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Received: 15.12.2022 � Accepted/Published Online: 21.12.2022 � Final Version: 27.12.2022

Abstract: We first review how one can establish the quantum kinetic equation for fluids of spin-1/2 particles.

Then we present the construction of the semiclassical relativistic chiral kinetic equation of the fluid in the

presence of the external electromagnetic fields. We derive the resulting nonrelativistic chiral kinetic theory. We

calculated the particle number current density and showed that chiral effects are correctly generated. Moreover,

it satisfies the anomalous continuity equation.
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1. Introduction

One of the most important milestones in physics is the discovery of the field equation of spin-1/2

particles by Dirac. This one particle equation is essential to understand transport properties of

fermions which can be established by utilizing the Wigner function constructed for free fermionic

particles. When the external electromagnetic fields are present, Dirac spinors can be employed to

define a gauge invariant Wigner function. It satisfies a quantum kinetic equation (QKE) which

depends on electromagnetic field strength manifestly [1, 2]. When the collective behavior of fermions

are considered one may treat them as fluid. Then one should take into account vorticity of the fluid.

This can also be visualized as the rotation of the reference frame. However, QKE has no explicit

dependence on the noninertial effects.

In the last decade QKE has been used extensively in the inspection of the transport phenomena

of massless fermions as it was reviewed recently in [3]. QKE has been employed especially to study

heavy-ion collisions where there appears a chiral plasma. There are some anomalous effects: The

chiral separation effect (CSE) and chiral magnetic effect (CME). They are similar to the chiral vortical

effect (CVE) and local polarization effect (LPE). However, QKE is not aware of the vorticity of fluid

in contrast to electromagnetic field strength. To deal with magnetic and vortical phenomena on the

same footing we proposed to modify of QKE by making use of the enthalpy current [4, 5].

Although, dealing with the modified QKE has several advantages, it has not been derived from

an action in contrast to the electromagnetic part. In [6] we presented a Lagrangian formulation which

leads to the appropriate modification of QKE. Here we will first review this formalism and then the
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chiral kinetic theory (CKT) resulting from it [4] will be presented briefly.

2. Full action

The action,

SDirac =
1

2

∫
d4x ψ̄ (iℏ�∂ −m)ψ, (2.1)

leads to the Dirac equation

(iℏ�∂ −m)ψ = 0, (2.2)

which the free spin-1/2 particles obey. Here �∂ ≡ γµ∂µ.

To take into account vorticity of the fermionic fluid which is subjected to electromagnetic fields,

we introduce two gauge fields Aµ and aµ. First one is the electromagnetic gauge field whose action is

SA = −Q
∫
d4x ψ̄��Aψ − 1

4

∫
d4x FµνFµν . (2.3)

The electromagnetic field strength is defined as

Fµν = ∂µAν − ∂νAµ. (2.4)

Q is the electric charge. Fµν is invariant under the gauge transformation

Aµ(x) → Aµ(x)− ∂µΛ(x). (2.5)

The real four-vector field aα, is the other gauge field. It is coupled to Dirac fermion,

Sζ = ζ

∫
d4xψ̄ �aψ, (2.6)

where ζ is the related coupling constant. Now, introduce the complex scalar field b(x) which is

coupled to the latter gauge field as

Sb =
1

2

∫
d4x [(∂αb− iaαb)⋆ (∂αb− iaαb)− V (b⋆b)] . (2.7)

We propose

S = SDirac + SA + Sζ + Sb, (2.8)

as the total action which describes a fermionic fluid in the presence of vorticity and electromagnetic

fields. Within this work the metric is gµν = diag(1,−1,−1,−1). As we will present in the next section

the fields b and aα describe the fluid.
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3. Fermionic fluid

The action

SFluid = Sb + Sζ , (3.1)

was proposed in [7] for being able to formulate magnetohydrodynamics as a covariant field theory.

Although we are mainly motivated by their considerations, our formulation has subtle differences.

