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Abstract: A recent observation on an extensive collection of biological gene regulatory networks suggests

that the regulatory dynamics is tuned to remain close to the order-chaos boundary in the Lyapunov sense [1].

We here investigate, from a mathematical perspective, the structural/functional constraints which give rise to

such accumulation around criticality in these systems. While the role of canalizing functions in this respect is

well established, we find that critical sensitivity to small input variations also follows from an over-abundance

of symmetrical inputs, i.e. regulatory genes invoking identical or complementary responses on their common

target. A random network ensemble constructed to have the same distribution of symmetric inputs as in the

above collection of biological networks captures the dependence of the sensitivity on mean activity bias, a

nontrivial characteristic which the canalizing ensemble fails to fully reproduce.

Keywords: Biomolecular dynamics, gene expression, patterns in complex systems, self-organization, transcrip-

tion

1. Introduction

Biological organization is often found to display self similarity across spatial and temporal scales, as

observed in brain function [2], swarm behavior [3, 4]. It has been suggested that organisms benefit

from proximity to a critical state since it facilitates energy economy [5], communication/transport

efficiency, and optimal trade-off between robustness vs responsiveness [6]. Unveiling the mechanisms

through which criticality emerges in biology has therefore been an active area of research for some time.

In certain cases, the scaling laws can be explained by employing physical constraints (e.g., allometric

observations [7]), evolutionary or developmental processes (e.g., protein networks [8], neural connec-

tivity in the brain [9]), or mechanisms of self-organized criticality [10] (e.g., swarm behavior [11]).

In others, such as the power-law distributed avalanche sizes in brain activity [12] or the probability

distribution of protein production rates in a cell [13], the mechanisms are still not well understood.

Gene regulatory networks (GRNs) also display scale invariance in both structural and func-

tional domains. The underlying interaction graph has been observed to be scale-free in multiple

organisms [14], a property which has been attributed to gene duplication [8] or the physical mech-

anism of protein-DNA binding that initiates transcriptional regulation [15]. On the dynamics front,

simple gene-activation (node-update) rules have been demonstrated to yield critical avalanches on
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scale-free networks [16], in agreement with experimental observations [17]. These models typically

require a selection mechanism for fine tuning either the structural or the functional parameters (or

both). For example Derrida and Pompeau showed in a seminal work [18] that a random Boolean

network is critical when the node degree satisfies K = 2. Evolutionary pressures may fuel such fine

tuning, since gene regulation networks are believed to have high plasticity (mutation rate per base is

several orders of magnitude higher in the regulatory regions than in the coding segments [19]).

Vanishing of the Lyapunov exponent marks the tipping point between order and chaos and is

often used as the indicator for criticality in regulatory dynamics [20]. A recent study on 72 regulatory

networks from various organisms measured the corresponding Lyapunov exponents for the network-

specific regulatory dynamics [1] and found an impressive collapse around one. A substantial body

of literature has been devoted to the study of why biological systems may organize in the vicinity

order-chaos boundary, most notably works by S.A. Kauffman [21, 22], but also many others [23–25].

Given the insufficient amount of evolutionary data on GRNs, it is difficult to point to a particular

evolutionary mechanism or a selective pressure that might explain the observation above. On the other

hand, the how question, exploring the means (in terms of structural and functional determinants) by

which the 72 gene networks above are “tuned” to criticality, appears more accessible. We here address

this question, motivated by the observation that the symmetry property is obeyed by virtually all of

the approximately 3000 regulatory functions in the Cell Collective database [26].

2. Theoretical setup

We here adopt the common definition of criticality as the vanishing of the Lyapunov exponent. In the

present context, this condition determines the borderline between order and chaos for the dynamical

response of genes to small perturbations in the input. The time evolution of the expression state of a

gene in discrete time is assumed to be given by

x⃗(t+ dt) = f⃗ [x⃗(t)] , (2.1)

where each component of x⃗ refers to the (Boolean) expression level of a gene and each the correspond-

ing component of f⃗ is a Boolean function encoding the connection between the expression levels of

the regulatory proteins and that of the regulated gene. Recent studies link critical regulatory dynam-

ics within cells to the “canalization” property of the underlying regulatory functions [27–29]. Here,

canalization refers to a hierarchy order assigned to the regulatory inputs, allowing the response to be

determined by a privileged subset of the inputs (see below).

