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Abstract: In this paper, we generalize the shortcuts to adiabacity for the quantum Rabi model by simultane-

ously modulating its two components, namely, the two-level system and the cavity mode. This will eliminate the

counterrotating terms which in turn helps to simulate the Rabi model by the Jaynes-Cummings model without

requiring a largely detuned light-matter coupling. We focus on the low-frequency modulations since it is easy to

realize them experimentally. The results show that these modulations can significantly shorten the evaluation

time, generate much larger entanglement cat states, and robust against imperfection of time evaluation and

dissipation.
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1. Introduction

The quantum Rabi model [1, 2] is the simplest light-matter interaction in quantum physics and has

many applications in quantum optics [3], condensed matter physics [4, 5], and quantum information [6].

In 2011 Braak [7] found that it is exactly solvable. The Rabi model can be divided into different regimes

depending on the normalized coupling strength η , the ratio between the coupling strength and the

system frequencies [8], and the dissipation rates. Two of these regimes are of great importance:

ultrastrong coupling and deep-strong coupling. The ultrastrong coupling (USC) regime occurs when

the coupling strength between light and matter is comparable to the atomic or cavity frequencies,

η ≈ 0.1 ∼ 1. This regime has attracted increasing attention since its first observation in the

microcavity-embedded doped GaAs quantum well [9]. Later, a broad range of physical systems

have been used to demonstrate it, including light-molecule [10], cavity quantum electrodynamics

(QED) systems [9, 11], and circuit-QED systems [12]. The deep-strong regime occurs when the

coupling strength becomes larger than 1, η ≳ 1. A value of η = 1.34 was obtained experimentally

in 2017 [13, 14]. Such a regime would be of great significance for generating maximally entangled cat
states.

It is well known that for small values of η the rotating wave approximation is valid, and the Rabi
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model can be simplified to the Jaynes-Cummings (JC) model [15], where the counter-rotating terms

are ignored. Recently, an interesting idea has been proposed to realize the JC model in the ultrastrong

regime [16]. It is an important way to demonstrate that the JC model and the ultrastrong coupling

regime can coexist simultaneously. This proposed model does not rely directly on the rotating wave

approximation but rather on modulating the frequencies of the two-level system and the bosonic mode.

The frequency modulation of the two-level system can be realized experimentally using a longitudinal

driving field [17–19], while the modulation of the cavity can be implemented by using a superconducting

quantum interference device (SQUID) [20–22]. It was shown that for appropriate modulations, the

counterrotating terms can be completely suppressed in high and low frequency modulations without

the need to reduce the coupling strength of the Rabi model. This new idea opens a new way to

implement ultrafast quantum state transfer, ultrafast quantum logic gates [23], and to demonstrate

the quantum phase transition [16].

Shortcuts to adiabaticity is a general approach to accelerate slow adiabatic processes and leads

to fast nonadiabatic evolution. It is based on adding a suitable counterdiabatic Hamiltonian to the

original time-dependent Hamiltonian to suppress transitions between the instantaneous eigenbasis.

It has been applied in many fields, especially in fast quantum information processing [24–26]. An

interesting model based on shortcuts to adiabaticity has been recently proposed to generate giant

entangled cat states [27]. The entangled cat states with large size are very important in quantum in-

formation, especially in quantum metrology [28], quantum processing [29], and fault-tolerant quantum

computation [30, 31]. The proposed model is based on a parametric amplification process utilizing

a χ2 -nonlinear medium which is driven by two-photon time-dependent coherent fields. One of these

fields is used to produce a time-dependent squeezed-cavity mode and the other, which is π/2-phased

from the first one, is used to suppress transitions between different time-dependent eigenstates and

thus prevents nonadiabatic transitions. This is one of the well known shortcuts to adiabatic methods.

Such methods are used to mimic adiabatic evolution beyond the adiabatic limit [32–34], which in

turn speed up the quantum adiabatic process. In order to reduce the influence of the cavity loss in

this model, a broadband squeezed vacuum generated from an optical parametric amplifier is used. It

was shown that this interesting model is much faster than its adiabatic counterpart which requires

a long-time evolution. In addition, it is robust against dissipation and imperfection of the evolution

time when the detuning is very large.

