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Abstract: We investigated the dynamic phase transitions (DPTs) in the mixed spin (2, 5/2) Blume-Emery-
Griffiths model with repulsive biquadratic interaction in the presence of a time-varying magnetic field. We
used the path probability method to obtain the set of the dynamic equations. We numerically solved these
dynamic equations to characterize the nature of first- and second-order phase transitions and to find the DPT
temperatures as well as obtain the phases in the system. We constructed the dynamic phase diagrams (DPDs)
in reduced temperature and amplitude of oscillating magnetic field plane. We observed that the DPDs display
richer, complex and more topological various type of phase diagrams. In particular, DPDs exhibit the disordered
phase, antiquadrupolar or staggered phase, six different ferrimagnetic phases, three different nonmagnetic
phases, and numerous mixed phases. DPDs also display two dynamic tricritical points for only smaller values
of crystal-field interactions, multiple critical end and double critical end points, one zero-temperature critical
point, one inverse critical end point, and a quadruple point depending on interaction parameters. The system
always shows the reentrant behaviors for the higher values of magnetic field amplitude, but it does not exhibit
the dynamic tricritical behavior for higher values of crystal-field parameter.

Keywords: Mixed spin (2, 5/2) Ising model, path probability method, dynamic phase transition, dynamic
phase diagram, reentrant behavior, special critical points

1. Introduction

The mixed spin-2 and spin-5/2 Blume-Emery-Griffiths (BEG) model is the most general mixed spin-
2 and spin-5/2 Ising model with Hamiltonian composed of bilinear, biquadratic nearest-neighbor
pair interactions and crystal-field term or a single-ion anisotropy. Although the mixed spin-2 and
spin-5/2 Ising system is the complex and more difficult to work on, the system is the most used
and the most studied system among the mixed Ising systems. Two important reasons are follows:
(1) The system gives very rich phase diagrams and interesting critical behaviors. (2) It is one of
the suitable prototypical systems to examine many molecular-based magnetic materials, such as N
(D—C4H9)4FeHFeHI(0204)3 [1], AFeHFeIH(CQO4)3 [A = N(D—CnH2n+1)4, n = 375] [276], and
AMUFe(C504)3 (A = N(n-C3Hy7), M=Mn, Fe) [2, 7] as well as the other compounds, for instance
Fe;Sg [8], BiFeO3/YMnOj3 bilayer films, Mn substituted polycrystalline ErFeOgs [9], the diluted
FelFe' bimetallic oxalates [10]. On the other hand, in spite of the mixed spin (2, 5/2) Ising system
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with the simple Hamiltonian has been the most used system, the mixed spin (2, 5/2) BEG model
has not been used much and not been studied extensively. The reason is that Hamiltonian of this
system contains the biquadratic nearest-neighbor pair interaction that makes it difficult to work on
the system. At the same time, the repulsive biquadratic coupling provides very rich phase diagrams
and interesting critical behaviors in all Ising systems. For example, the BEG model in pure Ising
systems, such as the spin-1 BEG [11-18] and spin-3/2 BEG model [19-22], and the mixed spin (1,
3/2) Ising system [23] exhibit very rich equilibrium phase diagrams [11-17, 19-21] and dynamic phase
diagrams [18, 22, 23]. An early attempt to investigate the mixed spin (2, 5/2) BEG model was made by
Albayrak [24] who studied the system on the Bethe lattice by utilizing the exact recursion equations.
He presented the equilibrium phase diagrams in two different planes and found that the system exhibits
very rich critical behaviors, such as the tricritical and critical end points, compensation temperatures,
etc. Dynamic magnetic behaviors of the mixed spin (2, 5/2) BEG model were examined Ertag et
al. [25] by employing the mean-field approach based on Glauber-type stochastic dynamics that has
been also called the dynamic mean-field approximation (DMFA). In particular, they characterized the
nature (first- or second-order phase transitions) of dynamic phase transitions (DPT) and obtained DPT
temperatures and presented the dynamic phase diagram (DPDs). They found that DPDs display a
novel multicritical topology, such as the disordered, antiquadrupolar and three distinct ferrimagnetic,
fundamental phases as well as ten different mixed phases. Moreover, the DPDs also exhibit the
dynamic tricritical point, dynamic double critical end points, triple and quadruple special critical
points.

The purpose of the present work is to investigate the dynamical aspect of the mixed spin (2, 5/2)
BEG model within the path probability method [26]. In particular, we investigated the DPTs in the
model and presented the DPDs in the reduced temperature and the amplitude of oscillating magnetic
field plane. The reason we utilized the path probability method (PPM) is that it provides following
advantages over the DMFA. (1) PPM supplies three rate constants in the model, whereas the DMFA
provides only one rate constant. (2) PPM provides more couplings among the order parameters. (3)
Formulations of the dynamic equations are simpler and systematic than the DMFA. Moreover, the
PPM has been successfully utilized to examine the dynamic features of many different physical systems
and describing various physical phenomena (see [27-33] and references therein). The organization of
the remaining part of the paper is as follows: In Section 2, the model and its formulation, namely the
derivation of the set of the average dynamic equations for the order parameters, are given. Section 3
contains the numerical results and discussion. Finally, summary and concussion are given in Section

4.