While canalization is a widely observed feature of genetic regulatory functions, another related

but not equivalent quality they almost universally demonstrate is the symmetry of the function f()

under a permutation of two or more input signals. We quantify this statement in the next section,

over the regulatory functions obtained from the Cell Collective database (CC). Note that symmetry in

the above sense in a (uniformly) random Boolean function with k inputs has a chance of occurrence

which decays exponentially with k . Motivated by this observation, we here investigate the impact of

symmetry on the criticality of the regulatory dynamics.

2.1. Symmetry and generalized symmetry

Symmetry can be defined as a relation between two inputs of a (binary) function. Two inputs are

symmetric if they are interchangeable in any input state:
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xi, xj pair is symmetric, if and only if f(x⃗) = f(Sij x⃗) ∀x ∈ {0, 1}n , where Sij is the exchange

(permutation) operator which switches the components i and j of the state vector it acts on.

For a stability related analysis, a generalized definition ignoring negations is more appropriate. In

the rest of the paper, “symmetry” is used only in this generalized sense:

xi, xj pair is generally symmetric, if and only if f(x⃗) = f(Sij x⃗) or f(Nix⃗) = f(NiSij x⃗) , ∀x ∈
{0, 1}n , where Ni negates the ith component of a state vector.

We define a Boolean function f : {0, 1}n → {0, 1} to be partially k-symmetric if and only if a

partition P = {p1, p2, . . . , pk} , of the input set can be found with k < n , such that f is invariant

under any permutation of the elements within pi . 1-symmetric functions are also called as totally

symmetric functions.

2.1.1. 2-symmetric functions

An inspection of the Cell Collective database reveals that out of more than 2000 documented genes

in 73 different regulatory networks, 81% have at most two symmetry classes. We, therefore, focus on

2-symmetric functions in the form

f = g1(x1, . . . , xa) ∨ g2(xa+1, . . . , xn) , (2.2)

where g1 and g2 are totally symmetric and, without loss of generality, we assume a ≤ n/2. If we rule

out the exclusive or (xor) operation (which is almost never found in the Cell Collective database), g1,2
must have their inputs related through ∧ or ∨ operators exclusively. Consequently, f comes in four

types listed below.

Type− 0 , if f = x1 ∨ · · · ∨ xn

Type− 1 , if f = (x1 ∧ · · · ∧ xa) ∨ xa+1 ∨ · · · ∨ xn

Type− 2 , if f = x1 ∨ · · · ∨ xa ∨ (xa+1 ∧ · · · ∧ xn)

Type− 3 , if f = (x1 ∧ · · · ∧ xa) ∨ (xa+1 ∧ · · · ∧ xn) . (2.3)

While the possibility of a negated input is discarded above, our results for network stability/sensitivity

-which are for generalized symmetric functions- apply without change to this case as well. We also

note that, type-0 2-symmetric functions comprise a special case since they are totally symmetric, yet,

they represent a significant portion of the GRNs.

2.2. Canalization

In the present context, canalization refers to the presence of a input or inputs which dictate the output

of a function when they acquire their canalizing value. Formally f is canalizing in s1 if

f(s1, s2, . . . , sn) ≡

{
r1, if s1 = σ1

f̂(s2, s3, . . . , sn), otherwise.
(2.4)
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More generally a subset of inputs may dictate the output:

f(s1, s2, . . . , sn) ≡

{
r1, if (s1, . . . , sm) = (σ1, . . . , σm)

f̂(s1, s2, . . . , sn), otherwise .
(2.5)

Such collective canalization may be considered weaker, since the condition is more restrictive.

