introduce a projection operator that generates a GLE in which the

deterministic force F is suitable for the purpose of simulating GLEs and contains a position dependent

mass. In Section 2, we introduce the projection operator and derive the GLE. In Section 3, we present

a system of coupled Markovian Langevin equations and use the projection operator to show that it

can be used to simulate the GLE derived in Section 2.

2. GLE with nonlinear friction

2.1. Hamiltonian dynamics

In the following, we introduce the many-body Hamiltonian and the notation used throughout the

paper. We also discuss the projection operator and the corresponding GLE.

We consider an N -particle Hamiltonian H(ωt) system, where ωt = (Rt,Pt) ∈ R6N is the phase

space point at time t with positions Rt and momenta Pt . The Hamiltonian is an invariant of motion

and of the form

H(ω) =
N∑

n=1

p2
n

2mn
+ V (R), (2.1)

where lower case pn denotes the momentum of the n-th particle, and mn its mass. The interaction

potential V is assumed to be a function of positions only such that there is no coupling between

velocities and positions. Observables of phase space are denoted by Bt = B(ωt) = B(ω0, t). The

inner product of two observables B and C is the equilibrium average over the stationary Boltzmann

distribution ρeq(ω0) = exp(−βH(ω0))/Z , i.e.

⟨Bt, Ct′⟩ =
∫

dω0 ρeq(ω0)B(ω0, t)C(ω0, t
′), (2.2)

with Z =
∫
dω0 e

−βH(ω0) being the partition function. The adjoint Liouville equation determines the

time evolution of an observable

Ḃt = LBt, (2.3a)

L =
N∑

n=1

(
∂H

∂pn
· ∂

∂rn
− ∂H

∂rn
· ∂

∂pn

)
, (2.3b)

where L is the Liouville operator. The general solution of the Liouville equation in Eq. (2.3) is given

by Bt = etLB0 . The Liouville operator L is anti-self-adjoint with respect to the inner product in

Eq. (2.2), i.e.

⟨LBt, Ct′⟩ = −⟨Bt, LCt′⟩. (2.4)
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2.2. Projection operator

Projection operators are linear, idempotent operators [30, 31], i.e. a projection operator P fulfills

P2 = P. (2.5)

We denote the projection onto the complementary subspace by Q = 1 − P , where 1 is the identity

operator. From the idempotent property in Eq. (2.5), it follows

PQ = QP = 0. (2.6)

A projection operator is orthogonal w.r.t. a given inner product if it is self-adjoint w.r.t. the inner

product. In case of the inner product in Eq. (2.2), this implies

⟨PBt, Ct′⟩ = ⟨Bt,PCt′⟩, (2.7a)

⟨QBt, Ct′⟩ = ⟨Bt,QCt′⟩, (2.7b)

⟨QBt,PCt′⟩ = 0. (2.7c)

Using projection operators, the Liouville equation (Eq. (2.3a)) can be decomposed into two terms

Ḃt = LBt = etLLB0 = etL(PL +QL)LB0. (2.8)

We use the subscript L to highlight that the pair PL,QL is used to decompose the Liouville equation.

Using the Dyson decomposition [32, 33] of the propagation operator etL , we can further decompose

Eq. (2.8) [34]. The Dyson decomposition is given by [35]

etL = etQDL +

∫ t

0
ds e(t−s)LPDLe

sQDL. (2.9)

The subscript D denotes that we use the pair PD,QD , which in general can be different from PL,QL ,

in the Dyson decomposition. Inserting Eq. (2.9) into Eq. (2.8), we obtain an equation with a similar

structure to a GLE in terms of general projection operators PL,QL,PD,QD :

Ḃt = etLPLLB0 +

∫ t

0
ds e(t−s)LPDLFR(s) + FR(t), (2.10a)

FR(t) = etQDLQLLB0. (2.10b)

Note that the projection PL determines the functional form of the first term etLPLLB0 and the initial

value FR(0) = QLLB0 , while the projection PD determines the functional form of the integrand

PDLFR(s) and the propagation of FR(0) in time via etQDL .