Speeding up the generation of entangled state is very crucial in quantum information. Recently,

Yan et.al. [35] have proposed an effective scheme for speeding up the generation of an entangled state

between superconducting qubit and cavity photons via counterdiabatic driving, which is one of the

STA methods. They have used a three-level system in Λ-configuration. Driving it by external time-

dependent fields and a quantized cavity mode using adiabatic population transfer leads to an entangled

state; then an extra field, counterdiabatic driving, is used to speed up this generated entangled state.

Motivated by the possibility of speeding up an entangled state with a large mean photon number,

we extend the work of Ref. [27] by simultaneously modulating the two-level system and the cavity

mode in the low-frequency modulations. These modulations which eliminate the counterrotating terms

overcome the condition proposed in Ref. [27] and therefore can greatly shorten the evolution time of

the shortcuts to adiabatic protocol and increase the size of the generated entangled cat states. We also

study the time required to obtain these giant entangled cat states and their robustness against time

evolution imperfection and dissipation. The rest of the paper is organized as follows: In Section 2,

we review the ultrastrong JC model [16] with the generalized Rabi model where the quadratic term is
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taken into account. In Section 3, we generalize the shortcuts to adiabaticity [27] by using low-frequency

modulations and show that these modulations improve the generation of nonclassical ground state in

terms of speed and size. We also discuss its robustness to the imperfection of time evolution. A

conclusion is given in Section. 5.

2. Simulation of the generalized Rabi model

The standard Hamiltonian of the quantum Rabi model is given by

HR =
ωa

2
σz + ωca

†a+ gσx

(
a† + a

)
, (2.1)

where ωa is the frequency of the two-level system, ωc is the frequency of the cavity mode, σx(z) is

the well known Pauli operator, a(a†) is the annihilation (creation) operator of the cavity mode, and

g is the coupling strength. It is worth mentioning that the derivation of this Hamiltonian is based

on the electron-electromagnetic field interaction without the quadrature term. It was shown that this

quadratic term can have significant effects on quantum state transfer and nonclassical quantum state

preparation in the strong and ultrastrong coupling regimes. The Rabi model with this quadrature

term is called the generalized Rabi model and its Hamiltonian is then written as [36]

H =
ωa

2
σz + ωca

†a+ gσx

(
a† + a

)
+

1

2
gζ

(
a† + a

)2
. (2.2)

Here, ζ is a dimensionless parameter that characterizes the strength of the quadrature term and its

value depends on the system in consideration. For example, its maximum value is close to 3 for the

cooper pair-transmission-line-resonator (TLR) system [37]. Due to the counterrotating terms, the

Hamiltonian H does not conserve the excitation number operator Ne = a†a+ σ+σ− , where σ+(−) is

the raising (lowering) operator. However, under the rotating wave approximation, where the coupling

strength is g ≪ {ωa, ωc} , these counterrotating terms do not contribute to the evolution of the system

and the Hamiltonian H reduces to

HRWA =
ωa

2
σz + (ωc + gζ) a†a+ g

(
σ−a

† + σ+a
)
. (2.3)

It is clear from the previous equation that the quadratic term has the effect of shifting the frequency

of the cavity mode by an amount of gζ . This shifting should be taken into consideration in case the

quadrature term is significant.