Canalization and symmetry are clearly distinct qualities. While a canalization property shared

by two inputs, as in collective canalization, can promote symmetry between these inputs, it does not

necessitate it. For example, consider the function f(s⃗) = g1(s1, s2, s3) ∨ g2(s⃗) where g1 and g2 are

not symmetric. The inputs for which g1 = 1 canalize f to 1, but f is not symmetric in the subset of

inputs {s1, s2, s3} .
An extreme case of canalization is when all inputs exert canalization in a (nonunique) hierarchical

order:

f(s1, . . . , sn) ≡



r1, if s1 = σ1

r2, if s2 = σ2, s1 = σ̄1
...

rn, if sn = σn and si = σ̄i ∀i ∈ {1, . . . , n− 1}
r̄n, otherwise .

(2.6)

The hierarchy consists of layers, whose members have identical privileges and are interchangeable

on the hierarchy list. For instance, considering the function f = x1 ∨ (x2 ∧ x3), x1 is at the top

the hierarchy while x2 and x3 share the next layer. A nested canalizing function with r layers

is r-symmetric. The connection between canalization and symmetry in the context of 2-symmetric

functions is shown as a Venn diagram in Figure 1.

Figure 1. The Venn diagram depicting the relationship between various types of canalizing and
symmetric functions.
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2.3. Sensitivity

In order to investigate the dynamical stability of a system evolving under the rules in Eq.(2.1) we

need to define the sensitivity of a Boolean function to small (one bit) variations in the input. To this

end, we define

s ≡
n∑

i=1

si, where si =

〈
∂f

∂xi

〉
x⃗

, (2.7)

as the sensitivity coefficient for the Boolean function f . The expected value is calculated over all

possible inputs and the Boolean derivative is defined as

∂f

∂xi
≡ f(x⃗(i,0))⊕ f(x⃗(i,1)) , (2.8)

where x⃗(i,0) is derived from the vector x⃗ by setting its ith entry to 0.

By the annealed approximation, average sensitivity of a network is the average of the sensi-

tivities of the nodes within the network. It describes the response of the network to a typical local

perturbation. When the average sensitivity is lower than 1 a local perturbation decays before it tra-

verses the network. Otherwise, it branches out to generate an avalanche spanning the whole system.

A network with an average sensitivity of 1 is said to be critical, since, on average, a local perturbation

is neither amplified nor diminished in time, propagating across the network with a constant mean

amplitude. Hence, s = 1 corresponds to the maximally robust network which is still “aware” of a

local perturbation at a global scale. GRNs are observed to be near this critical point. [28].

2.4. Sensitivity and activity bias for 2-symmetric functions

We can now calculate the sensitivity of 2-symmetric functions in terms of their activity bias, α . The

activity bias is defined simply as the probability for a Boolean function returning a “true” value,

subject to uniformly random inputs. Here, we are motivated by recent studies which demonstrate

that the activity bias strongly dictates the sensitivity for GRNs [28, 29]. To start, one can easily show

that the sensitivities to symmetric inputs are equal:

si =

〈
∂f(x⃗)

∂xi

〉
x⃗

=

〈
∂f(Sij x⃗)

∂xj

〉
x⃗

=

〈
∂f(x⃗)

∂xj

〉
x⃗

= sj , (2.9)

where in the last step we used f(Sij x⃗) = f(x⃗) ∀ (i, j). Then, for the four types of 2-symmetric

functions in Eq.(2.3), we have s1 = s2 = · · · = sa and sa+1 = sa+2 = · · · = sn . In order to determine

the sensitivity of f , it is therefore sufficient to calculate s1 and sn . Starting with Eq.(2.8), we find

∂f

∂x1
= f(x⃗(1,0))⊕ f(x⃗(1,1))

= g2(xa+1, . . . , xn) ∧
∂g1
∂x1

, (2.10)
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where x indicates negation of x . We obtain s1 after averaging over all possible states x⃗ :

s1 =
1

2n

∑
x⃗

g2(xa+1, . . . , xn) ∧
∂g1
∂x1

=

{
21−n , if g2 = xa+1 ∧ · · · ∧ xn

(2n−a − 1)21−n, if g2 = xa+1 ∨ · · · ∨ xn .