Let us introduce the real fields s(x) and θ(x) to express the complex field b(x) as

b = seiθ, (3.2)

so that (2.7) leads to

Sb =
1

2

∫
d4x

[
∂αs∂αs+ s2 (∂αθ − aα) (∂αθ − aα)− V (s2)

]
. (3.3)

It can easily be observed that under the transformations

aα(x) → aα(x)− ∂αλ(x), θ(x) → θ(x)− λ(x), (3.4)

the action (3.3) is left invariant. The equations of motion obtained from SFluid are

s2 (∂αθ − aα)− ζψ̄γαψ = 0, (3.5)

∂α[s
2 (∂αθ − aα)] = 0. (3.6)

In terms of the operators representing the fermionic particles ψ̂,
¯̂
ψ, we define the number current

density by

jα = ⟨: ¯̂ψγαψ̂ :⟩ =
∫
d4q qαf(x, q). (3.7)

Colons denote normal ordering and f(x.q) is the distribution function. As we will show this system

can be considered as a fluid: Introduce the fluid four-velocity satisfying

uαuα = 1. (3.8)

Now, any four-vector can be written as kα = (u · k)uα + kα⊥, where k⊥ · u = 0. By making use of this

decomposition one can show that (3.7) yields

jα = nuα, (3.9)

where n is the particle number density. In the mean field approach one can view ψ̂ as an assembly

of wave-packets. Then, a fermionic fluid element can be considered as a wave-packet, so that

ψ̄γαψ ≡ nuα. (3.10)

Plugging this into (3.5) yields

nuα = ζ−1s2 (∂αθ − aα) . (3.11)
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(3.6) leads to conservation of the current density,

∂α (nu
α) = 0. (3.12)

Under the assumption of a slowly varying b, the equation of motion of s field gives

(∂αθ − aα) (∂αθ − aα) = ν2. (3.13)

Here ν2 ≡ dV (s2)/ds2. Employing (3.11) in (3.13) leads to

n2ζ2 = s4ν2. (3.14)

Then n can be expressed as a function of s as

n =
s2ν

ζ
. (3.15)

Inserting (3.15) into (3.11) leads to

∂αθ − aα = νuα. (3.16)

Utilizing (3.16), after taking the derivative of (3.13), we get

νuα(∂α∂βθ − ∂αaβ − wβα) = ν∂βν, (3.17)

where
wβα = ∂βaα − ∂αaβ. (3.18)

By taking the derivative of (3.16) and employing it in (3.17) we attain

νuα(uβ∂αν + ν∂αuβ − wβα) = ν∂βν. (3.19)

For ν ̸= 0, it gives

νuα∂αuβ = ∂βν − uαuβ∂αν + uαwβα. (3.20)

Acceleration which is the proper time derivative of the fluid velocity, can be calculated by using (3.20)
as

duβ
dτ

= uα∂αuβ =
∂βν

ν
− uαuβ

∂αν

ν
+
uαwβα

ν
. (3.21)

Let us deal with the Euler equations

duβ
dτ

=
∂βP

ρ+ P
− uαuβ

∂αP

ρ+ P
−

Fβ

ρ+ P
. (3.22)

ρ is the energy density and P is the pressure. The external force Fα can be gravitational, electro-

magnetic or the Coriolis force [8].

Except the last terms, (3.21) and (3.22) are identical as far as

dP

ρ+ P
=
dν

ν
, (3.23)
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is satisfied. Let there be no heat exchange and the fluid be composed of only one kind of particle.

Then, assuming that (3.23) is satisfied one obtains

ν = ξ
ρ+ P

n
= ξh. (3.24)

ξ is a positive constant and h = (ρ+P )/n is the specific enthalpy. For an ideal fluid it can be shown

that

ν = ξ′
ρ

n
, (3.25)

where ξ′ is an arbitrary constant. Let pµ be the momentum of the wave packet center. Then we can

write ρ/n = u · p. Consequently, we get

ν = ξ′u · p. (3.26)

On the other hand one can show that uαwαβ ≡ ξ′Cβ is the relativistic Coriolis force:

Cβ = ϵβαµνu
µωνpα.