2.3. Final form of the GLE

Next, we specify the projections PL and PD in order to obtain an explicit form of the GLE. For this,

we need the conditional correlation between two observables B and C , which is defined by

⟨Bt, Ct′⟩A0 =
⟨δ(A(ω̂0)−A(ω0)), B(ω̂0, t)C(ω̂0, t

′)⟩
⟨δ(A(ω̂0)−A(ω0))⟩

. (2.11)
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In Eq. (2.11), the phase space position with a hat, i.e. ω̂0 , is integrated over. The condition in

Eq. (2.11) is that the observable A has initially the value A0 = A(ω0). We will refer to the observable

A , which we project onto, as the observable of interest, or reaction coordinate. In the remainder, we

assume that A is a function of particle positions only, i.e. A(ω0) = A(R0) = A0 . For example, A

could be the center of mass of a cluster of particles, the mean distance from the native state of a protein

or the dihedral angle. When A is a function of positions only, its velocity Ȧ0 = (M−1P0) · ∇RA0 is

linear in particle momenta, where M is the diagonal mass matrix Mij = miδij . From this, and from

Eq. (2.1) and Eq. (2.2), it follows that, for given position R0 , the velocity Ȧ0 is Gaussian distributed

with zero mean. Using conditional correlations, we define the first projection operator PD . It is a

reformulation of the projection operators discussed in refs. [19, 20] and given by

PDBt = ⟨Bt⟩A0 +
⟨Ȧ0, Bt⟩A0

⟨Ȧ2
0⟩A0

Ȧ0 . (2.12)

The projection operator PL is an extension of PD and reads

PL = PD + P2, (2.13a)

P2Bt =

〈(
Ȧ2

0 − ⟨Ȧ2
0⟩A0

)
, Bt

〉
A0〈(

Ȧ2
0 − ⟨Ȧ2

0⟩A0

)2〉
A0

(
Ȧ2

0 − ⟨Ȧ2
0⟩A0

)
. (2.13b)

Both projections, PL and PD , are orthogonal projections w.r.t. the inner product in Eq. (2.2).

Further, we have QLBt = QDQLBt . To obtain the final form of the GLE, we set Bt = Ȧt in

Eq. (2.10) and use the projection operators defined in Eq. (2.12) and Eq. (2.13). This gives the GLE

Ät = − 1

M(At)

dU(At, Ȧt)

dAt
−
∫ t

0
dsΓ(As, t− s)Ȧs + FR(t), (2.14a)

with

U(A, Ȧ) = UPMF(A) +
M(A)

2
Ȧ2 + kBT ln

√
M(A), (2.14b)

Γ(A, t) = βU ′
eff(A)D(A, t)−D′(A, t) +

⟨Ä0, FR(t)⟩A
⟨Ȧ2

0⟩A
, (2.14c)

Ueff(A, t) = UPMF(A) + kBT lnM(A), (2.14d)

D(A, t) =
⟨Ȧ2

0, FR(t)⟩A
⟨Ȧ2

0⟩A
. (2.14e)

Here, M(A) = kBT/⟨Ȧ2
0⟩A denotes the position-dependent effective mass of the reaction coordinate

and UPMF(a) = −kBT lnP(a) is the potential of mean force (PMF) with P(a) = ⟨δ(A(ω̂0) − a)⟩
being the positional distribution. An algorithm to extract GLE parameters from time series data by

explicitly computing the random force FR(t) was introduced in refs. [25, 36] and extended to GLE’s in
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the presence of finite, in general nonlinear, potentials and nonlinear friction in ref. [19]. The random

force (and simultaneously the memory kernel) is computed by discretizing the iterative equation

FR(ω0, t+∆t) = FR(ω∆t, t) +

∫ ∆t

0
dsΓ(A∆t−s, t+ s)Ȧ∆t−s , (2.15)

where ω∆t corresponds to the configuration obtained by propagating ω0 with the Liouville propagator

e∆tL , while the explicit time dependency of FR(ω, t) results from an orthogonal propagation with etQL .

Alternatively, one can also use the Volterra scheme discussed in ref. [20].

3. Markovian embedding of a GLE with configuration-dependent mass and nonlinear

friction

In this section, we will present a system of Markovian Langevin equations that allows for a self-

consistent Markovian embedding of a GLE with a configuration-dependent mass and nonlinear friction.

But first, we need to clarify in what sense the Markovian embedding is self-consistent.