In the case that the rotating wave approximation is not valid, the counterrotating terms play

an essential part in the evolution. To deal with these terms, we follow Ref. [16] and write the

Hamiltonian (2.2) as the sum of two Hamiltonians

H = HRWA +HCR, (2.4)

where HCR includes all the counterrotating terms as well as the quadrature term

HCR = g
(
σ+a

† + σ−a
)
+

1

2
gζ

(
a†

2
+ a2

)
. (2.5)
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By applying a pair of sinusoidal frequency modulations to the two-level system and the cavity mode,

the frequencies ωa and ωc in Equation (2.3) are chosen to be time-dependent according to the following

equations

ωa(t) = ωa + ξν cos (νt), (2.6)

ωc(t) = (ωc + gζ) + ξν cos (νt). (2.7)

Here, ξ and ν are positive real numbers correspond to the amplitude and frequency modulations. It

is convenient to work in the rotating frame defined by the unitary transformation

U(t) = exp
{
i [(ωc + gζ) t+ ξ sin(νt)] a†a+

i [ωat+ ξ sin(νt)]σz/2} . (2.8)

In this frame the Hamiltonian takes the form

HI = UHU † + iU̇U †,

= g
(
σ−a

†e−iδt + σ+ae
iδt
)

+g
(
σ+a

† ei(ωa+ωc+gζ)t e2iξ sin(νt) + h.c.
)

+
1

2
gζ

(
a†

2
e2i(ωc+gζ)t ei2ξ sin(νt) + h.c.

)
, (2.9)

where δ = ωa − ωc − gζ . The extra term gζ reflects the role of the quadrature term in both rotating

and counterrotating terms.

There are two interesting regions where we can get rid of the counterrotating terms as was

mentioned in [16].

(i) The high-frequency modulation regime: Using the well know Jacobi-Anger identity

e2iξ sin(νt) =

∞∑
n=−∞

Jn(2ξ)e
inνt, (2.10)

where Jn is the Bessel function of the first kind, one can put

HI = HI
JC + ϵ(t), (2.11)

with

HI
JC = g

(
σ−a

†e−iδt + σ+ae
iδt
)
, (2.12)

ϵ(t) = g

[
σ+a

†
∞∑

n=−∞
Jn(2ξ)e

i∆1nt +

ζ

2
a†

2
∞∑

n=−∞
Jn(2ξ)e

i∆2nt + h.c.

]
, (2.13)
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where ∆1n = ωa +ωc + gζ +nν and ∆2n = 2(ωc + gζ)+nν . By choosing large values of |∆1,2n| ≫ 1,

the fast oscillating terms can be dropped, and to eliminate the term corresponding to n = 0, we take

ξ = 2.76 which leads to zero Bessel function J0 . In this case, the total Hamiltonian H is reduced to

the Jaynes-Cummings Hamiltonian (2.12), HI ≈ HI
JC .

Figure 1. The Fidelity at t = π/(2g) for two different values of g . The panels (a) and (c) are for
high-frequency modulations (ν > 1) with g = 0.1 and g = 0.5, respectively. The panels (b) and
(d) are for low-frequency modulations (ν = 0.1) with g = 0.1 and g = 0.5, respectively. The other
parameters are: ωa = ωc = 1 and the initial state is (|g⟩+ |e⟩) |α⟩/

√
2 with α = 0.1. The red region

is the region where the fidelity is close to 1, i.e. the counterrotating terms has no influence on the
system evolution. In high-frequency modulations, the parameter is chosen ξ = 2.76 to eliminate the
Bessel function, i.e. J0(2ξ) = 0.

(ii) The low-frequency modulation regime: In case ν ≪ ωa and for short time evolution, the

approximation sin(νt) ≈ νt is used. If we choose ξ such that the frequencies are much larger than the

coupling strength, the total Hamiltonian can be also reduced to the Jaynes-Cummings Hamiltonian.

To evaluate the validity of these approximations in high(low)-frequency modulations we compute

the fidelity

F (t) = |⟨ϕ(t)|ψ(t)⟩|2, (2.14)
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where |ϕ(t)⟩ is the solution of the Schrödinger equation for the total Hamiltonian (2.2) and |ψ(t)⟩ for

the JC Hamiltonian (2.3), taking into account that the frequencies are now time-dependent according

to Equation (2.6). In Figure 1, we plot the fidelity at t = π/(2g) and for two different coupling

strengths g = 0.1 and g = 0.5. The initial state is chosen to be (|g⟩+ |e⟩) |α⟩/
√
2, where |g(e)⟩

is the ground (excited) state of the two-level system and |α⟩ is the coherent state with α = 0.1.