2. Model and formulation

The mixed spin (2, 5/2) BEG model is a mixed spin (2, 5/2) Ising model Hamiltonian with bilinear
(J) and biquadratic (K) nearest-neighbor pair interactions in which a single-ion anisotropy parameter
or crystal-field interaction (D) is included. The Hamiltonian of the mixed spin (2, 5/2) BEG model
on a two interpenetrating square sublattices in a presence of a time-dependent oscillating external
magnetic field is

H=—J> orSP—K > (@M*(SP)?-D|> (@M +>_ (5? —H<ZU§4+ZSJB>, (2.1)

<ij> <ij> % J
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where 0! = 42,0,+1 values, and SB = £5/2, £3/2, £1/2 on sites of the sublattices A and B,

respectively. H is a time-dependent oscﬂlatlng external magnetic field and given by
H = Hycos(w t), (2.2)

where Hp and w = 27v are the amplitude and the angular frequency of the oscillating field, re-
spectively. The average value of each of the spin states, also called as state, point or internal vari-

ables, are indicated by Xf‘, Xé“, X{;‘, Xf, Xg“ that the fraction of spin takes +2,+1,0,—1,—2
values, respectively, on the sites of A sublattice and XlB, X2B, Xf, Xf, X5B7 XGB with values

+2,+2,+2, , %,—% on the B sublattice. XZ»A andX]B obey the following normalization rela-
tions:
5
d o xit=1, (2.3)
i=1
and
6
B
S X1 (2.4)
j=1

The model contains following four order parameters for the sublattice A: (1) The average
magnetization or dipole moment, m4 =< ¢! >, (2) the quadrupole moment, ¢4 =< (/)2 >, (3)
the octupole moment, 4 =< (¢/*)® >, (4) the hexadecapole moment, 04 =< (¢1)* >. On the other
hand, the model also contains the following five order parameters for B sublattice: (1) The average
magnetization or dipole moment, m? =< SJB >, (2) the quadrupole moment, ¢® =< (S'JB)2 >, (3)
the octupole moment, r% =< (SJB)3 >, (4) the hexadecapole moment, of =< (5]3)4 > and (5) the
dotriacontapole moment, p? =< (SJB )5 >. The average order parameters for the sublattices A and

B are written in terms of the point variables (XZ-A and X JB ) and are given by,
A—oxt 4 Xt — X - 2xd,
A—ax{ + X3+ x4+ axd,

(2.5)
A—gxd 4+ X — X - 8x,
A=16X1 + X5+ X 167,
and
5 3 1 1 3 5
mP = leB +oXxPyoxB__xP - "xB - —XGB,
2 2 2 2
25 9 1 1 9 25
125 927 927 125
e X X 8X3 - §X4 EERCERR (26)
625 81 81 625
B B
_22xB O yB C xB XB 4 xB
R T 162+163+164+165+16 :
8125 5 | 243 943 3125
B B B
el ¢ iy 'e Ly lyp 28yp 3125:p
p 30 1 T g2 Tgots T gota T g s T TG
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X can also be written in terms of m#, ¢, r, o by using Egs. (2.3) and (2.5) for the sublattice

A,

Xf‘ = —%mA + %TA — iqA + ioA,

Xg“— I—ZqA—i-ioA, (2.7)
Xi = —%mf‘ + %qA + 67“4 — 204,

Xg‘ = %mA — iqA — %’I“A + 21—40‘4.

Similarly, X f is obtained in terms of linear combinations of the order parameters by utilizing Egs.
(2.4) and (2.6) for the B sublattice as

3 5 1 1 1 3
xB_ 2, B_°2B_21 B 1 B, L B, 9
U= 60™ T o6? T 1" Tas? Tiao? Tase
25 13 13 1 1 25

B_ =Y B -2 B 2B - B - B “Y
27 73gg"™ T3 TR T 167 T 24P T 256

p_® g 1T g 175 15 1 5 75

X =™ T w T T TP Ty
Xf:_gmB_%qB+%rB+ioB_%pB_i_%, (2.8)

Now, we can apply the PPM [26] to find the average dynamic order parameters for the sublattices
A and B. In the PPM, the rate of change of the state variables is defined as

dX;
dt :;(in_ Xij)‘ (2-9)
i#]

Xij indicates the path probability rate for the system to run from state ¢ to j. The detailed balancing

requires that
Xji 7 Xij (2.10)
Kikuchi [26] introduced two equations or recipes for Y i We used Kikuchi’s recipe or equation II as

Xij = kij Z_1€$p|:<— ]6,) g)i]X“ (211)
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where § = 1/kpT, kp is the Boltzmann constant and fixed as kp = 1.0 in all the numerical
calculations and k;; are rate constants with k;; = kj;. The system contains the following three
rate constants: (1) k1o = kss = k1 expresses the insertion or removal of spin particles through the
lattices which relates the translation of spin particles, (2) k4 = kog = ko is associated the rotation of
spin particles on a given site. (3) k13 = ka4 = k3 is associated with the simultaneous translation and
rotation of particles; hence k3 can be written in terms of ki and ko as k3 = /k1ka. We considered
that the insertion, removal or rotation of two spin particles do not occur simultaneously, that is, only
a single jump takes place. The existence of rate constants is illustrated in Table 1. N represents the
number of spin particles or lattice sites and Z is the partition function and is written as

2 =Sen| - 5 (55)]
o , (2.12)
27 =3 e - 5 (57 )|

where Z4 and ZP represent the partition functions for A and B sublattices, respectively. E is the
internal energy per site that can be expressed a function of the X! and X JB by utilizing Eqgs. (2.1),
(2.5) and (2.6) as

E 5 3 1 1.5 3 5

=" JXM+ X3 — X — 2X§‘)(7X13 + fXQB + fo — 5X4 - §X§ - fXGB)
25 9 1 9 25
—K(4X{‘+X§4+Xf+4Xg,A)(4X1 +4X2 +4X3 + X4 + X5 + 4X6)
25 9 9 25 (2.13)
—DUX{ + X3+ X+ axd 4 4X1 +4X2 +4X3 +4X4 +4X5 + 4X6)

5 3 1 1 3 5
—HEX{ 4+ x84 - X —2xi4) — H(§X13 + 5XQB + in — §Xf — 5XgB - 5XGB).