3.1. The concept of self-consistent Markovian embedding

The goal of Markovian embedding is to find a map of a low-dimensional non-Markovian GLE onto

a higher-dimensional Markovian system of equations that can be used to perform efficient and accu-

rate computer simulations of the non-Markovian system. One simple example of such a Markovian

embedding can be given for a GLE with constant mass M and single-exponential memory,

ẍt = − 1

M
U ′(xt)−

∫ t

0
dsΓ0e

−(t−s)/τ ẋs + FR(t), (3.1)

⟨FR(t)⟩ = 0, ⟨FR(t), FR(0)⟩ =
kBT

M
Γ0e

−t/τ . (3.2)

Eq. (3.1) can be generated from the following coupled system of Markovian Langevin equations

ẋt = vt, (3.3a)

v̇t = − 1

M
U ′(xt) + γ1 ut, (3.3b)

u̇t = −γ2 ut − γ1 vt +
√

2kBTγ2 η(t), (3.3c)

E[η(t)] = 0, E[η(t)η(t′)] = δ(t− t′), (3.3d)

if one chooses the input parameters γ1, γ2 to be

γ1 =
√

Γ0, γ2 =
1

τ
. (3.4)

In Eq. (3.3), η(t) is white noise and E[·] denotes an average over the noise. When it comes to

numerical simulations, Eq. (3.3) is preferable over Eq. (3.1) because Eq. (3.1) is an integro-differential

equation and thus, numerically much more demanding. Suppose the memory kernel Γ(t) = Γ0e
−t/τ

is known, e.g., the parameters Γ0 and τ have been estimated from data. Then, Eq. (3.4) determines
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Figure 1. Comparison of the numerically extracted GLE parameters (markers) with the input values
(solid lines). In A, we show the position dependent mass M(A), where we compare the numerically
computed conditional average in Eq. (3.10b) (markers) with the input function in Eq. (3.21) (solid line).
In B and C, we compare the numerically extracted memory kernel defined in Eq. (2.14c) (markers)
with the input memory kernel given in Eq. (3.13c) and Eq. (3.22) (solid lines). In B, Γ(A, t) is shown
as a function of time at different positions A , and in C, as a function of the position A at different
times t . We show the shape of the PMF U(A) in the background in C as a thick gray line. The
underlying trajectory was generated via simulations of Eq. (3.5) with U given in Eq. (3.20) and γ21(A)
given by Eq. (3.22). The memory function Γ(A, t) is extracted using Eq. (2.15) (cf. ref. [19]).

how to choose the parameters of Eq. (3.3) in order to simulate the GLE in Eq. (3.1). Self-consistency

then means that, after performing computer simulations of the system in Eq. (3.3) and numerically

extracting GLE parameters from the simulated trajectory using the same method employed to estimate

Γ0 and τ from data, one obtains values of Γ0 and τ that are identical to the values used in

the simulations. This means that the numerical extraction of GLE parameters and the simulation

procedure are consistent.

3.2. Markovian embedding

We next show that the following system of Markovian Langevin equations

ẋt = vt, (3.5a)

v̇t = − 1

M(xt)

(
U ′(xt) +

kBT

2

M ′(xt)
M(xt)

+
M ′(xt)

2
v2t −

N+1∑
n=1

γ1n νn(t) +
2N∑
n=1

σ1n(xt) ηn(t)

)
, (3.5b)

u̇n(t) =
1

mn

−
N+1∑
j=1

γn+1,j(xt) νj(t) +
2N∑
j=1

σn+1,j(xt) ηj(t)

 , for n = 1, 2, . . . , N (3.5c)

E[ηi(t)] = 0, E[ηi(t)ηj(t′)] = δijδ(t− t′) (3.5d)

can be used to perform a self-consistent Markovian embedding of the GLE in Eq. (2.14). In Eq. (3.5),

we introduce a velocity vector ν(t) = (vt, u1(t), u2(t), . . . , uN (t))T ∈ RN+1 and the white noise
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vector η(t) ∈ R2N . The un(t) denote the N auxiliary velocity variables. The friction matrix

γ̂ ∈ R(N+1)×(N+1) is only nonzero in the first row, the first column and in the diagonal, i.e. it is

given by

γ̂(xt) =


γ11(xt) γ12(xt) γ13(xt) · · ·
γ21(xt) γ22 0
γ31(xt) 0 γ33

...
. . .

 =


M(xt)

∑N
n=1 gn M(xt)h1 M(xt)h2 · · ·

γ21(xt) γ22 0
γ31(xt) 0 γ33

...
. . .

 .

(3.6)

The multiplicative noise matrix σ̂(xt) ∈ R(N+1)×2N is given by

σ̂(xt) =


s11(xt) 0 s21(xt) 0 s31(xt) 0 · · ·
s12(xt) s13(xt) 0 0 0 0

0 0 s22(xt) s23(xt) 0 0
0 0 0 0 s32(xt) s33(xt) · · ·
...