For simplicity, we consider only the resonance case ωa = ωc = 1. Figures 1a and 1c are for high-

frequency modulations (ν > 1) with ξ = 2.76 which eliminate the Bessel function, J0(2ξ) = 0.

Figures 1b and 1d are for low-frequency modulations with ν = 0.1. It is clear from these figures that

for high(low)-frequency modulations the fidelity is close to 1 (red color regions) for large values of

ν(ξ). For low-frequency modulation the strength of the quadrature term ζ should be small enough

to have a fidelity close to 1. Figures 1a and 1c also show that in order to have a fidelity close to 1 for

large Rabi frequency g the parameter ν should be large enough. That is, the higher the value of the

Rabi frequency, the more we need to increase the frequency modulation ν . Similarly for low-frequency

modulations, increasing the Rabi frequency needs to use larger values of ξ .

By choosing the values of the tuner parameters (the red region in Figure 1), it is possible to

completely suppress the effect of HCR and the generalized Rabi model behaves like the JC model

with a shift in the cavity frequency by an amount of gζ . It is worth mentioning here that for small

coupling strength the generalized Rabi model can be approximated by the JC model using the rotating

wave approximation. With these modulations, we can go beyond this approximation and thus, our

approach is valid for arbitrary values of the coupling strength.

3. Shortcuts to adiabaticity with low-frequency modulations

In this section, we generalize the shortcuts to adiabatic method [27] by focusing on the low-frequency

modulations technique. To realize that, we choose the parameters in the region where H ≈ HRWA
(see the red regions in Figure 1). So, the Hamiltonian Equation (2.3) can be written in the rotating

frame as

H ≈ ∆a†a+ g
(
σ−a

† + σ+a
)
, (3.1)

with ∆ = ωc − ωa + gζ . To generate an entangled state a χ2 -nonlinear medium is inserted into the

cavity and two nonlinear time-dependent drive this medium. One of them Ωr(t) induces a squeezed-

cavity mode and the other Ωi(t) is used to counteract the nonadiabatic transition. Therefore, the

Hamiltonian becomes

H0(t) = ∆a†a−
[
Ωr(t) + iΩi(t)

2
a2 − ga†σ− + h.c.

]
, (3.2)

where we have assumed that both fields have the same time-dependent phase ωp(t) = 2 (ωat+ ξ sin(vt)).

In low-frequency modulations, νt≪ 1, the common frequency has a simple formula ωp = 2 (ωa + ξv).

In what follows we will focus only on the low-frequency modulation and we will not consider the

high-frequency modulation. This is due to the fact that low-frequency modulation is more accessible

experimentally than the high-frequency modulation [16].
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At this point, it is convenient to work in the squeezing frame rather than in the lab frame.

Therefore, the effective Hamiltonian can be written in the form [27]

HS = S†(t)HS(t)− iS†(t)Ṡ(t),

= ∆sech[2r(t)]a†a+
g

2
exp[r(t)](a† + a)σx −

i
g

2
exp[−r(t)]σy(a† − a), (3.3)

where the unitary transformation is given by the squeezed operator S(t) = exp
[
r(t)(a†

2 − a2)/2
]
,

and r(t) is a real squeezing parameter with time-dependent given by

r(t) =
rmax

1 + exp{f(t)} , (3.4)

where rmax is the maximum value of the squeezing parameter, f(t) = f0 cos(2πt/T ) with f0 ≫ 1,

and T is the duration of the evolution. For a feasible gain of 20 dB, the value of rmax is approximately

equal to 2.3 [38, 39]. This is the value that we use in our numerical calculations. Note that the time-

dependent of r(t) is chosen so that r(T ) ≈ 0. Thus, at the end of the evolution the state in the

squeezing frame is the same as in the lab frame. We should emphasis here that in Ref. [27] the last

term in (3.3), Herr = −ig2 exp[−r(t)]σy(a†−a), is considered as an error term since the detuning takes