Here we introduced the vorticity four-vector

ωµ =
1

2
ϵµναβΩαβuν , (3.27)

where

Ωαβ =
1

2
(∂αuβ − ∂βuα), (3.28)

is the kinematic vorticity tensor.

By making use of the properties of the fluid velocity one can write

wµν = ξ′wµν
C + κ(u · p)Ωµν , (3.29)

where κ is an arbitrary constant and

wµν
C = (∂µuα)pαu

ν − (∂νuα)pαu
µ. (3.30)

Observe that wµν is the circulation (vorticity) tensor for κ = 2 and ξ′ = 1 [8]. We conclude that the

fluid composed of the Dirac particles is represented by the scalar field b and the vector field aα whose

strength tensor is given by (3.29).

4. Quantum kinetic equation

Let us deal with the Dirac equation

[γµ(iℏ∂µ − ζaµ −QAµ)−m]ψ = 0. (4.1)

It is invariant under the gauge transformations (2.5), (3.4), accompanied by

ψ(x) → ei(ζλ(x)+QΛ(x))/ℏψ(x). (4.2)
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By following the formulation given in [2], we define the gauge invariant Wigner operator by

Ŵ (x, p) =

∫
d4y e−ip·y/ℏψ̄(x1)U(A, a;x1, x2)⊗ ψ(x2), (4.3)

where we introduced

U(A, a;x1, x2) ≡ exp

[
−iQγµ

∫ 1

0
dsAµ(x2 + sy)

]
exp

[
−iζγµ

∫ 1

0
dsaµ(x2 + sy)

]
. (4.4)

Here ⊗ represents tensor product and xµ1 ≡ xµ + yµ/2, xµ2 ≡ xµ − yµ/2. The Wigner function is

defined by taking the average of (4.2):

W (x, p) = ⟨:Ŵ (x, p) :⟩. (4.5)

By making use of the Dirac equation (4.1), we establish the QKE[
γ ·
(
π +

iℏ
2
D

)
−m

]
W (x, p) = 0, (4.6)

with

Dµ ≡ ∂µ − j0(∆) [QFµν + ζwµν ] ∂pν ,

πµ ≡ pµ − ℏ
2
j1(∆) [QFµν + ζwµν ] ∂pν .

∆ ≡ ℏ
2∂p · ∂x and j0(x), j1(x) denote the spherical Bessel functions. Here, ∂µ and ∂νp contained in

∆ act only on, respectively, [QFµν + ζwµν ] and W (x, p).

Observe that (2.3) yields the Maxwell equations given in terms of the electric and magnetic

fields Eµ, Bµ which are related to the field strength and the fluid 4-velocity uµ by

Fµν = Eµuν − Eνuµ + ϵµναρuαBρ. (4.7)

On the other hand, by imposing the equations of motion following from the variation of the action

(2.8) with respect to aα and b, wµν is expressed as in (3.29).

5. Chiral kinetic equations and the semiclassical approximation

One decomposes the Wigner function in terms of the independent 4× 4 matrices constructed by the
gamma matrices:

W =
1

4

(
F + iγ5P + γµVµ + γ5γµAµ +

1

2
σµνSµν

)
. (5.1)

Inserting this into (4.6) yields the equations which the fields satisfy. However, the scalar field F , the
pseudoscalar field P , and the antisymmetric tensor Sµν are irrelevant in constructing chiral transport

equations, i.e. for m = 0. We are interested in the quantum kinetic equations of the axial field Aµ

and the vector field Vµ. We unify them in the chiral vector fields

J µ
χ =

1

2
(Vµ + χAµ).
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χ = 1 (χ = −1) corresponds to the right-handed (left-handed) fermion. Their quantum kinetic

equations are

pµJ µ
χ = 0, (5.2)

∇̃µJχµ = 0, (5.3)