...

 . (3.7)

If the system in Eq. (3.5) fulfills the following fluctuation-dissipation relation [38](
γ̂(xt) + γ̂T (xt)

)
/β = σ̂(xt) · σ̂T (xt), (3.8)

it has the stationary probability distribution

ρst(x, v,u) ∝
√

M(x)e−βU(x)e−β
M(x)

2
v2e−β

∑
n

mn
2

(un)2 , (3.9)

with the desired properties

U(x) = −kBT ln ρst(x), (3.10a)

⟨v2⟩x =
kBT

M(x)
, (3.10b)

where ρst(x) =
∫
dv
∫
dNu ρst(x, v,u) is the marginal distribution in x . The fluctuation-dissipation

in Eq. (3.8) holds when the entries sij of the multiplicative noise matrix σ̂(xt) are given by

2
gnM(xt)

β
= s2n1(xt) ⇒ sn1(xt) =

√
2kBTgnM(xt), (3.11a)

hnM(xt) + γn+1,1

β
= sn1(xt)sn2(xt) ⇒ sn2(xt) = kBT

hnM(xt) + γn+1,1

sn1(xt)
, (3.11b)

2
γn+1,n+1

β
= s2n2(xt) + s2n3(xt) ⇒ sn3(xt) =

√
2kBTγn+1,n+1 − s2n2(xt) (3.11c)

where gn and hn are defined in Eq. (3.6). In order to get finite, real valued multiplicative noise

factors, Eq. (3.11) requires the following inequalities to hold

gn > 0, (3.12a)

4γn+1,n+1 gnM(xt) ≥ (hnM(xt) + γn+1,1)
2 , (3.12b)
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for all n = 1, 2, . . . , N . Eq. (3.12) puts a lower bound on each gn for given M(xt), hn, γn+1,1(xt)

and γn+1,n+1 . Consequently, the presence of a delta contribution in the memory kernel is required.

Solving Eq. (3.5c) for un(t) and inserting the result into Eq. (3.5b) yields the GLE

v̇t = − 1

M(xt)

dŨ(xt, vt)

dxt
−
∫ t

0
dsΓ(xs, t− s)vs + ξ(t), (3.13a)

with

Ũ(x, v) = U(x) +
M(x)

2
v2 + kBT ln

√
M(x), (3.13b)

Γ(xs, t− s) =
N∑

n=1

(
gnδ(t− s)− hne

− γn+1,n+1
mn

(t−s)γn+1,1(xs)

mn

)
, (3.13c)

ξ(t) =
N∑

n=1

− hn
mn

e−
γn+1,n+1

mn
tun(0) +

2N∑
j=1

[
σnj(xt)ηj(t)−

∫ t

0
ds

hn
mn

e−
γn+1,n+1

mn
(t−s)σn+1,j(xs)ηj(s)

] .

(3.13d)

To show that the system of Markovian Langevin equations in Eq. (3.5) can be used to perform a

self-consistent Markovian embdedding of the GLE in Eq. (2.14) in combination with the extraction

scheme in Eq. (2.15), we consider the mean dynamics of vt in Eq. (3.5). The mean dynamics can be

obtained by writing Eq.(3.5) as a general Ito diffusion process [37]

dζt = a(ζt) dt+ b(ζt) dWt, (3.14)

where the variables xt, vt, un(t) are components of the state vector ζt = (xt, vt, u1(t), u2(t), . . . , uN (t)) ∈
RN+2 and dWt is the increment of a 2N +1 dimensional Wiener process. Ito’s lemma gives an equa-

tion for the differential df(ζt) of a function f(ζt), e.g., the chain rule for an Ito diffusion process [37].