Now, the set of coupling average dynamic equations for order parameters can be obtained by using
Egs. (2.7)-(2.13) as

dm?
QTé_ =

1 2 1
{ |:12 (k‘Q — ]{:1) smh(al) g(kg — kl) Sinh(2a1) + 1(2](33 - 11]412 + ]{21) COSh(CLl)

+ 2(k1 — 2]{?3) cosh(2a1) — k‘1:| mA

1

1
+ |:8(—2k‘3 + 21ky — 19]{51) sinh(al) + (4/6‘3 — ko — 3k‘1) Sinh(al) 21

— (kg — k1) cosh(ay)
+ %(k‘z — k1) cosh(Zal)] ! (2.14)
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1 1 1
+ [6(14:2 — k) sinh(2a4) — Z(Qk?’ — 3ko + k1) cosh(ay) + 5(214:3 — ko — k1) cosh(2a1)} r
1 . 1 . 1
+ [8(21% — b5ko + 3kq) sinh(ay) — 5(2/{3 — kg — k1) sinh(2a;) — ﬂ(kg — kq) cosh(aq)
é(k)g — k1) cosh(2a;)]o?

+ 2Ky sinh(aq) + 4k, sinh(2a1)}/k [2 cosh(ay)e” + 2 cosh(2a;)el® + 1]

A
qda” _
dg
1 2 1 .
{ [12 (ko — k1) cosh(ay) + g(k)g — k1) cosh(2a1) — E(Gkg + ko — k1) sinh(aq)
2 _ B
— g(ﬁkg — ko + Tk1) sinh(2a1) |m

1 2 1
+ {2 kQ — k1 Slnh(al) g(kg — kl) sinh(2a1) + ﬂ(Gk?’ - kz - 53]€1) COSh(CLl)

2
+ 5 (6k3 — ky — 8k1) cosh(2a1) — kl] ¢

(2.14)
1 1 1
+ [12 — ko) cosh(ay) + g(kl — kg) cosh(2a1) + E(6k3 + ko — Tky) sinh(ay)
1 A
6(6]{33 + ko — Tky) sinh(2aq) |
| & (ot — k) sinh(ar) + (k1 — o) sinh(2a1) — —(6ks — ko — Bk1) cosh(ay)
24 2) sinh(a; g1 — R2)s a1) = 5, (6k3 =z 1) cosh(ay

—_

6(6]{23 - kQ — 5k1) cosh(2a1)} A
+ 2k; cosh(ay) + 8k1 cosh(2a1)}/k {2 cosh(ay)e? + 2 cosh(2a)e® 4 1

QdL_

/3
1 2 . 1
{ [12 (kg — k1) sinh(a1) + g(kg — k1) sinh(2a1) + Z(6k3 — 11ka + 5k1) cosh(ay)
— 2(6]{33 — kﬁg — 5]431 COSh(QCLl):| mA
1 2 1 .
+ |:24 (k‘g — ]{71) cosh(al) g(lﬁz — k‘l) cosh(2a1) — é(ﬁkﬁg — 21ky + 15]€1) Slnh(al)

+ 2(6k3 — ko — 5k1) sinh(2a1)} ¢ (2.15)
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L1
12
1 A
5(61/&3 — 5]€2 — 5]{71) cos(2a1) kl T
1 1
+ [24(1471 — ky) cosh(ay) + 6(/{1 — ko) cosh(2ay)
3
5(6/<:3 — ko — k1) smh(2a1)]

1 1
(k‘l — ]{72) sinh(al) + 6(]4}1 — k‘2) Sinh(2a1) — 1(6]{33 + 3ko — 5k'1) cosh (al)

1
+ g(ﬁkg - 5k2 — 5k'1) Sinh(al)

+ 2k sinh(aq) + 16k sinh(2a1)}/k[2 cosh(ay)e’ 4 2 cosh(2a;)e® + 1

{ [112 (kg — k1) cosh(ay) + g(kﬁz — k) cosh(2ay) —

2
- §(30k‘3 + ko — 31kq) Sinh(2a1):| m

1 2
+ [24 (kz — k‘l) Slnh(al) g(k‘g — ]{,‘1) sinh(2a1)

2
+ 5 (30ks — ky — 29k1)cosh(2a1)] A

1 1
+ [12 (k1 — ko) cosh(a1) + E(kl — ko) cosh(2ay)

(30k3 + k2 — 31k1) s1nh(2a1)}

2

=

@\H

(30k3 — kQ — 171{21) COSh(QCLl) k1:| OA

+ [ ! (kﬁl — ]{,‘2) sinh(al) + é(kl — kg) sinh (2&1) —

1
E(Gkg + ko — 31/431) Sinh(al)

1
+ ﬂ(?)()/{g — /62 — 29]{71) cosh(al)

1
+ E(30/€3 + ko — 31k;) sinh(aq)

1
Q(S()kg — ko + 19k1) cosh(ay)

+ 2k; cosh(ay) + 32k; cosh(2ay) }/k [2 cosh(ay)e? + 2cosh(2a;)e*™ + 1]

dm?®
O— =
dg§

223 5 107 189
H(@—@+kﬂm%?)+(k3

960 32 960 40

625 3 875 az\1 &
h
+ (- k‘3 ol —ko +192/€)cos ( 5 )}m

747 3as
- h
64]€2+za2()]’C 1) cos ( 2 >

(2.16)
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21 17 29 ) as 11 39 29 3as
+ |:(16k3 — ﬂkj — &k’l) Slnh(;) + (—gk’g + Ek’g — @k )smh< B )

9 25 29 5a2\1 5
T — 22 27 h
+(8k3 48k2 48k 1) sin < 5 >]q

23 17 11 as 13 11 3asz
Pk Ly - h s —— h
—i—[( 24k3+12k2 24k)cos (2)+(3k3 8k2 8k)cos <2)
25 5 55 5as\] 5
1 1 1 . as 1 3 1 . 3ag
kg4 —ko+ —k1)sinh(22) 4+ (Sks — Sky + — k1) sinh
+[( 83+122+24 1)8”1(2 Tghs—ght g 1)Sm<2>

1
(—fk:3+ k2+ — k1) sinh Daz o
24
+

701 1
v [(kg S Tl COSh(az)

2 1 3 3a2
—Zky+ ~ks + —=ki) cosh
600 62" 20 (=gks+ gha+ )C°S< )

20

1 1 1 5a
IR 1 L B
+( 6k3 12k2+4k1)COS ( )]p

75 19 . as 39 75 147 3ao
+(—gpgha + ke + paghy) sinh(2) + (s - 128k2+128k1)smh< 5 )

175 15 275
175 15 275 ]
( 64 & 128k2 128k1> S

[k {2 cosh(%)e%2 + 2cosh<3a2>e%?]