ℏϵµναρ∇̃αJ ρ
χ = −2χ(pµJχν − pνJχµ). (5.4)

We deal with the semiclassical approximation where the fields are expanded in powers of the

Planck constant ℏ and the zeroth and first order terms are kept. In the m = 0 limit we set κ = 0,

and choose ξ′ = 1. In the semiclassical scheme πµ = pµ and Dµ is substituted with

∇̃ν ≡ ∂ν −
[
QF νβ + wνβ

C

]
∂pβ, (5.5)

where we suppressed ζ. Now we express the fields as J µ
χ = J (0)µ

χ + ℏJ (1)µ
χ and consider only the

equations at most first-order in ℏ. The leading order solution of (5.2) and (5.4) is

J (0)µ
χ = pµδ(p2)f0χ . (5.6)

The distribution function is given by f0χ =
∑

s=±1 θ(sn ·p)f0s,χ(x, p), where s = 1 and s = −1 indicate

the particle and antiparticle, respectively.

In the comoving frame J (1)
χµ which satisfies (5.2) and (5.4), possesses the general form

J (1)µ
χ = pµf1χδ(p

2) +
1

2
χQϵµναβFαβpνf

0
χδ

′(p2)

+ χϵµναρpν(∂αuβ)p
βuρf

0
χδ

′(p2) +Kµ. (5.7)

δ′(p2) = −δ(p2)/p2 and the distribution function is written as fχ ≡ f0χ + ℏf1χ . The solutions obtained

in [9–11] suggest that

Kµ = Sµν(∇̃νf
0
χ )δ(p

2).

Sµν is the spin:

Sµν =
χ

2n · p
ϵµνρσpρuσ.

The last equation (5.3) which should also be satisfied yields

∇̃µJ µ
χ = δ

(
p2 + ℏχQ

uµF̃
µνpν

u · p

)
{p · ∇̃

+
ℏχQ
u · p

SµνEµ∇̃ν −
ℏχ
u · p

pµΩ̃
µν∇̃ν

+
ℏχ
u · p

(Ω̃µνpµuν)Ω
σρpρ∂

(p)
σ }fχ = 0.
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Here Ω̃µν = 1
2ϵµναρΩ

αρ. We have the freedom of replacing f1χ with

f1χ ⇒ χ
SµνΩµν

u · p
f0χ + f1χ.

Therefore, the covariant semiclassical chiral equation is accomplished:

δ

(
p2 + ℏχQ

uµF̃
µνpν

u · p

)
{p · ∇̃

(
1 + ℏχ

SµνΩµν

u · p

)
+
ℏχQ
u · p

SµνEµ∇̃ν −
ℏχ
u · p

pµΩ̃
µν∇̃ν

+
ℏχ
u · p

(Ω̃µνpµuν)Ω
σρpρ∂

(p)
σ }fχ = 0. (5.8)

Let us now derive nonrelativistic transport equation (TE) which results from the relativistic

formulation. To achieve this goal we will integrate the latter over the zeroth-component of momentum

variable, p0 [12, 13]. One should take into account the fact that to extract the 3D theory from the

4D, the necessary condition is ∫
d4p{4D TE} =

∫
d3p{3D TE}.

We make use of the relation∫
d4p
{
E · ω

(
f0χ
p0

− 1

2

∂f0χ
∂p0

)
+
ω · pE · p

p20

(
2f0χ
p0

− 1

2

∂f0χ
∂p0

)}
δ(p2) = 0, (5.9)

which is satisfied by the Fermi-Dirac distribution:

f0χ =
2

(2πℏ)3
∑
s=±1

θ(sn · p)
es(u·p−µχ)/T + 1

· (5.10)

We integrate the relativistic theory in the frame uµ = (1,0), ωµ = (0,ω) and establish the nonrela-

tivistic chiral transport equation (CTE) as

(√
ρ χ

s

∂

∂t
+ (

√
ρẋ)χs ·

∂

∂x
+ (

√
ρṗ)χs ·

∂

∂p

)
feqχ,s(t,x,p) = 0,

with

√
ρ χ

s = 1 + ℏsQχβs ·B, (5.11)