Using a similar approach one can also calculate sn as

sn =

{
21−n , g1 = x1 ∧ · · · ∧ xa

(2a − 1)21−n, g1 = x1 ∨ · · · ∨ xa .
(2.11)

Finally, the sensitivity coefficients can be calculated exactly for all four choices of a 2-symmetric

function,f , as

s(n, a) =


n21−n , f = x1 ∨ · · · ∨ xn

a21−n + (n− a)(2a − 1)21−n , f = (x1 ∧ · · · ∧ xa) ∨ xa+1 ∨ · · · ∨ xn

a(2n−a − 1)21−n + (n− a)21−n , f = x1 ∨ · · · ∨ xa ∨ (xa+1 ∧ · · · ∧ xn)

a(2n−a − 1)21−n + (n− a)(2a − 1)21−n , f = (x1 ∧ · · · ∧ xa) ∨ (xa+1 ∧ · · · ∧ xn) ,

(2.12)

and can be expressed in terms of the activity bias, α , as

s(α∗) =


−2 log2(α

∗)α∗ , f = x1 ∨ · · · ∨ xn

2aKα∗ − 2α∗ log2(
K
L α∗) , f = (x1 ∧ · · · ∧ xa) ∨ xa+1 ∨ · · · ∨ xn

2aα∗ − 2 log2(1− 2aα∗)(L− α∗) , f = x1 ∨ · · · ∨ xa ∨ (xa+1 ∧ · · · ∧ xn)

2aK + 2 log2(−K + K
L α∗)(L− α∗)− 2aα∗K , f = (x1 ∧ · · · ∧ xa) ∨ (xa+1 ∧ · · · ∧ xn) ,

(2.13)

where α∗ = min(α, 1−α), K = 1
2a−1 , and L = 1

2a . Note that all sensitivity coefficients are symmetric

functions of the activity bias. From these expressions, the maximum possible sensitivity for each

2-symmetric function class can be obtained as

smax =


1, for (n, a) = (1, 1) and f = x1 ∨ · · · ∨ xn

1.25, for (n, a) = (3, 1) and f = (x1 ∧ · · · ∧ xa) ∨ xa+1 ∨ · · · ∨ xn

1.25, for (n, a) = (3, 1) and f = x1 ∨ · · · ∨ xa ∨ (xa+1 ∧ · · · ∧ xn)

1.5, for (n, a) = (4, 2) and f = (x1 ∧ · · · ∧ xa) ∨ (xa+1 ∧ · · · ∧ xn) .

(2.14)

In order to put this result in perspective, we note that the expected sensitivity coefficient grows

linearly with the number of inputs as E[s]canal = (n + 1)/4 for canalizing functions [30], and as

E[s]rand = n/2 for random Boolean functions. In contrast, we find here that the sensitivity of

symmetric functions is bounded from above. For the majority of the biological cases found in the Cell

Collective database Eqs. (2.12) & (2.14) give the exact sensitivities and their upper bound within
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Figure 2. Frequency of symmetry, canalization and nested canalization vs. the number of inputs in
the original (Cell Colletive) networks and in random Boolean functions with uniform activity bias.

each function class. As the input size is increased, the limiting behavior of the sensitivity of Type-2

and Type-3 functions and the activity bias can be obtained as

s → 2a

2a
and α → 1

2a
. (2.15)

An exhaustive compilation of the sensitivity coefficient as a function of the activity bias for at most

2-symmetric Boolean functions is given in Figure 3 where approach to the limit in Eq. (2.15) is clear.