49 as 93 3a9
2 h = h
{[< 240]‘73+ 240 )sin (2) k3+ gpku)sin < 2 )
+(—%k3 %kl smh(532>]
+ (—k:g—kl)cosh(%) +(—k3—k1)cosh<3;lz> + (—ks — k1) cosh< ﬂ
i 8
n (kg—kl)smh( ) 3(k3—k1)5lnh< >+ 7 (ks — k1) s1nh( )] (2.18)
L k1) sinh L (ks — k) sinh (222 (ks — ki)
—|—_—B(3—1sm( ) —5 3 — k1) sin 7 —(ks — k1) sinh

+ :(/{3 + k) cosh(2) + %(k:s + k1) Cosh(g;m> stk COSh( ﬂ }

CO[\D
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ao by 3ag 9bo
/k‘[Qcosh(2)e4 +2008h<2>e 1 ]

QdL_

dg
9603

1183 75 1067 a 1341 225 3as
~ g — kg ot h(—) o 20 k) cosh
{[(3840 3~ Taghe T ggagh) cosh(5) + (=g ks + g56K2 + qag0F) @ < 2 )

1322 2
3225, 75 %%kgmw<&”ﬂnﬁ

(-5 F8 o562 T s 2

107 351 197

7717, 197, . . /as 3as
ks — — kg — —oL k) sinh (22 il - h
[(64 37 96h2 T qggk1)sin <2 )'*( 51 '8 T g k2 T gph)sin ( 2 )

137, 625 197 (5as\]| p
el SNty Sl o%2
T gghs — 1gohe 192k”)8”ﬂ1< 2 >}q

119 17 as 117 131 3az
iy STy S a2 Bl S
+ [( o 3+ 48k2 l<:1 cosh( 5 ) + ( k:3 5 ko 2 kl)cosh< 5 )
LY 125 1471 dasg
by 4+ kg — 202
+(48 3+96 2 k:1 cosh<2>]
13 3&2
h @+%@—mﬁm(2yum@—w@—mmm<2> (2.19)
)

17 125 23
+ (_7]{;3 + 71@ — 7]6.1) Sinh(;m>:| OB

7 9 9 21 3a
ks — —ky + —k;) cosh — g + —ky + —~ky) cosh
+[(240 o = gghe + goeosh(T) + (= gk + ke + o) cos ( 2 )

+(—k3—48k2+16k1)c08h< >]p3
4—(—%§%k3 ég%k2+—515k1)$nh< )—+(%§%k3——g%gk2 %iﬁ?kl)lnh<332>
/k [2 cosh(%>e%2 + 2008h<3;12>6932:|
do” _
3
{ [— %(k‘g — k1) sinh(%) (kg — k1) smh(g;m) 431;5 (ks + k1) smh< 5 ﬂ mP

13 . az 3ao 221 . 5as B
+ [12%3 ~ ka)sinh (2 + 2L (ks —k1)51nh< . ) + 2y kl)smh<2)]r
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+ ~ (ks + ) cosh () = (ks + ha) cosh<3;2> (ks + k) cosh<5;‘2>] of (2.20)
+ _30(/@, — ) sinh(2) - %(kg — k) smh<332> s = ) smh<5;2)]p3 (2.21)
n -16(k3+k1)cosh< ) fﬁ(kg—l—kl)cosh(?)?) 6165(k3+k1)008h<52 )]}

ag\ b2 3as 9bgy
/k[2cosh(2>e4 +2cosh<2>e 1 ]

dB
0P

e
1183 75 1 12 202 49
H( y By 067 069, 2025 86427, )cosh<3“2>

0 e - 2 Lk h( =2 — ke ool
15360 ~ 51272t T5360/1) €08 <2>+( 640 "3 1 10242 T B1a0 ™

— ko —
(=536 %~ 10247 T 3072

1019 17 3091 1571 1 1
+ [(—k:a — ko + ——k1) s1nh(a22) + (= k3 + 3 59k52 + 509 kl)sinh(3;2)

330625 187
) 666875k1) h(Em)]mB

256 ° 3842 768 96 256 763
2089 15625, 3091 a2\ 5
ks — ky — 2k
(a5 M ~ 768 2~ 768 1)Smh< 2 ﬂq
23 17 11 a\ 243 1053 801 3as
_ h( ) _ 2909, 8
[( 3847+ qogke ~ gggf) eosh( 5 ) + (ks = oghke 128k1)C°Sh< 2)
15625 3125 34375 a2\ 5
+ ( 192 ks + 351 ko — a8l kl)cosh< 5 )]r
399 1 1199 241 243 1199 3 (2.21)
as ag
S kgt ——ky — ——k h( ) ks — "y — —" k) sinh
* [(128 3+ Jgahe  ggg RSt G ) + (ks = qaghe = gk sin ( 2 )
321 3125 1199 5a2\1 5
2% ko —
Tt e T e kl)smh( 2 )}0

960 96 320 40 64 320 2

721 625 561 5a2\] 5
ks — 22k + 27 ky) cosh
AT Ty 1C°S< )]p

953 1 19 121
+ [(—kg — —ko — 3—/’ﬁ)(:OSh( ) + (———ks + —kg - 77kl)cosh<3a2)