g=0.3

g=0.2

g=0.1

g=0.045

Figure 2. The shortest time evolution T as a function of the logarithmic negativity at low-frequency
modulations in the presence of the error term Herr and for different values of the coupling strength
g . The parameters are: ∆ = 1, rmax = 2.3, and f0 = 10. The initial state is given by Eq. (3.5) with
η(0) = (1+ i)/100. To achieve En ≳ 99.99% for g ∈ (0.045, 0.1, 0.2, 0.3), one needs the evolution time
T ∼ (14.2, 11.6, 7.5, 5.3).
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a much larger value than the coupling strength, |g/∆| ≪ 1. However, with frequency modulations it

is possible to go beyond this condition and the ratio |g/∆| can take any value. Thus, the term Herr

is no longer negligible in our case and can affect the generation of the entangled cat states.

Figure 2 displays the dependence of the logarithmic negativity En = log2
∥∥ρΓq

∥∥
1
, which is an

entanglement measure, on the evolution time T for different values of Rabi frequency g and initial
state

|ψ(0)⟩ = 1√
2
(|+⟩x| − η(0)⟩+ |−⟩x|η(0)⟩) , (3.5)

where, |±⟩x are the eigenstates of the Pauli operator σx and η(0) = (1+ i)/100 is a complex number.

The symbol Γq means the partial transpose operation with respect to the two-level system space,

and ∥.∥1 denotes the trace norm. This figure shows the effect of overcoming the detuning condition

∆/g ≫ 1 posed in [27]. It is clear that increasing the coupling strength speeds the generation of the

entangled cat states. Therefore, to achieve En ≳ 99.99% for g ∈ (0.045, 0.1, 0.2, 0.3), one needs the

evolution time T ∼ (14.2, 11.6, 7.5, 5.3).

Figure 3. The logarithmic negativity and the mean photon number without ((a) and (c)) and with
((b) and (d)) the error term Herr . The parameters are: ∆ = 1, rmax = 2.3, and f0 = 10. The
initial state is given by Eq. (3.5) with η(0) = (1 + i)/100. Solid line with low frequency modulations
for g = 0.1 and dashed line for g = 0.045. The frequency modulations shorten the required time to
obtain entangled cat state.
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Figure 3 focuses on g = 0.1 and g = 0.045 in order to keep the effect of Herr small but not

negligible and to compare with Ref. [27]. It shows that applying frequency modulations increases the

mean photon number, as well as reducing the evolution time. Also, one can notice that the term Herr

does not affect the behavior of the mean photon number which grows exponentially with the evolution

time, but it affects the negativity. In the case that this term is taken into account, the logarithmic

negativity is no longer a monotonic function of time evolution; instead there are collapses and revivals

of entanglement starting from the shortest time. Since we are interested in the smallest time, the

calculations with Herr lead to a longer time evolution (T = 11.57) than without it (T = 8.60) for

g = 0.045 and the mean photon number in our case is 7.23 which is larger than 4.3 found in Ref. [27].

Figure 4. Wigner function of the projection on the eigenstates of the Pauli operator σx . (a) for the
projection on |−⟩x and (b) on |+⟩x . The red (black) dot corresponds to the solution of the differential
equations (3.7). The spots in (a) and (b) are symmetric with respect to the origin.

To visualize the state at the end of the evolution, we plot in Figure 4 the Wigner function [24]

of the projected state into the two eigenstates of the Pauli operator σx . The appearance of a single

spot with interference patterns indicates that the field is a superposition of two coherent states but

with different weights. The explanation of this behavior is as follows. Let us start first by ignoring

the term Herr . By choosing the initial state (3.5) the state evolves along an adiabatic path in the

squeezed-light frame due to the shortcuts to adiabatic method is given by

|ψ(t)⟩ = 1√
2
(|+⟩x| − η(t)⟩+ |−⟩x|η(t)⟩) , (3.6)

where the evolution of η(t) is obtained from the solution of the following set of differential equa-

tions [27]