Averaging the differential equation for df(ζt) over the noise gives the mean dynamics. By setting

f(ζt) = vt , one obtains the mean dynamics of vt in Eq. (3.5)

v̇t = L†
FPvt, (3.15)

where L†
FP is the infinitesimal generator of the system of stochastic differential equations in Eq. (3.5)

[38]

L†
FP = v

∂

∂x
−

(
1

M(x)

dŨ(x, v)

dx
+

N∑
n=1

(gnv + hnun)

)
∂

∂v

−
N∑

n=1

1

mn
(γn+1,1(x)v + γn+1,n+1un)

∂

∂un

+
1

2

N+1∑
i,j=1

(
σ̂(x) · σ̂T (x)

)
ij

∂2

∂νi∂νj
. (3.16)
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The L2 -adjoint of L
†
FP is the Fokker-Planck operator, i.e. LFPρst(x, v,u) = 0, where the stationary

distribution is given in Eq. (3.9). Starting from Eq. (3.15), we can derive the GLE using the projection

operators PD and PL in Eq. (2.12) and Eq. (2.13), respectively. The inner product in Eq. (2.2) is

obtained by replacing ρeq by the stationary distribution in Eq. (3.9). First, we calculate the Markovian

contribution generated by the projection. According to Eq. (2.10) and the adjoint Fokker-Planck

operator L†
FP in Eq. (3.16), the Markovian contribution is given by

etL
†
FPPLL

†
FPv = − 1

M(x)

dŨ(xt, vt)

dxt
−

N∑
n=1

gnvt. (3.17)

Next, we compute the random force term using Eq. (2.10b)

FR(t) = etQDL†
FPQLL

†
FPv =

∞∑
n=0

tn

n!
(QDL

†
FP)

nQLL
†
FPv = −

N∑
n=1

hne
− γn+1,n+1

mn
tun(0), (3.18)

from which we obtain∫ t

0
ds e(t−s)L†

FPPDL
†
FPFR(s) = −

∫ t

0
ds

N∑
n=1

hne
− γn+1,n+1

mn
tγn+1,1(xt−s)

mn
vt−s. (3.19)

The results in Eq. (3.17) and Eq. (3.19) coincide with the deterministic part of the GLE in Eq. (3.13).

Note that Eq. (3.18) reproduces the noise term in Eq. (3.13d) averaged over the noise terms ηj . This

means that we recover the GLE in Eq. (3.13), when averaged over the white noise η(t). Thus, the

memory kernel Γ(A, t), obtained from the Markovian embedding in Eq. (3.5) by applying the projec-

tion operators in Eq. (2.12) and Eq. (2.13), can be computed in closed-form and is equal to the one

in Eq. (3.13c), which was obtained by solving the Langevin equation in Eq. (3.5c).

We numerically demonstrate the Markovian embedding of a nonlinear GLE with position de-

pendent mass in Figure. 1. Here, we take kBT = 2.494 kJ/mol, i.e. we use molecular dynamics (MD)

units. Based on Eq. (3.5) and the relations in Eq. (3.11), we generate a trajectory xt in a double well

potential

U(x) = U0(x
2 − 1)2, (3.20)

with U0 = 2 kBT . The position dependent mass is taken to be

M(x) = M0(1 + e−5x2
), (3.21)

with M0 = 1 u, which is shown as a solid line in Figure 1A. We simulate N = 2 auxiliary variables

with equal masses mn = 1 u. The friction constants are set to gn = 1 ps−1 , hn = −5 ps−1 and

γn+1,n+1 = 10 u/ps for n = 1, 2 and for the friction profile, we take

γn+1,1(x) =
γ0

1 + (x−xn
ln

)2
, (3.22)
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with γ0 = 3 u/ps, ln = 0.125 nm and the values xn = ±0.5 nm for the two auxiliary variables. In other

words, we simulate the case where the friction kernel increases at the inflection points of the potential.

Such a friction behavior is motivated by our numerical results for the memory function of the dihedral

angle in butane from fully atomistic MD simulations [19]. In Figure 1, we compare the input functions

given in Eq. (3.21) and Eq. (3.13c) (solid lines) with the numerically extracted ones (markers). The

position dependent mass is numerically computed from the simulated trajectories using Eq. (3.10b),

the friction kernel is numerically computed using the extraction scheme in Eq. (2.15). In Figure 1, we

observe perfect agreement between the input and extracted functions. This constitutes a numerical

validation of the embedding method and the extraction/simulation techniques used by us.

4. Conclusion

We introduce a method to simulate a generalized Langevin equation with position-dependent mass and

friction functions by Markovian embedding. Such GLEs were numerically extracted in ref. [19] from

molecular dynamics simulation trajectories of the dihedral angle of butane in water. For the Markovian

embedding, we introduce a projection operator that allows for a self-consistent extraction/simulation

procedure. The method we introduce in this paper will be useful for simulating general non-Markovian

systems. In future work, it will be interesting to study the relative effects of position-dependent mass

and memory on the kinetics of such systems.
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