1639 75 1161, ) (2019, 6075, 13827 3a3
k ky — h(—) k k1) sinh
 (Spaske + Toaak2 ~ gpas kS5 ) + (G5g ke — gpagke + g B SI ( 2 )
L (SOUT, L 0aTs 98T (S

1021 2 opag ke T opag ) sinb|

ag\ b2 3as 9bgy
/k[2608h<2)€4 +2cosh(2>e 1 ],
where a; = (m? 4 hocos(€))/T, by = (kqP +d)/T, az = (m? + hgcos(€))/T, by = (kg +d)/T
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d=-D/zJ, k=K/zJ, T=(82])"" and Q =w/k, k =1%, ks = Vkiks, £ = wt, ho = Ho/zJ
and z=4. Moreover, we fixed k1 = 1.0 and ko = 2.0 in all numerical calculations due to the reason

that most systems have longer relaxation times for the translation and shorter relaxation times for

rotation. m?, m?, ¢* and ¢® give the dynamic features of the system, because of the behavior r4,

o4 are similar to the ¢#, m4 B

q®, mP respectively. Therefore, we only investigate the behavior of m4, m?, ¢* and ¢® to study
the dynamic multicritical phase diagrams of the mixed spin (2, 5/2) Blume-Emery-Griffiths model

with the repulsive biquadratic coupling.

, respectively and similarly the behavior 72, of, pP are similar to the

3. Numerical results and discussion
3.1. Phases in the system and the dynamic phase transitions

In this subsection, we obtained phases in the system by examining the average dynamic dipole moments
(magnetizations, m?, m?) and quadrupole moments (¢*, ¢®) order parameters, and by investigating
the dynamic dipole moments (magnetizations, M4, M) and quadrupole moments (Q4, Q?) order
parameters. We also characterized the nature (first- or second-order) of dynamic phase transitions
(DPTs) and obtained DPT temperatures by investigating the temperature dependence of the dynamic
magnetizations and quadrupole moments order parameters. First, we should investigate the stationary
solutions of the set of the average dynamical equations (Egs. (2.14)-(2.17) and (2.18)-(2.21)), when
the parameters T, hg, d and k are varied. As we mentioned at the end of Section 2, we will only

investigate the stationary solutions of the average dynamic magnetizations and quadrupoles order

parameters. The stationary of m?, m?, ¢4, ¢® will be periodic functions of ¢ with period 27; that
is,

mA(€ + 21) = mA(€) and mP (€ + 2n) = mB(¢), (3.1)

¢ (€ +2m) = q*(¢) and ¢P(&+27) = ¢B(¢). (3.2)

Moreover, they can be one of three types according to whether they have or do not have the property
mA(€ + 2m) = —mA(€) and mP (€ + 2m) = —mP(¢), (33)

(€ +2m) = —¢(€) and ¢P(¢+2m) = —¢P(9). (3.4)

The first type of solution satisfying both Eqs. (3.3) and (3.4) is called a symmetric solution which
corresponds to a disordered (d) solution or phase. In this symmetric solution, m? = m®” = 0.0; hence
magnetizations oscillate around zero and are delayed with respect to the external magnetic field. On

the other hand, ¢” oscillates around a zero or nonzero value, but ¢ only around nonzero for finite
temperature and both oscillate around zero for infinite temperature. The second type of solution is
called a nonsymmetric solution that does not satisfy Eq. (3.3) and Eq. (3.4) that corresponds to a

ferrimagnetic (i) solution or phase. In this solution or phase, m? # m?, and they oscillate around
a nonzero value. We found the following six different ferrimagnetic phases: (1) If m*(¢) and m?B(¢)
oscillate around +2 and +5/2, respectively, these solutions have been named the ferrimagnetic-1 (i;)
phase. (2) If mA(¢) and mP(¢) oscillate around +2 and +3/2, respectively, these solutions have
been called the ferrimagnetic-IT (i) phase. (3) If mA(¢) and mP(€) oscillate around +2 and +1/2,
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Figure 1. Time variations of average magnetizations (mA, mP) and quadrupole order parameters

(¢*, ¢P): (a) Exhibiting a disordered (d) phase for k = —0.10, d = 1.75, ho = 1.75, T = 1.75;
(b) Hlustrating a ferrimagnetic-I (i;) phase for k = —0.10, d = 1.00, hg = 0.55, T' = 0.65; (c)
Displaying a mixed or hybrid (a + ¢; + i4) phase for k = —0.025, d = 1.75, hg = 0.50, 7" = 0.80;
(d) Hlustrating a mixed (i4 + i + nmy + nmg + nms) phase for k = —0.10, d = 1.00, ho = 1.00,
T = 0.08.
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respectively, the solutions have been named the ferrimagnetic-IIT (i3). (4) If mA(¢) and mPB(¢)
oscillate around £1 and £5/2, respectively, the solutions have been named the ferrimagnetic-IV (i4).
(5) If mA(¢) and mPB(€) oscillate around £1 and £3/2, respectively, the solutions have been called
the ferrimagnetic-V (i5) phase. (6) If m4(¢) and mP(¢) oscillate around +1 and +1/2, respectively,
the solutions have been named the ferrimagnetic-VI (ig). The quadrupole order parameters g4 and ¢P

are not equal to each other, and they oscillate around a nonzero value. In this case, the magnetization
and quadrupole order parameters do not follow the external magnetic field.
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Figure 2. The thermal behavior of dynamic magnetizations (M4, M?) and the dynamic quadrupole
order parameters (Q4, QP ) for k = —0.025, d = 1.25, hg = 2.80, and different initial values. The
thin (black) and thick (blue) lines, respectively, represent M# and MP?, and the thick dashed (green)
and thin dashed (red) lines represent Q" and QP respectively. T, and T, are the second- and first-
order phase transition temperatures for the dynamic order parameters, respectively. It illustrates that
the system first passes from the d phase to the iy phase at T3 = 0.26 and then the i4 phase to the
11 + 74 mixed phase at Ty = 0.56, and finally from the i; + i4 to the d phases at T, = 0.88.
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On the other hand, if m“(¢) oscillates around zero, but and m?(¢) around nonzero, these
indicate that nonmagnetic phases occur in the system. The following three nonmagnetic phases were