Re[η̇(t)] = ∆ Im[η(t)] sech[2r(t)], (3.7a)

Im[η̇(t)] =
g

2
exp[r(t)]−∆Re[η(t)]sech[2r(t)]. (3.7b)

Now, if the contribution of term Herr is small but not negligible, one can find that the state

20



BENSEGHIR, MESSIKH and BOUKETIR/Turk J Phys

Figure 5. Wigner function of the projection on the state |g⟩ for the coupling strength g = 0.3. The
red (blue) dot corresponds to actual coherent state |η⟩ . The two black dots correspond to the solution
of the differential equations (3.7). There is a little shift to the solution of the differential equations
due to the presence of a non negligible Herr .

approximately evolves to

|ψ(t)⟩ ≈ 1√
N

(|+⟩x [| − η(t)⟩ − iϵ|η(t)⟩] +

|−⟩x [|η(t)⟩ − iϵ| − η(t)⟩]) , (3.8)

where N is a real number that normalizes the state (3.8) and ϵ → 0 for very small value of g/∆.

It is clear from the last equation that the projection on the two eigenstates of the Pauli matrix σx
involve a superposition of both coherent states | ± η⟩ . It is worth mentioning here that at the end of

the evolution t = T , the final state in the lab frame is very close to the one in the squeezed frame due

to the fact that r(T ) → 0. Hence, the state given by Equation (3.8) at the end of the evolution can

be put in the form

|ψ⟩T → (1− iϵ)|g⟩ [| − η⟩T + |η⟩T ] +
(1 + iϵ)|e⟩ [| − η⟩T − |η⟩T ] , (3.9)

where |.⟩T means the state |.⟩ at t = T . The two spots shown in Figure 4 are for g = 0.1 and

T = 11.57 which correspond to the states

| − η⟩T − iϵ|η⟩T and |η⟩T − iϵ| − η⟩T , (3.10)
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where we have found numerically that ϵ is approximately 0.22. We should note here that the small

Figure 6. Deviations of the mean photon number δn/n (solid line) and logarithmic negativity
δEn/En (dashed line) as a function of the imperfection in T , taken for the mean photon number
n = 7.23 at T = 11.57.

value of ϵ does not change the cat state size, whether the measurement on the qubit gives the state

|g⟩ or |e⟩ . However, by increasing the coupling strength g , the contribution of Herr increases and

leads to the change of the cat state size. This effect is shown in Figure 5 where we plot the Wigner

function for the projection of the final state on the qubit state |g⟩ for the coupling strength g = 0.3

and T = 5.25. It is clear from the figure that the generated entangled cat state is shifted slightly due

to the error term Herr .

To investigate the robustness against the imperfection of time evolution, we illustrate in Figure 6

the deviations of the mean photon number δn/n and the logarithmic negativity δEn/En as a function

of δT/T , namely, the imperfection of the time evolution T , using T = 11.57 obtained from Figure 3

and assuming that r(tf ) = 0 for all tf > T with the final time tf = T (1 + δT/T ). It is clear from

the figure that the deviation is less than 5% for the mean photon number and that the logarithmic

negativity is always decreasing, but not more than approximately 10%. This arises from the fact that

the collapse and revival curves in Figure 3b are tangent and close to each other, around T = 11.57.

Consequently, we can conclude that our generalized shortcuts to adiabaticity is robust against the

imperfection of time evolution.