3. Comparison with biological networks

The Cell Collective Database has full structural and functional specification of 79 GRNs which include

3476 genes. Out of these, 2140 are regulated by 1 or 2 genes and 25 by more than 11. We omit the

second set due to the large computational time they require for sensitivity calculation. The dynamics

of the first set, comprising the majority of the genes, are described by a handfull of 1-symmetric

functions with a sensitivity of 1 with no room for variability. We find that the remaining 1311 target

genes have an average sensitivity of 0.936, also very close to the critical value. Hence, symmetry of

the regulatory functions alone appears to support criticality in gene regulation.

The frequency of symmetry and canalization in biological networks relative to their randomized

counterparts is shown in Figure 2. While different priors used for randomization yield different

estimates, it is clear that the likelihood of partial symmetry or canalization decays exponentially
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Table 1. Distribution of genes with at most 2 symmetry classes.

Type Count Percentage % Sensitivity average

Type-0 502 49.17 0.6028
Type-1 165 16.16 0.8057
Type-2 321 31.44 1.208
Type-3 27 2.64 1.4298
XOR 6 0.59 1.104

fast with the number of inputs, n . However, the frequency of symmetry is visibly higher than that of

canalization both for the randomized networks and the original ones. In the CC database, 1.1% of the

target genes lack any symmetry, while those without the canalization property amount to 10.8%. Our

analysis based on symmetry therefore applies to practically all of the CC database. We observed that

only 1.5% of the symmetric genes in CC database include an xor operation in their update function.

Furthermore, 78.8% have at most 2 symmetry classes falling into one of the four types mentioned

earlier. Their sensitivities and activity biases match exactly with those calculated above and yield the

statistics given in Table 1.

Unlike canalizing functions, the expected sensitivity of 2-symmetric functions is independent

of the number of inputs and depends only on the size of the small symmetry class, a . In the Cell

Collective database we only encountered a = 1, 2, 3. For a = 1, 3 and a = 2 the average sensitivities

are 0.86 and 0.946, respectively, which fall in the vicinity of the critical regime. Interestingly, nested

canalizing functions have an average sensitivity of exactly 1 under a uniform activity bias distribution.

However, the corresponding fractal curve in Figure 3, which is provably a lower bound [29] on the

sensitivity, does not capture a fraction of the data points from Cell Collective. Random canalizing

functions do not yield a better model either (also shown in Figure 3) since the scatter above the lower

bound is concentrated away from α = 0.5. In contrast, 2-symmetric functions yield a sensitivity

distribution which is in better agreement with the database. They capture both the high density of

genes on the boundary given by the nested canalizing functions and the scatter above the lower bound.

Figure 3. Sensitivities vs. activities for the original (Cell-Collective) gene regulatory functions and
randomly chosen 2-symmetric, canalizing, and nested canalizing functions with similar number of
inputs.
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4. Conclusion

Biological benefits and origins of canalization in gene regulation have been discussed in the literature

since the classic works of Waddington [31] and Schmalhausen [32]. Yet, the fractal lower bound on

the sensitivity of Boolean functions (shown in the last panel of Figure 3), which is realized by nested

canalizing functions, has been reported only recently [29]. This observation poses the near-criticality

of gene regulation dynamics as -almost- a mathematical necessity. On the other hand, a small but

nonnegligible portion of genes do not fall on this optimal boundary. While this can be interpreted

as “evolution in progress”, an alternative perspective may follow from the analysis provided here.

Biological networks appear to adhere more closely to generalized symmetry than to canalization in

the regulation processes. Although these two concepts are not far from each other (as was shown in

Figure 1) asymmetric regulatory functions, unlike noncanalizing ones, are practically nonexistent.

We have shown here that this symmetry property alone yields an upper bound on the sensitivity

(i.e. imposes robustness) of the regulatory dynamics, a desirable feature for any functional design.

We then calculated the activity bias vs. sensitivity exhaustively for all 1- and 2-symmetric functions

which correspond to the majority of the genes in Cell Collective. We finally argued that, a random

ensemble of 2-symmetric functions may be a more faithful null-model for the biological networks than

canalizing functions. Extending the above analysis to p-symmetric functions with p > 2 and exploring

biological mechanisms for symmetry in gene regulatory functions are left for future work.
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