found: The nonmagnetic phase-IT (nmy), m*(¢) and m?(¢) oscillate around a zero and +5/2 values,
respectively, the nonmagnetic phase-II (nmsy), mA(€) and mPB(¢) oscillate around a zero and +3/2
values, respectively and the nonmagnetic phase-IIT (nm3), m? (&) and mP(¢) oscillate around a zero

and +1/2 values, respectively.
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Figure 3. Same as Figure 2, but for k = —0.025, d = 1.75, hg = 1.75, and different initial
values. Exhibiting the system first undergoes from the i4 + i5 + ig + nmeo + nms mixed phase to the
14 + nmo + nms mixed phase at T;; = 0.12, then the iy + nms + nmg to the phases at T = 0.18,
and then from the i4 4 77 + nms + nmg mixed phase to the i4 + i1 + nmsg hybrid phase at T,; = 0.40,
and the i4 4+ i1 + nmo to the i4 + 41 phases at T.o = 0.45, finally the i4 + i1 phase to the d phase at
Tes = 1.18.
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The quadrupole order parameters ¢ and ¢® are not equal to each other, and they oscillate around

a nonzero value. The third type of solution, which satisfies Eq. (3.3) but does not satisfy Eq. (3.4),

corresponds to the antiquadrupolar or staggered solution or phase (a). In this solution, mA =mbB =

0.0; m? and m? oscillate around zero value and are delayed respect the external magnetic field.

The quadrupole order parameters ¢4 and ¢? are not equal to each other and they oscillate around a
nonzero value for always finite temperature. The definitions of these fundamental phases are given in
Table A.1.

In addition to these fundamental phases, we obtained various different mixed or hybrid phases,
such as i4+i5+ 16 +nmo+nms, i1 +i4+nme+nms, ig+nmo+nms, ......... ,a+ig+i1, ig+iq,
etc., by numerically solving Eqgs. (2.14)-(2.17) and (2.18)-(2.21) as well as investigating the thermal
behaviors of average dynamic magnetizations. All mixed phases occurring in the system are given in
Table B.1. We plotted only four exploratory figures to illustrate the d, ¢; fundamental phases and the
a+i4+1i1 and iq + i + nmy + nme + nmsg hybrid or mixed phases, seen in Figure 1 (panels a-d) for
various values of system parameters. It can be easily understood from the explanations given above
in which Figure 1 a,b,c and d panels illustrate the disordered (d), ferrimagnetic-I (i) fundamental
phases, the a + i1 + i4 and i4 + ig + nm1 + nmeo + nms3 mixed phases, respectively. It is worth
mentioning that only the d, 71 and ¢4 fundamental phases separately occur in the dynamic phase
diagrams (DPDs) and the other fundamental phases occurs inside the mixed or hybrid phases. These
facts are clearly seen in the DPDs, namely in Figures 4 and 5. We should also mention that some
mixed phases are obtained very easily from the numerical solution of Egs. (2.12) and (2.13). The
some of them are very difficult to obtained from these equations in which these mixed phases were
found by the help of investigating the thermal behaviors of the dynamic magnetizations (M4, M5)

and quadrupole moment order parameters (QA, QP ), given below.

Table 1. The description of the rate constants for the sublattices A and B.

(a) For sublattice A.

X1(2) | X2(1) | X5(0) | X4(-1) | X5(-2)
X1(2) k| k| ks ko
T OREE kol ko ks
X0 | B | K ki ki
XU | ks | R | R ki
XS('2) kQ k3 kl ]{71

(b) For sublattice B.

X1(5/2) | Xa(3/2) | X5(1/2) | X4(-1/2) | X5(-3/2) | X6(-5/2)
X1(5/2) 1 ko1 ks ks k2
X5(3/2) 1 Jiy ks > ks
X3(1/2) k1 k1 ko kg kg
Xa(-1/2) | ks ks > oy oy
X5 (—3/2) 1{23 k‘Q k‘g kil ]{21
X6 (—5/2) ]{22 ]{53 k‘g kil ]{21
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We also investigated the behavior of the dynamic magnetizations (M4, M?) and the dynamic
quadrupole order parameters (QA, QP) as functions of the reduced temperature. These investigations
lead us to define nature (first- or second-order) of the dynamic phase transition (DPT) and to obtain
the DPT points as well as to observe the phases, especially mixed phases that cannot be obtained
from Eqs. (2.12) and (2.13). Thus, M4, M® and Q4, QP can be defined as

27 1 27
MA = o ), mA(€)d¢ and MP = o ), mPB(€)de, (3.5)
and similarly,
1 27 1 2
Q' =5 [ Mg and @7 = - [ oP(eae (36)