4. The effect of decoherence

Up to this point, we have assumed an isolated system. However, in reality there will always be

interaction with the environment. This interaction can be described by the well known master

22



BENSEGHIR, MESSIKH and BOUKETIR/Turk J Phys

equation [27, 40]. In the lab frame it is written as follows:

ρ̇(t) = i [ρ(t) , H0(t) ]

+
1

2

[
2Lγρ(t)L

†
γ − L†

γLγρ(t)− ρ(t)L†
γLγ

]
+
1

2
(N + 1)

[
2Lκρ(t)L

†
κ − L†

κLκρ(t)− ρ(t)L†
κLκ

]
+
1

2
N

[
2L†

κρ(t)Lκ − LκL
†
κρ(t)− ρ(t)LκL

†
κ

]
−1

2
M

[
2L†

κρ(t)L
†
κ − L†

κL
†
κρ(t)− ρ(t)L†

κL
†
κ

]
−1

2
M∗ [2Lκρ(t)Lκ − LκLκρ(t)− ρ(t)LκLκ] , (4.1)

where ρ is the density operator, Lγ =
√
γσ− and Lκ =

√
κa are the Lindblad collapse operators

for the two-level system and the cavity, respectively. The parameter γ(κ) is the decay rate of the

two-level system (cavity) and the parameters N and M characterize the squeezed vacuum

N = sinh2 (r2) , M = cosh (re) sinh (re), (4.2)

where re is the squeezing parameter. It is important to keep in mind that the master equation is

based on the Born approximation, which assumes that there is no back reaction and only a weak

coupling between the squeezed vacuum and the two-level system/cavity. In the case that there is a

strong coupling, the master equation should be replaced by the so called global master equation [41].

It is worth mentioning that the use of the squeezed vacuum is to minimize the influence of thermal

noise and two-photon correlation noise in the cavity mode. Transforming the master equation (4.1)

into the squeezed-light frame and taking the squeezing parameter re = rmax , the master equation (4.1)

can be approximated by

ρ̇S(t) = i [ρS(t) , HS(t) ] +

+
1

2

[
2LγρS(t)L

†
γ − L†

γLγρS(t)− ρS(t)L
†
γLγ

]
+
1

2

[
2LκρS(t)L

†
κ − L†

κLκρS(t)− ρS(t)L
†
κLκ

]
,

(4.3)

where, ρS(t) is the density operator in the squeezed frame.

Figure 7 shows the fidelity versus 1/
√
C , where C = g2/κγ is the cooperativity parameter. For

simplicity we assume that the damping rates κ and γ are equal. It is well known that the damping

rates reduce the fidelity but, in our case, it is still always greater than 80%, and it is more than 90%

for κ = γ ≤ 2× 10−3 , which shows that our model is robust against dissipation.

For experimental realization, the circuit QED systems are good candidates. To implement

frequency modulation of the transmission line resonator, a superconducting quantum interface device

boundary is applied to the resonator [20–22]. By changing the flux through the loop of the SQUID one
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Figure 7. The effect of damping on the fidelity as a function of the 1/
√
C , with C = g2/κγ and

κ = γ . The values of the parameters are the same as in Figure 6. The solid line corresponds to the
master equation (4.1) and the dashed line to Equation (4.3).

can tune the two parameters ξ and ν . The frequency modulation of the two-level system is obtained by

adding a σz driving with frequency ν , which can be realized experimentally by an external magnetic

field that induces a flux driving [17–19]. We choose the low-frequency modulation in order to speed

the process. Since the low-frequency modulation is valid for short-time limit, νt≪ 1 and also because

it is more accessible in experiment [16]. A fidelity close to 0.99 can be obtained for smaller values of

the driving amplitude ξν/ωa ≈ 0.1.

5. Conclusion

We have investigated how to speed up the generation of entangled states using low-frequency modula-

tions by combining the idea of the ultrastrong JC model [16] with the shortcuts to adiabaticity in Rabi

model [27]. This combination, which involves frequency modulations of two-level system and cavity,

speeds the generation of giant entangled cat states and increases their size exponentially without los-

ing their robustness against time evolution and dissipation. This approach allows going beyond the

conventional ultrastrong coupling regime and simulates the Rabi model using the JC model without

the need to have the coupling strength much less than the detuning. We have also studied the effect

of the environment and the result shows that our model is robust against dissipation as well as time

evolution. In the numerical calculations we concentrate on the value g = 0.1, which is the lower

limit in the ultrastrong coupling regime; this is because the Hilbert space of the cavity mode grows

exponentially as the value of g increases.
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