(
√
ρẋ)χs = vχ

s + ℏχ(p̂ · βs)(sQB + 2Eχ
sω)

+ℏsQχE × βs − 2ℏχ(ω · βs)p, (5.12)

(
√
ρṗ)χs = sQE + sQvχ

s ×B + vχ
s × Eχ

sω

+ℏχQ2βs(E ·B)− 2ℏχ(ω · βs)p× Eχ
sω

−2ℏsQχ(ω · βs)p×B., (5.13)
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where βs = sp/2|p|3. Mass shell condition leads to the following dispersion relation,

Eχ
s = |p|(1− ℏsQχβs ·B). (5.14)

Hence the canonical velocity is

vχ
s =

∂Eχ
s

∂p
= p̂(1 + 2ℏsQχβs ·B)− ℏsQχβsB.

It is worth noting that the Coriolis force appears as the third term of (5.13).

The particle number and current densities are defined as

nχs =

∫
[dp](

√
ρ)χsf

eq,s
χ , (5.15)

jχs =

∫
[dp](

√
ρẋ)χsf

eq,s
χ +∇×

∫
[dp]Eχ

s b
χ
sf

eq,s
χ , (5.16)

where the measure is [dp] = d3p/(2πℏ)3. By making use of (5.11) and (5.12), we calculate the continuity

equation as

∂nχ
s

∂t
+∇ · jχ

s =
χQ2

(2πℏ)2
E ·B feq,sχ |p=0.

The 4D equilibrium distribution function of a rotating fluid was given in [14]. In the frame which we

work it becomes

feq,sχ =
1

e(E
χ
s −sµχ−ℏsχp̂·ω/2)/T + 1

. (5.17)

Here µχ denotes the chemical potentials of right- and left-handed particles which can be written in

terms of the total and chiral chemical potentials as µR,L = µ ± µ5. We are interested in calculating

the vector current jV = jR + jL, and the axial current jA = jR − jL. By plugging (5.17) into (5.16)

we observe that their calculations lead to the CME and CSE

jCME
V = ξBB, j

CSE
A = ξB5B,

where

ξB =
Qµ5

2π2ℏ2
, ξB5 =

Qµ

2π2ℏ2
.

Moreover, the CVE and LPE are obtained as

jCV E
V = ξω, jLPE

A = ξ5ω.

where

ξ =
µµ5

π2ℏ2
, ξ5 =

T 2

6ℏ2
+
µ2 + µ5

2

2π2ℏ2
.

They coincide with the ones presented in [15].
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6. Conclusions

We reviewed how the fermionic fluid in the presence of the Coriolis force due to vorticity is represented

by the scalar field b and the vector-field aµ. We studied the equations of motion resulting from the

action (3.1) which are shown to be equivalent to relativistic Euler equations. Within this method we

expressed the field strength tensor of the field aα in terms of the vorticity and enthalpy.

Then we showed that the invariance of the action of Dirac spinors under the gauge transforma-

tions yields the QKE satisfied by the Wigner function, (4.6). Hence, the original QKE [2] should be

modified adequately to take into account the vorticity of fermionic fluids.

Chiral kinetic equation which results from the modified QKE is presented. We obtain the 3D

CKT by integrating it over p0. The resulting theory generates the anomalous effects correctly. It is

consistent with the chiral anomaly.

References

[1] H. T. Elze, M. Gyulassy and D. Vasak, “Transport equations for the qcd quark wigner operator,” Nuclear

Physics B 276 (1986) 706.

[2] D. Vasak, M. Gyulassy and H. T. Elze, “Quantum transport theory for abelian plasmas,” Annals of Physics

173 (1987) 462.

[3] J. H. Gao, Z. T. Liang and Q. Wang, “Quantum kinetic theory for spin-1/2 fermions in wigner function

formalism,” Int. J. Mod. Phys. A 36 (2021).
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