Egs. (3.5) and (3.6) were solved by using the Adams-Moulton predictor corrector method with
Romberg integration. A few exploratory and interesting results are plotted for several values of system
parameters and initial values in Figures 2 and 3. In these figures, the thin (black) and thick (blue)
lines represent M4 and MP | respectively, and the thick dashed (green) and thin dashed (red) lines
represent Q4 and QP respectively. T, and T, respectively, indicate the dynamic first-order phase
transition (FOPT) and second-order phase transition (SOPT) temperatures. Figure 2 was obtained
for k = —0.025, d = 1.25, hg = 2.80 and different initial values. This figure displays that the system
first undergoes the FOPT at Ti; = 0.26 from the d phase (Figure 2 panel (a)) to the i4y (Figure 2
panel (b)) phase, the reason that discontinuous occurs on M4, MP and then the i4 phase to the
i1 + 14 (Figure 2 panel (c¢)) hybrid phase at Ti2 = 0.56 and finally the system undergoes the SOPT
from the i, + i4 mixed phase to the d phase at T, = 0.88, the reason that M* and M? become
zero continuously. Thus, one can evidently observe that the i1 + ¢4 mixed or hybrid phase occurs
between Tio and T, and also very clearly seen in Figure 4 panel (c) for hyp = 2.80. Figure 3 was
plotted for k = —0.100, d = 1.75, hg = 1.75 and different initial values in which exhibits more
interesting and complex behaviors. The system first undergoes the FOPT at Ti; = 0.12 from the
i4 + i5 + i + nmg + nmg hybrid phase to the is + nmgo + nms mixed phase (Figures 3a and 3d-3f),
then the iq4 + nmg + nms to theiy + iy + nmgy + nms phases at Tiyo = 0.18 (Figures 3b and 3d-3f),
and then from the i4 4+ i1 + nmeo + nms mixed phase to the iy + i1 +nmo hybrid phase at T = 0.40
(Figures 3c and 3d-3f), and theiq + i1 + nmgy to the ig + 97 phases at Too = 0.45 (Figures 3d-3f),
finally the i4 4+ ¢; mixed phase to the d phase at Tz = 1.18 (Figures 3¢ and 3f). On the other hand,
Q4 and QP make a sharp or a smooth cusp at T; and Tp.

3.2. Dynamic phase diagrams

Since we found the phases, characterized nature of DPT's, and obtained the DPT temperatures, we can
now present the dynamic phase diagrams (DPDs) of the system. The calculated phase diagrams in the
(T, hp) plane are presented for various values of k and d, seen in Figures 4 and 5. In these figures, the
dashed (blue) and solid (red) lines, respectively, indicate the FOPT and SOPT lines. TCP, B, E,
IE, Z, and QP represent the dynamic tricritical point, double critical end point, critical end point,
inverse critical end point (termination of first-order phase lines at the critical point), zero critical end
point and quadruple point (the point where two different first-order phase lines intersect), respectively.
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- -
” o) P
A

Figure 4. The dynamic phase diagrams in the (7', hg) plane. Solid (red) and dashed (blue) lines,
respectively, indicate the second- and first-order phase transition lines. TCP, B, E, IE, Z, and QP
represent the dynamic tricritical point, double critical end point, critical end point, inverse critical
end point, zero critical end point and quadruple point, respectively. Definitions of fundamental and
mixed (mp;) phases are given Tables A.1 and B.1, respectively. (a) k = —0.025 and d = 1.75, (b)
k =—0.025 and d = 1.50, (c) k = —0.025 and d = 1.25, and (d) k = —0.025 and d = 1.00.
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Figure 4a was obtained for k = —0.025 and d = 1.75, and the following interesting and important
phenomena were observed from this figure: (1) It displays nine E, three B, one Z, IE and QP
dynamic critical points. (2) Beside the disordered phase (d), one ferrimagnetic (i4) phase and one
nonmagnetic (nms) fundamental phase, up to fifteen different mixed phases occur in the system. (3)
DPD does not exhibit the dynamic TC'R point behavior. (4) The more complicated mixed phases
mostly occur for small values of 7" and hg. (5) The dynamic FOPT boundaries among the mixed
phases are more than the SOPT boundaries. (6) The areas of the mpi4, and mpi5 mixed phases
becomes smaller as 7' and hy getting smaller and they disappeared at 7' = 0. (8) The system also
displays the reentrant behavior, i.e. as T is increased, the system undergoes from the d phase the
i1 + 74 mixed phase and back to the d phase again. (9) The boundaries between the d and the mixed
phases are the SOPT lines for high and very low values of T', but the FOPT lines for intermediate T'
values. Figure 4b was plotted for k = —0.025 and d = 1.50 that is like to Figure 4a, except three
following differences: (1) One more critical end point (E) occurs for small values of 7" and hy = 0.0.
(2) The FOPT and SOPT lines and all the special dynamic critical points consist for lower values of hg
and T'. (3) The mp;5 mixed phase becomes the nm; fundamental phase. Figures 4c was constructed
for k = —0.025 and d = 1.25, and it is similar to Figure 4b, except followings: Two dynamic T'CPs
emerge for the low value of hg and high value of T', and the nm; fundamental phase disappears;
hence, one of E also vanishes. Moreover, the special dynamic critical points, and the FOPT and
SOPT lines take place for more small values of hg and T'. Figure 4d was obtained for k = —0.025
and d = 1.00 and it is similar to Figure 4c, apart from following distinctions. (1) The SOPT line that
observed at high values of T" and hgy disappears; hence two E and one B special dynamic critical
points, and the mp12 and mpyp mixed phase vanish. (2) The FOPT line that observed for high values
of T and hg disappears; hence, the mps mixed phase disappear. Moreover, the dynamic FOPT lines
between two dynamic T'C'Ps become longer as d values decreasing.

We also constructed the DPDs for higher values of the repulsive biquadratic coupling (k) and
various values of d, seen in Figure 5. Figure 5a was obtained for k = —0.100 and d = 1.75 that is like
Figure 4a, except the following four important differences. (1) SOPT line that emerged at low values
of T and hg, and the FOPT line observed for lower values of T' and higher values of hy disappears;
thus, three E' and one B special dynamic critical points, and four mixed phases are lost. (2) FOPT
and SOPT lines as well as all the special dynamic critical points occur for lower values of T" and hyg.
(3) The components of mixed phases are different. (4) The nmgy phase is observed instead of the
nmy phase as a separate single phase. Figure 5b was plotted for k = —0.100 and d = 1.75 and it
is similar to Figure 5a, only differences illustrate dynamic tricritical behaviors; hence, two dynamic
TCPs occurs, and one more FE point emerges for the low value of hg. Figure 5¢ was constructed
for k = —0.100 and d = 1.25 in which similar to Figure 5b, except the following differences. (1)
One more SOPT line occurs for smaller values of T' and hy. (2) One more FOPT line is observed for
higher values of T'. (3) Two more B and one more E special critical points emerge, and the FOPT
and SOPT lines as well as all the special dynamic critical points occur for more small values of T and
ho. (4) Few more number of mixed phases was observed. (5) The components of mixed phases also
change. (6) Then mgy fundamental phase turns into the mp4 mixed phase. Finally, Figure 5d was
found for k = —0.100 and d = 1.00 and it is like to Figure 5c, except the FOPT line that terminates
at the IE disappears; hence, some of the mixed phases disappear, and the combinations of mixed
phases are different. Moreover, the i; is observed instead of the mpr(i; + i4) mixed phase.
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Figure 5. Same as Figure 4, but (a) k = —0.10 and d = 1.75, (b) k = —0.10 and d = 1.50, (c)

k = —0.10 and d = 1.25, and (d) k = —0.100 and o = 1.00.
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Finally, we should also mention that very recently the similar DPDs were obtained in the mixed
spin (2, 5/2) Blume-Capel model [33], but the DPDs of Figures 4 and 5 illustrate more richer and
interesting dynamic critical phenomena.

4. Summary and conclusion

We investigated the DPTs and presented the DPDs of a mixed spin (2, 5/2) BEG model in the
presence of an oscillating magnetic field. We utilized the PPM to find the set average of dynamic order
parameters as well as dynamic order parameters. We numerically solved these dynamic equations to
find the phases in the system as well as to characterize the nature of DPTs and find DPT points. We
constructed the DPDs in the (7, hy) plane for various values of the repulsive biquadratic (k) nearest-
neighbor interaction and crystal-field interaction (d). We observed that the system illustrates very
rich and interesting topological behaviors of DPDs, such as up to two dynamic tricritical points, eight
critical end points, three double critical end points, a zero-temperature critical point, one inverse
critical end point and a quadruple point depending on interaction parameters. The system also
shows the disordered, antiquadrupolar or staggered, three different nonmagnetic, and six different
ferrimagnetic phases as well as various distinct mixed or hybrid phases. The system always exhibits
the reentrant behavior for higher values of hg and lower values of 7. The system does not illustrate
the dynamic tricritical behavior for bigger values d; hence, the dynamic tricritical behavior depend
on the values of d. We found that the number of mixed phases formed in the system as well as the
components of the mixed phases occurred in the phase regions are highly dependent on the k and d
values.

For higher values of hy and lower values of T, the ¢; fundamental phases appear as a separate
single phase, and the IF special critical point disappears for smaller values of k and higher values
d. Lastly, we hope that our detailed theoretical investigations may stimulate further works to study
to the DPTs and DPDs in different system within the PPM. We also hope that this work might shed
some light to experimental scientists working on one of the currently growing and important subjects
in the condensed matter physics.
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Appendix

A. Definition of fundamental phases

Table A.1. The names, symbols and meanings of the fundamental phases observed in the system.

Fundamental phases Symbol | Definitions
Disordered phase d ma =mb = 0.0; qA > 0.0, ¢ > 0.0,

and ¢4 =¢P =0.0at T —
Antiquadrupolar or a mA =mP =0.0 and ¢* # ¢% > 0.0
staggered phase
Nonmagnetic phase I nmi ma = 0.0, mP = +5/2, and qA #* ¢ > 0.0
Nonmagnetic phase II nmo ma = 0.0, m? = +5/2, and qA #* ¢ > 0.0
Nonmagnetic phase III nms mA4 =0.0, mP = +1/2, and g #4¢%>00
Ferrimagnetic phase - 1 i1 mA = £2.0, m = £5/2, and ¢ # ¢® > 0.0
Ferrimagnetic phase - 11 i9 mA = £2.0, m = +3/2, and ¢ # ¢® > 0.0
Ferrimagnetic phase - I1I i3 mA = £2.0, m = +1/2, and ¢4 # ¢® > 0.0
Ferrimagnetic phase - IV i4 mA = £1.0, m = £5/2, and ¢ # ¢® > 0.0
Ferrimagnetic phase - V is5 mA = £1.0, m = £3/2, and ¢ # ¢® > 0.0
Ferrimagnetic phase - VI i6 mA = £1.0, m = +1/2, and ¢4 # ¢® > 0.0
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B. Definition of mixed phases

Table B.1. The symbols and meanings of the mixed or hybrid phases observed in the system.

Symbols | Definitions

mpy 11 + 19 + 13 + 14 + 15 + 16 + My + Mg + ning
mpo 11 + i4 + 15 + 1 + My + nmg + nms

mps 11 + 14 + nmy + nmo + nms

mpy 11+ 4 +nmq +nme +d

mps 11+ +a

mpe i1 +i4+d

mpy 11+ 14
mps 14 + 16 + nmy + nmg + nims
mpg i4 + nmi + nmeo + nms

mpio i1+1i4+nmq+d

mpi1 14 +nmy + nme

mpi2 14 +nmq

mpi13 nmi + nmso + nms

mpiq nmi + nmsy

mpis 11+ 10 + 13 + t4 + i5 + 16 + N1
mpie 11 + 14 + 15 + i + nmy
mpi7 11 + 14 + nMy

mpi1g i4 + 15 + i + nmM2 + nm3
mpig 14 + nMa + nims

mpao 11 + 14 + nme

mpa1 14 + 15 + 16 + nm3

mpa2 11+ 15 + i6

mpa3 11 + t4 + M3

mpa4 nme +nms + d

mpas 14 +nmo +nm3 +a
mpag i4 +nmg +nms +d
mpay nmi +nms + a

mpas nmi + nme +d

mpag i4+d

mpso i4+a
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